tag 标签: 压电陶瓷

相关博文
  • 热度 1
    2024-9-19 18:35
    242 次阅读|
    0 个评论
    压电材料的退极化现象在工程应用中是非常重要的一个问题,比如常用的压电陶瓷材料,若在压电陶瓷上加上与原来的极化相反的强电场,则往往引起退极化。在交变电场和极化电场的反向的半周期内,交变电场也具有退极化效应,因而对于压电材料所施加交变电场应小于交流退极化场强。 高压居里温度退极化现象:当材料经受高于其居里温度点(Tc)的热处理后,铁电响应会消失。 某些压电材料在制作时就用一定的电场极化,(不是自极化),为了适应电场,所以在应用时必须从一端加交变电压,而不能从两端加(正负交替),如果加正负交替电压,短时间可以用,但时间长了极化就抵消了,也就是退极化了。 水声换能器和超声换能器退极化现象的微观分析: 从压电材料的电偶极矩分析; 从分子热运动的角度分析:tgδ损耗,频率高,损耗大,发热量多,温度升高,电场发生变化(极化衰退),尤其是在超声器件(工作频谱高)。 PZT压电薄膜的自极化特性: 在铁电材料中,很多铁电响应是通过对材料沿某一晶向施加一定的外场使材料极化产生的。当材料经受高于其居里温度点(Tc)的热处理后,这种铁电响应会消失。这种退极化显现,严重限制了材料的使用温度范围。 而自极化是由材料内部的微结构在材料内部形成电场,从而在材料制备过程中,在材料内部自发的形成沿某一方向的极化现象。这种自极化稳定性非常高。即使经历多次超过其居里温度点的受热处理后,其自极化效应仍能保持。因此是制作超声换能器、水声换能器等的理想材料之选。 北京波膜压电技术有限公司 copyright@Bomo
  • 热度 4
    2023-8-3 13:44
    655 次阅读|
    0 个评论
    约瑟夫森效应是电子学领域中一种重要的现象,它在科研和实际应用中都具有广泛的意义。本文将着重介绍功率放大器在约瑟夫森效应研究中的应用。首先,我们会对约瑟夫森效应进行简要概述,然后详细探讨功率放大器在该效应中的作用与应用。最后,通过列举实际案例来展示 功率放大器 在约瑟夫森效应研究中的重要性。   约瑟夫森效应,又称为约瑟夫逆转或约瑟夫森隧道效应,是指当两个超导体之间存在绝缘层时,在低温下电子可以以穿隧的方式通过绝缘层。这一效应由布莱恩·约瑟夫森于1962年首次提出,并因此获得了诺贝尔物理学奖。约瑟夫森效应在量子力学和纳米科技领域展示出了巨大的潜力。    高压功率放大器 是一种能够将电能转化为信号能量的电子设备。在约瑟夫森效应研究中,功率放大器具有至关重要的作用。首先,功率放大器可以提供足够的能量,使电子能够以足够高的频率通过绝缘层,从而实现约瑟夫森效应。其次,功率放大器还可以增强信号的幅度,使得约瑟夫森效应更容易观测和研究。   在约瑟夫森效应的实验研究中,通常会使用超导体材料和绝缘材料构成器件。功率放大器被用来提供能源,确保电流通过绝缘层。由于超导体的特殊性质,电子可以以准粒子的形式相对容易地传输、完全反射和穿隧。功率放大器的作用是向系统中输入信号,并通过调节增益来扩大信号强度,从而实现约瑟夫森效应的稳定观察和精确测量。   功率放大器可以采用不同的工作原理,如晶体管放大器、管子放大器、操作放大器等等。每种放大器都有其优势和适用范围。在约瑟夫森效应研究中,选择适当的功率放大器对于确保实验结果的精确性至关重要。    ATA-7020高压放大器   带宽:(-3dB)DC~30kHz   电压:4kVp-p(±2kVp)   电流:30mAp   功率:60Wp   压摆率:≥267V/μs   可程控   值得一提的是,在从事约瑟夫森效应研究的过程中,科学家们发展了多种高度敏感的测量技术,以实时监测并记录细微的变化。功率放大器的应用使得信号在实验过程中得以扩大,从而更方便进行测量,并且减少了误差来源。   约瑟夫森效应在电子学和纳米科技领域中的应用前景广阔。而功率放大器作为实现该效应的关键设备,在研究中起到了重要作用。通过对功率放大器及其使用原理的深入了解,我们可以更好地理解约瑟夫森效应,提高实验的精确度,并推动该效应在纳米电子学、量子计算和通信技术等领域的应用。   以上内容仅供参考,希望对您有所帮助。若有任何疑问,请随时向我们提问。 本资料由 Aigtek 安泰电子整理发布,更多案例及产品详情请持续关注我们。 https://www.aigtek.com/
