热度 16
2014-11-16 23:45
1002 次阅读|
0 个评论
5-1. 简介 前4章参照相对简单的模型介绍了噪声产生,噪声传输到天线及天线发射噪声的机制。但是,在实际噪声抑制措施中,噪声源很少会直接连接到天线。很多情况下,在普通模式中产生噪声,然后被转换为共模。之后,噪声通过电子设备的接地传输,并通过电缆或屏蔽罩作为天线进行发射。因此,需要在噪声传输路径中考虑普通模式到共模的转换。 在接收噪声时则情况相反。许多噪声往往是在共模侵入的,但是,当电路出现故障或被破坏时,最终会变成普通模式。在这种情况下,从共模转换为普通模式就是一个问题。由于噪声发射和接收机制相同,为了便于解释,我们仅着重于噪声发射。 如图5-1-1所示,本章节首先介绍了噪声通过导体传输存在的两种模式(共模和普通模式),然后介绍了普通模式到共模的转换。普通模式常常表现为差模。不过,为了避免与差分信号混淆,本课程中将其称为噪声的普通模式。 由于共模噪声是一个复杂的概念,为简化具体阐释,本章的描述部分基于我们独到的诠释。有关准确和详细概念,请参考技术资料 。 图5-1-1 第5章将要介绍的内容 5-2. 噪声的导体传导 由于噪声是一种电能,如果连接了导体,噪声就会通过导体传导。但是,如果导体构成一个类似电缆的集束,可通过两种不同的方式解释噪声传导: 共模和普通模式。其中,共模会导致很强的无线电波发射和接收,并且具有复杂的机制,常常对工程师进行噪声抑制造成问题。 本章节将首先解释共模和普通模式,然后介绍消除噪声的EMI静噪滤波器的基本结构。共模的产生将在下一个章节解释,因为它涉及一个特殊概念。 5-2-1. 共模噪声 (1) 电缆作为天线发射噪声的示例 图5-2-1中的测试再现了电子设备噪声抑制中经常出现的情形。 通过接口电缆连接电子设备(噪声抑制前),测量电缆作为天线发射的噪声。如果没有电缆,噪声电平非常低,如图5-2-1(a)所示。但是,连接了电缆时,在100MHz到300MHz的频率范围内噪声增加,如图5-2-1(b)所示。 可以这样理解: 在此状态下,电子设备发射的噪声从连接器传导至接口电缆,然后以电缆作为天线进行发射。 图5-2-1 电子设备电缆发射噪声的示例 (2) 研究传导噪声的线路 电缆内有多根导线。那么,在图5-2-1的测试中,传导噪声的是哪根导线? 一般而言,接口电缆包括接地线,电源线和信号线等。图5-2-1的情况实际上是屏蔽电缆,噪声也可能通过屏蔽传导。因此,将具有与接口电缆相同形状的单根导线连接至相应线路相连的连接器内的端子,然后测量噪声。测量结果如图5-2-2所示。在此我们选择了速度相对较低的信号线作为代表。 参照图5-2-2的结果可以得知,虽然多少有些不同,但无论连接哪条线路,都会发射几乎与图5-2-1(b)所示趋势相同的噪声。当如图5-2-2(d)所示连接到屏蔽接地时,也会发射噪声。 图5-2-2中的结果表明,无论电缆连接到连接器内的哪个端子,都会引起共同的噪声。如上所述,通过电缆内导线共同传导的噪声被称为共模噪声。 图5-2-2 研究每根线路发射成分的结果 (3) 叠加到接地的噪声也被称为共模噪声 相反,电路的接地一般为电压的基准点,也就是发射噪声最少的地方。如果如图5-2-2(c),(d)所示噪声叠加到接地,同样的噪声将叠加到电源和信号。因此,叠加到接地的噪声有时也被称为共模噪声。 尽管共模噪声是噪声抑制要处理的一个常见问题,但却是有着复杂概念和机制且难以从逻辑上解释的成分。