tag 标签: 电压跟随器

相关博文
  • 热度 36
    2014-3-22 15:31
    6855 次阅读|
    6 个评论
    由于DAC的输出可能会经过电阻分压、经过加减法器运算之类的,所以很多时候在它的后级会加上电压跟随器,以增加输入阻抗、减小输出阻抗;使用ADC时,也同样经常会使用它来处理信号。 在使用LM358搭建电压跟随器时,我遇到过输入电压接近零点而输出电压保持在0.6V以上的情况,从网上了解到这并不是个别现象,而是经常出现,有人给出的解决方法是使用正负电源供电,或者加下拉电阻。但是LM358的技术手册描述,它的输出电压摆幅在0V附近时并没有问题(技术手册上提供的最低输出电压 典型值 为5mV),同样有人做过实验,确实表现非常好。那这个0.6V到底从哪里来呢?难道买到的LM358是假货吗? 为了找出问题所在,首先根据下面的原理图,使用实验板搭建出电路: 第一步:电位器的输出从0V~+5V,无论抽头是悬空还是接到5pin,IC5A的1pin输出电压摆幅为0V~+3.8V,这说明第一个电压跟随器工作正常; 第二步:1pin的输出为0V~+3.8V时,无论它是悬空还是接到ADC引脚,IC5B的7pin输出电压摆幅为0V~+3.8V,这说明第二个跟随器也工作正常,前一个电压跟随器接到后一个电压跟随器是没有问题的。 第三步:此时把一个10K的电阻接入ADC引脚做上拉,IC5B的7pin输出电压摆幅为0.7V~+3.8V;当更换这个上拉电阻为1K时,IC5B的7pin输出电压摆幅为+1V~+3.8V;当更换这个上拉电阻为50K时,IC5B的7pin输出电压摆幅为+0.6V~+3.8V;当更换这个电阻慢慢接近于0欧姆时,IC5B的7pin输出电压慢慢接近VCC。 为了进一步验证上拉电阻的影响,将这个运放的输出接到STM32F103RBT6的ADC引脚上,此时发现,当ADC的引脚设置为GPIO_Mode_AIN时,运放的输出摆幅正常;而当ADC的引脚设置为GPIO_Mode_IPU时,出现了上面的输出摆幅+0.6V~+3.8V的情况。通过查询STM32F103RBT6的技术手册知道,当IO口设置为上拉时,会使能内部的弱上拉电阻,大约40K欧姆。这一现象刚好符合上面的分析。 再进一步验证,将运放的输出从ADC断开,直接加上50K的上拉电阻,会发现它的输出摆幅有同样的变化。 由此可见,LM358运放的输出对上拉电阻敏感,但这是为什么呢?难道运放输出不应该是不受负载电阻影响吗?为什么加上拉电阻之后输出会出现错误,而加上下拉电阻又完全没有问题呢?为了搞清楚这个,有必要把俺这本尘封已久的《模拟电子技术基础》拿出来了! 这是LM358的芯片内部原理图,来自ON Semiconductor公司的LM358技术手册,它和《模拟电子技术基础》书中F324的原理图非常类似: 首先,最右侧的灰色部分是一个恒流源,用于给整个电路提供恒流偏置,Q19、Q16、Q15因为集电区面积的不同而构成了不同比例的电流源,Q8和Q10构成了镜像电流源,给末级提供静态电流; 其次,最左侧是一个双端输入单端输出的共集共射差分放大电路,Q3和Q4是有源负载,将Q18的集电极电流变化转换成输出电流,接到Q5; 然后,中间是一个共集共射放大电路,具备很强的放大能力; 最后,靠右部分是射极输出电路,25欧姆的电阻和Q12一起构成了正向电流保护,正常工作时Q12截止,Q10上有50uA的偏置电流,而Q11处于截止状态,Uo=U9c-U14be-U13be-Ur;正常情况下,Q11应该处于截止状态,因为Q9的集电极电位比Q11的发射极电位要高;当上拉电阻接入时,(由于Q9集电极电位接近零点,Q11发射极被拉高,所以Q11被打开,Uo为Q11的EB电压,约为0.7V左右,而0.7V反馈接入正向输入引脚,又使得Q9的集电极电平保持零点,当输入电压大于0.7V时,Q9的集电极电平会接近VCC,并且在负反馈的作用下重新达到平衡,???)