tag 标签: 磁性材料

相关帖子
相关博文
  • 2025-5-14 09:55
    0 个评论
    一、理论机制的新认知 1、‌拓扑磁光效应突破‌ 在拓扑磁性体系中,磁光克尔效应被证实与晶体对称性破缺及自旋拓扑序直接相关。二维量子磁体(如CrVI6)中存在由磁斯格明子诱导的‌拓扑克尔效应‌(TKE),其信号特征表现为磁滞回线的反对称“凸起”,为拓扑磁畴的非侵入式探测提供新方案。 2、‌反铁磁体系拓展‌ 研究发现,磁光效应不仅存在于铁磁材料,在‌净磁化强度为零的反铁磁体‌中也可通过矢量自旋手性或晶体手性实现克尔信号增强,例如Mn3Sn手性反铁磁隧穿结的磁阻效应观测。 3、‌非厄米磁光耦合‌ 通过引入非厄米系统的耗散调控,磁光克尔灵敏度可指数级提升。例如,基于法布里-珀罗腔的非厄米传感器在奇异点附近实现磁场响应的量子化增强。 二、新型材料体系开发 1、‌二维磁性材料‌ lCr基二维铁磁体(如CrI3、CrGeTe3及其衍生物)成为研究热点,其层间磁耦合特性可通过SMOKE直接表征。 l薄层CrVI6单晶中shou次观察到磁场诱导的磁斯格明子阵列,结合微区MOKE技术实现动态磁畴成像。 2、‌分子基磁光材料‌ 层状钙钛矿化合物(如(C6H5C2H3FNH3)2MnCl4)在脉冲磁场下表现出磁致荧光红移及低场磁滞现象,突破了传统无机材料的性能限制。 三、技术应用与仪器创新 1、‌磁存储技术优化‌ 磁光克尔转角测量技术推动新型磁光介质研发,例如反铁磁隧道结的磁阻比提升至2%,为高密度存储器件提供候选方案。 2、‌超高灵敏度探测‌ 表面磁光克尔系统(SMOKE)灵敏度达单原子层磁化强度检测,结合超高真空与变温技术,可解析磁性超薄膜的磁有序相变。 3、‌动态磁畴观测‌ 偏振显微成像技术的时间分辨率突破纳秒级,支持磁场驱动下磁畴翻转过程的原位可视化。 四、跨学科融合方向 1、‌磁-光-电联用技术‌ 同步集成电学探针与MOKE系统,实现磁性材料磁阻、磁化强度及磁各向异性的多参数关联分析。 2、‌量子计算接口探索‌ 非厄米磁光效应为量子自旋态的光学操控提供新路径,例如奇异点附近的量子化灵敏度可用于超导量子比特读出。 磁光克尔效应研究正从传统铁磁体系向拓扑磁性、量子材料及非厄米系统延伸,其理论与技术的协同突破为下一代磁电子器件开发奠定基础。
  • 2025-5-12 12:58
    0 个评论
    一、磁性薄膜表征与表面磁学分析 1、‌超薄膜磁特性检测‌ 表面磁光克尔效应(SMOKE)可实现单原子层磁性薄膜的磁滞回线测量,灵敏度达 10 −6 emu/cm²,用于解析铁磁/反铁磁双层膜的交换偏置效应及层间耦合特性。 2、‌磁各向异性研究‌ 通过三维磁场扫描与偏振角调控,jing确测定磁性薄膜的磁各向异性场强及易磁化轴方向,揭示厚度依赖性规律。 二、磁畴动态行为原位观测 1、‌静态磁畴成像‌ 利用偏振显微成像技术区分不同磁畴的克尔旋转角差异,生成明暗对比图像,直接可视化铁磁体的自发磁化方向分布(空间分辨率 1 μm)。 2、‌动态翻转过程追踪‌ 结合高频磁场驱动(达70Hz)与纳秒级时间分辨率成像,实时记录磁场或电流诱导的磁畴形核、扩展及湮灭过程。 