首先本章节将介绍共模的成分是如何传输的,然后下一个章节将介绍导致共模噪声的机制。 5-2-2. 噪声传导的两种模式 (1) 共模和普通模式 电路以电流沿路径流动一周为基础。如果按图5-2-3(a)所示截取电路的一部分作为电缆,电缆有两根导线,分别供电流进入和流出。相同大小的电流以相反的方向相互流动。因此,总和始终为零。这种电流流动的方式被称为普通模式。 相反,电流可能在电缆内的线路中以相同方向流动,如图5-2-3(b)所示。这种方式被称为共模。共模是电流的一个成分,不管什么形状的线路都承受相同电压,电流在图中向同一方向流动。从图中可得知,此电流是经由地线所保持负载的浮动静电容量泄漏的电流所导致,然后经过地线回到噪声源。(电流也可能是负载和噪声源之间的直接连接所导致而不经过地线) 图5-2-3 共模和普通模式 (2) 线路很多时 即使电缆内有很多导线共用接地,使电路变得复杂,只要没有绕路或者电流泄漏,整个电缆中电流总和就会为零,如图5-2-4(a)所示。这种状态也被称为普通模式。如果如上所述有很多线路,每根线路的电流大小不一定要相同。 图5-2-4(b)展示了共模应用于相同电路的电流。在这种情况下,导线电流的方向与参照地线的相应电压的方向相同。这就意味着共模下线路电压为零。因此,共模噪声具备难以用示波器等一般测量设备来观测的特性。 最终,每条线路上流过的电流为普通模式和共模的总电流。尽管我们能根据图示清楚地描述,但通常很难从每条线路上流过的电流中区分这2种。因此,通过观察方法来推测噪声模式对于抑制噪声是很重要的。 图5-2-4 线路很多时 5-2-3. 普通模式和差模 (1) 普通模式也称为差模 如图5-2-3所示两条线路上的普通模式有时也称为差模。因为此处讨论的情况也包括线路很多时的情况(如图5-2-4),我们通常称之为普通模式,只有在特指一对电线时(如差分信号),才称其为差模。 (2) 普通模式也用于电路运行 除了噪声传导之外,普通模式和共模也用于电路运行和信号传输。通常,普通模式用作图5-2-3中的信号源。 近年来,差分信号已经用于很多传输高频信号的电路。正如其名,差分信号就是通过差模(普通模式)传输信号。但是,因为其它信号有时叠加到传输,共模也可能叠加使用。在这种情况下,电缆需要进行屏蔽,才能防止共模被发射并转化为噪声。 5-2-4. 噪声发射的影响 (1) 普通模式噪声发射 当噪声通过电缆传导时,普通模式会导致非常少量的噪声发射。这是因为前进电流和回流电流分别形成的磁场在观察点处相互抵消,如图5-2-5所示。为减少发射,电缆区域可采用双绞线或屏蔽电缆。 电缆连接的印刷电路板有着更宽的导线间距,如图5-2-5所示。在这里,前进电流和回流电流的抵消作用被减弱,线路像一根环形天线一样。因此,尽管是普通模式,还是会从此区域发射出对应于环形区域的噪声。 即使电缆尚未连接,如图5-2-6所示运行电路的电流为普通模式,构成电路的线路形成一个环路天线,以同样方式产生的噪声发射。因此,为减少印刷电路板发射的噪声,需要设计图案形状以缩小电流环路面积。采用了多层线路板的接地层可减小电流环路的面积,因为电流可以直接在信号线下方回流。 图5-2-5 普通模式电流的发射 图5-2-6 电路电流形成环路天线 (2) 共模噪声发射 与普通模式不同,当噪声在共模下通过电缆传导时,不会获得抵消效应。如图5-2-7所示,相应电流形成的电磁场在测量点处相互增强。在同样的电流流动下,共模发射的无线电波远远强于普通模式(可能强1000倍左右)。