破坏了射极输出电路的负反馈,因此零点附近的信号被钳位到0.7V左右。 要验证这一点,将LM358的深度负反馈去掉,而直接使用开环放大。发现当没有上拉电阻时,U+=VCC,U-=1.5V,则Uo=+3.8V;而U+=0V,U-=1.5V,则Uo=0V;当使用了上拉电阻,U+=VCC,U-=1.5V,则Uo=+3.8V;而U+=0V,U-=1.5V,则Uo=0.7V。更换不同阻值的上拉电阻,现象几乎一样。 so,结论:LM358的输出摆幅符合技术手册的描述,在接近零点的范围内依然表现良好;而在它的输出端使用上拉电阻会影响它的工作。  
  • 热度 15
    2012-10-30 11:54
    1379 次阅读|
    0 个评论
       若将输出电压的全部反馈到反相输入端,就构成电压跟随器。电路引入了电压串联负反馈,其反馈系数为1。       理想运放的开环差模增益为无穷大,因而电压跟随器具有比射极输出器好得多的跟随特性。   综上所述,对于单一信号作用的运算电路,在分析运算系关时,应首先列出关键节点的电流方程,所谓关键节点是指那些与输入电压和输出电压产生关系的节点,如N点和P点;然后根据“虚短”和“虚断”的原则,进行整理,即可得输出电压和输入电压的运算关系。 电压跟随器是共集电极电路,信号从基极输入,射极输出,故又称射极输出器。基极电压与集电极电压相位相同,即输入电压与输出电压同相。这一电路的主要特点是:高输入电阻、低输出电阻、电压增益近似为1,所以叫做电压跟随器。电压跟随器也可以用运放实现。 那么电压跟随有什么作用呢?概括地讲,由于它的高输入电阻、低输出电阻,所以电压跟随器起缓冲、隔离、提高带载能力的作用,完成阻抗匹配的功能。 共集电路的输入高阻抗,输出低阻抗的特性,使得它在电路中可以起到阻抗匹配的作用,能够使得后一级的放大电路更好的工作。因为,电压放大器的输出阻抗一般比较高,通常在几千欧到几十千欧,如果后级的输入阻抗比较小,那么信号就会有相当的部分损耗在前级的输出电阻中。在这个时候,就需要电压跟随器来从中进行缓冲。起到承上启下的作用。应用电压跟随器的另外一个好处就是,提高了输入阻抗,这样,输入电容的容量可以大幅度减小,为应用高品质的电容提供了前提保证。 举一个应用的典型例子:电吉他的信号输出属于高阻,接入录音设备或者音箱时,在音色处理电路之前加入这个电压跟随器,会使得阻抗配匹,音色更加完美。很多电吉他效果器的输入部分设计都用到了这个电路。 电压隔离器输出电压近似输入电压幅度,并对前级电路呈高阻状态,对后级电路呈低阻状态,因而对前后级电路起到“隔离”作用。 电压跟随器常用作中间级,以“隔离”前后级之间的影响,此时称之为缓冲级。基本原理还是利用它的输入阻抗高和输出阻抗低之特点。 电压跟随器的输入阻抗高、输出阻抗低特点,可以极端一点去理解,当输入阻抗很高时,就相当于对前级电路开路;当输出阻抗很低时,对后级电路就相当于一个恒压源,即输出电压不受后级电路阻抗影响。一个对前级电路相当于开路,输出电压又不受后级阻抗影响的电路当然具备隔离作用,即使前、后级电路之间互不影响。