三、二维磁体与拓扑磁性研究 1、‌范德华磁体性能优化‌ 在二维材料(如CrSBr)中,利用磁光克尔效应揭示激子-磁极化子耦合增强的光-磁相互作用,推动chao强磁光响应材料开发。 2、‌拓扑磁结构探测‌ 结合微区MOKE技术观测磁斯格明子、磁涡旋等拓扑磁畴的分布与动力学行为,为拓扑磁存储器提供实验验证手段。 四、功能性磁光材料开发 1、‌磁光存储介质评估‌ 通过测量磁光克尔转角(θK)、磁圆二向色性等参数,筛选高克尔效率、低矫顽力的新型磁光介质(如Mn基合金、分子基钙钛矿)。 2、‌多铁性材料耦合机制‌ 同步施加电场或应力场,研究磁-电-光多物理场耦合效应对材料磁化强度及磁畴重构的影响。 磁光克尔效应凭借其高灵敏度与非破坏性特点,已成为磁性材料微观磁特性研究的核心技术,推动新型磁电子器件与量子材料的开发。 ​
  • 2025-5-12 11:02
    435 次阅读|
    0 个评论
    ‌磁光克尔效应(Magneto-Optic Kerr Effect, MOKE)‌是指当线偏振光入射到磁性材料表面并反射后,其偏振状态(偏振面旋转角度和椭偏率)因材料的磁化强度或方向发生改变的现象。具体表现为: 1、‌偏振面旋转‌:反射光的偏振方向相对于入射光发生偏转(克尔旋转角θK)。 2、‌椭偏率变化‌:反射光由线偏振变为椭圆偏振(克尔椭偏率εK)。 这一效应直接关联材料的磁化状态,是表征磁性材料(如铁磁体、反铁磁体)磁学性质的重要非接触式光学探测手段,广泛用于磁滞回线测量、磁畴成像及磁存储材料研究。 ‌关键要素‌ ‌必要条件‌:磁性材料+线偏振光入射。 ‌物理起源‌:材料磁化导致介电常数张量非对称(磁光耦合),改变光波的传播特性。 ‌分类‌:根据磁化方向与光入射面的关系,分为‌极向‌(磁化方向垂直材料表面)、‌纵向‌(磁化方向平行入射面)和‌横向‌(磁化方向垂直入射面)克尔效应。 ‌典型应用‌ 磁性薄膜的磁化强度检测; 磁畴动态行为的原位观测; 磁光存储器件性能评估。
  • 热度 3
    2025-1-6 14:37
    668 次阅读|
    0 个评论
    【哔哥哔特导读】不可否认,磁性元器件的发展已搭乘上第三代半导体材料发展的快车。芯片电感、一体成型电感、磁集成技术等新技术新产品层出不穷,但材料始终是掣肘行业发展的难题,如何更为深刻和全面地认识磁性材料,让其跟上行业奔跑的快车是行业亟待去正视和解决的问题。 磁性材料性能参数众多,且是非线性材料,在不同应用下具有复杂多变的参数特性,而变频状态下,更要求磁性材料在各个频率点均能保持良好的性能。 尤其是在以氮化镓、碳化硅为代表的第三代半导体材料的推动下,磁性元器件行业呈现高频化、集成化的发展趋势,让磁性材料的开发变得更为复杂和困难,这就需要磁性材料企业对磁性材料的理解足够深刻和全面。 磁性材料——磁芯,供图:凯通电子 01 磁性材料参数的复杂性 一般来说,对线性材料的参数确定比较简单,对各种磁导率,如果在线性情况下都是一样的参数。而磁性材料是一个非线性的材料,磁性材料有磁滞回线,磁滞回线又分为静态的和动态的,这两个曲线在频率高的时候就有差别。 此外,基本磁化曲线对于磁性材料的设计至关重要。基于基本磁化曲线,磁导率有多种定义,不同的磁导率应用于不同的电感参数,其意义也各不相同。 