因此,抑制共模电流对于减少噪声发射非常重要。 共模电流通常经由浮动静电容量流动(如图5-2-7所示),由于其阻抗高,在低频范围内电流不会很大。但是,在高频范围内,整个结构作为天线,共模产生的发射可能会很强,因为阻抗降低,电流很容易流动。 此外,普通模式电流是用于电路运行的电流模式,不可能通过滤波器完全消除。相反,共模通常是不必要的成分,因而可以根据需要通过滤波器消除。静噪滤波器的结构将在后文讲述。 图5-2-7 共模噪声的发射 5-2-5. 静噪滤波器的结构 (1) 通过电容器和电感器组成低通滤波器 一般而言,使用电容器(C)和电感器(L)在作为噪声传输路径的电缆的中间及连接点组成一个低通滤波器,以便阻止噪声传导。第6章将详细介绍低通滤波器,因此本章只是解释基本滤波器结构。 (2) 普通模式用滤波器 如图5-2-8所示,可在线路中加入一个电容器并串联阻抗元件(扼流线圈或铁氧体磁珠等)组成普通模式用滤波器。 普通模式噪声电流的方向与电路运行中电流的方向一致。因此,通过滤波器消除噪声时,也会同时消除电路运行所需的一些成分。通过调整L和C的值,使低通滤波器的截止频率不会消除电路运行所必须的成分。 此外,如图5-2-8所示,如何使用阻抗元件随着电路和电缆情况而变化。如果所有线路都像商用电源线一样以接地为参照漂浮布置,电路会被视为平衡电路,两条线路都会使用阻抗元件。为此,需要保持平衡,使阻抗相同。 如果一侧接地,例如在数字电路中,电路会被视为不平衡电路,通常接地不会使用阻抗元件。但是,如果接地感应到噪声(也就是说感应到共模噪声),也可在接地侧使用阻抗元件。 在此,“平衡”和“不平衡”指的是在传导普通模式时如何参照地线保持电压。如果电压平衡地施加于两条线路,则可以称之为平衡; 如果电压集中在一条线路上,则称之为不平衡。不平衡电路的另外一条线路是接地线,几乎不承受任何电压。 图5-2-8 普通模式用滤波器结构的示例 (3) 共模用滤波器 如图5-2-9所示,将电容器连接到接地(称为Y电容器),组成一个共模用滤波器。应当尽可能地使用共模扼流线圈作为阻抗元件。如果电缆中有很多导线,可以将电缆绕在铁氧体磁芯上或者将电缆夹在铁氧体磁心中,形成一种共模扼流线圈,如图5-2-10所示。共模扼流线圈将在下一章中详细介绍。 产生共模噪声时,噪声可能会出现在与Y电容器相连的接地上。这时,Y电容器的效果减弱,因为Y电容器没有连接到合适的接地。 在这种情况下,需要单独构建与Y电容器相连的接地点。如图所示,接地的线路用于构成噪声源噪声的返回路径。 图5-2-9 共模用滤波器的基本结构 图5-2-10 使用铁氧体磁芯的共模扼流线圈 (4) 适用于共模和普通模式的滤波器 商用电源线使用的静噪滤波器通常针对共模和普通模式的混合噪声提供措施,因而包括可以处理两种模式的滤波器。图5-2-11所示为典型的电路结构 。此例展示了作为阻抗元件的共模扼流线圈。但是,如果普通模式噪声很强,阻抗可能会不足,因此在使用滤波器时,可以针对普通模式增加一个扼流线圈。 图5-2-11 用于消除共模和普通模式的滤波器结构 5-2-6. 滤波器静噪的示例 原创文章,转载请注明: 转载自 吴川斌的博客 http://www.mr-wu.cn/ 本文链接地址: 村田噪声抑制基础教程-第五章 导体传导和共模 http://www.mr-wu.cn/murata-emc-knowhow-basic-chapter05/