例如,初始磁导率用于共模电感的设计;幅值磁导率用于交流电感器和变压器的励磁电感设计;增量磁导率是在一定的偏磁下面的增量磁导率,应用于直流电感;复数磁导率用于EMI滤波器;而能量磁导率表示磁芯储存磁能的能力。 对于线性材料,能量磁导率等于二分之一B·H(B=磁感应强度;H=磁场强度),能量磁导率的物理概念是磁化曲线的工作点与H轴所形成的面积。 从图中可以看到,即使红色和蓝色线在a点具有同样的幅值磁导率,但是它们两个磁性材料具有不同的能量磁导率,即幅值磁导率相同,但是能量磁导率不同。因此,对于磁性材料,存在磁导率不同这样的复杂性问题。 02 不同磁导率所需的电感测量仪器 在测量初始磁导率时,可以用LCR表和阻抗分析仪,这些仪器测量的励磁电压信号较小。而测量幅值磁导率时,可以用B-H 分析仪和交流磁特性测量仪,它们可以产生较大的信号。但是如果磁导率比较低,所需要的励磁容量(S)等于励磁电压(U)×励磁电流(I),就可能很大。 如果磁导率μe很高,如铁氧体可能达到一两千,那么测量磁性材料的励磁功率可以很小,虽然电压较高,但是电流可以很小。然而,如果是粉芯,μe很低的情况下,激励源容量就很大,因此一般传统的交流测试的功放都很难在磁性材料测量中达到这么大的功率,或者达到这么大的容量。 要测量增量磁导率,需要使用LCR表或者阻抗分析仪,并加上高频的偏置源,这是一个在频率很高的频段下,增量磁导率仍然具有恒流特性的电流源。 那么这里就有两个挑战,一个是磁性材料频率高,另一个是磁性材料电流要很大,直流电流Idc可能是几百安培、上千安培都有。尤其是在AI服务器电源上,电流需要更大,所以传统的商业化的高频偏置源目前可能就100多安培、125安培五个模块并联,这也是磁性材料行业面临的一个挑战。 也就是说,功率源和偏置源满足不了现在磁性材料测试的要求,因此磁性材料行业很早就有脉冲测量法,即用一个脉冲,产生一个短时间的脉冲,这个原理就是给电感加一个脉冲电压,就会产生电流。现在DPG、SYBERTEK、威派森都有在卖这种商业化设备。 只要把电感的两端电压u(t)和电流i(t)足够准确地采出来,那么通过这三个公式的运算就可以得到磁化曲线和幅值电感以及增量电感。 原理很简单,采样的精度、设备和传感器的准确性是确保磁芯材料测量结果可靠性的关键因素。虽然脉冲测量法与常规的直流偏置源加阻抗分析仪的测量方法有些差异,但它已被纳入IEC 63300,并得到了业界的广泛认可和应用。 这种方法的优势在于其操作的简便性,但同时也存在一些局限性。特别是当磁性材料对频率变化较为敏感时,脉冲的宽度或电压的高低会影响电流的上升速率,进而影响测量结果的准确性。上升速率的不同相当于频率的差异,可能会导致测量结果出现偏差。 然而,对于某些磁性材料,如粉芯,在特定的频率范围内,磁性材料对频率的变化并不敏感,因此脉冲宽度对磁性材料测量的结果的影响相对较小。这意味着在实际磁性材料测试中,需要根据磁性材料的特性和应用场景,选择合适的测量方法和参数,以确保测量结果的准确性和可靠性。 03 幅值电感与增量电感的应用差异及测量方法 这个图展示了幅值电感与增量电感在应用上的差异,业界通常会混淆相关的公式L·I=N·A·B=磁链,这里的关键是这里的I和L是什么含义,L是指增量电感L,还是幅值电感L。 直流电流和伏秒级ΔB磁通变化量是由外电路决定的,但是对磁性材料来说,ΔI和Bdc是由磁性材料本身决定的。根据ΔI·L =N·A·ΔB,这里的L实际上是指增量磁导率,即斜率,也就是ΔH比ΔB。 如果是Bdc,则由静态磁导率或幅值磁导率决定,因此在应用时这两个参数会有差异,特别是在粉芯材料中,这种差异尤为明显,尤其是在尽限设计时,电流在接近饱和的地方,差异会更加显著。 增量磁导率的获取可以通过几种方法: 第一种方法是 由静态磁化曲线求导 得到,但由于曲线是静态的,无法反映频率的影响,所以只有当频率对磁导率的影响很小的情况下,这个方法才适用。 第二种方法是 通过阻抗分析仪加上偏磁源测量 得出,这是常规方法。但是偏磁源可能没有足够大的直流量,而且激励源的信号很小。 第三种方法可以从 脉冲测量法 得到。这种方法的问题可能会受到脉冲宽度的影响,脉冲伏秒级相同下,可以脉冲宽度时间短,但电压高,也可以时间长,但电压小,这意味着脉宽频率不一样。 因此,选择合适的测量方法和参数,以确保测量结果的准确性和可靠性,对于磁性材料的磁导率测量来说至关重要。 结语 从终端应用上看,以充电桩、储能、新能源汽车、AI服务器、云计算等为代表的领域正在延续大功率发展的态势。 如车载用OBC的功率呈现出从3.3kW、6.6kW到11kW、22kW的趋势。充电桩从最早的15kW,到20/30/40/60kW的模块电源,而新国标上限提高到800kW,单个模块电源功率需要更高,集成度也要更高。 技术的创新离不开材料的不断发展。只有深刻理解和应用磁性材料,才能加速大功率、高频率磁性元器件产品的落地,掣肘行业发展的难题才会迎刃而解。 *对此,Big-Bit电子变压器与电感网将对磁性材料评价指标的探讨专访中国电源学会常务理事、磁专委名誉主任、福州大学陈为教授,敬请期待。 本文为哔哥哔特资讯原创文章,未经允许和授权,不得转载,
  • 热度 2
    2024-12-20 11:32
    388 次阅读|
    0 个评论
    永磁材料,是具有宽磁滞回线、高矫顽力、高剩磁,一经磁化即能保持恒定磁性的材料。又称硬磁材料。实用中,永磁材料工作于深度磁饱和及充磁后磁滞回线的第二象限退磁部分。常用的永磁材料分为铝镍钴系永磁合金、铁铬钴系永磁合金、永磁铁氧体、稀土永磁材料和复合永磁材料。   软磁材料(soft magnetic material),具有低矫顽力和高磁导率的磁性材料。软磁材料易于磁化,也易于退磁,广泛用于电工设备和电子设备中。应用最多的软磁材料是铁硅合金(硅钢片)以及各种软磁铁氧体等 。  永磁材料用途: ①基于电磁力作用原理的应用主要有:扬声器、话筒、电表、按键、电机、继电器、传感器、开关等。 ②基于磁电作用原理的应用主要有:磁控管和行波管等微波电子管、显像管、钛泵、微波铁氧体器件、磁阻器件、霍尔器件等。 ③基于磁力作用原理的应用主要有:磁轴承、选矿机、磁力分离器、磁性吸盘、磁密封、磁黑板、玩具、标牌、密码锁、复印机、控温计等。其他方面的应用还有:磁疗、磁化水、磁麻醉等。 软磁材料的应用: 主要用于磁性天线、电感器、变压器、磁头、耳机、继电器、振动子、电视偏转轭、电缆、延迟线、传感器、微波吸收材料、电磁铁、加速器高频加速腔、磁场探头、磁性基片、磁场屏蔽、高频淬火聚能、电磁吸盘、磁敏元件(如磁热材料作开关)等。 ​
相关资源