  • 热度 5
    2023-8-3 13:40
    345 次阅读|
    0 个评论
    最近有一个重磅消息震惊科学界,尤其是材料研究领域,Aigtek安泰电子小编今天就带你一探究竟!近日,有韩国科学家团队宣称发现了全球首个室温超导材料——“改性铅磷灰石晶体结构(LK-99)”。   这一消息在物理学界引起轰动,不少团队都开始对韩国团队的发现展开了研究。就在昨天(8月1日),来自华中科技大学材料学院教授常海欣带领的研究团队就称,他们已合成了可以磁悬浮的LK-99晶体,有望实现真正意义的无接触超导磁悬浮。   说到超导材料,他是指具有在一定的低温条件下呈现出电阻等于零以及排斥磁力线的性质的材料。该材料在当前拥有着非常好的应用前景,在电机、高能粒子加速器、磁悬浮运输、受控热核反应、储能;制作电力电缆,用于大容量输电(功率可达10000MVA);制作通信电缆和天线等实际应用中能发挥很好的效能。   早在上世纪,荷兰物理学家H·卡茂林·昂内斯就发现汞这种在温度降至4.2K附近后会进入超导态的材料,可以说研究时间跨度很长了,一项新材料的诞生就是这样需要多年持之以恒的研究,外加合适测试仪器辅助的一个过程。    安泰电子 功率放大器,作为直接用于院校、科研院所实验研究的实验室测试仪器仪表,在材料领域研究也有着长足的应用。除了超声声学、电磁驱动、水下通信、压电陶瓷测试等应用方向,它还在铁电材料极化测试、介电弹性体测试等材料研究中发挥着重要作用。   针对这些需要大电压的研究项目,ATA-7050高压放大器,可以为系统提供高达10kVp-p的电压,帮助研究人员驱动各类高压型负载,同时他兼具数控增益可调、程控接口功能,能远程进行操作,快速调节电压参数。    ATA-7050高压放大器   带宽:(-3dB)DC~5kHz   电压:10kVp-p(±5kVp)   电流:20mAp   功率:100Wp   压摆率:≥111V/μs   科学研究是一条漫长且艰辛的路,相信我们优秀的科研人员能够在未来带给世界更多惊喜,让我们的生活更便利更幸福,作为专业从事功率放大器研究的企业,安泰电子也将始终不忘初心,不断精进技术,开拓创新,为祖国测试仪器仪表领域发展,为各领域科学研究贡献自己的力量。 本资料由 Aigtek 安泰电子整理发布,更多案例及产品详情请持续关注我们。 https://www.aigtek.com/
  • 热度 8
    2023-2-7 14:55
    1074 次阅读|
    0 个评论
    你见过这样的电路板吗?——压电陶瓷电路板
    压电陶瓷,一种能够将机械能和电能互相转换的功能陶瓷材料,属于无机非金属材料。这是一种具有压电效应的材料。它在工业生产和日常生活中得到了广泛的应用。由压电陶瓷构成的超高精度、低能耗、控制简便的驱动器 ,在精密工程中起到了非常重要的作用。 压电效应的原理可分为正压电效应和逆压电效应: 瓷片压缩,极化强度变小,释放部分吸附自由电荷,出现放电现象。外力撤除,瓷片回复原状,极化强度变大,吸附一些自由电荷,出现充电现象。这种由机械能转变为电能的现象,称为正压电效应。 正压电效应示意图 反之,在瓷片上施加与极化方向相同电场。极化强度增大,瓷片发生伸长或者缩短形变。这种由电能转变为机械能的现象,称为逆压电效应。 逆压电效应示意图 而高频电信号加在压电 陶瓷 上时,则产生高频声信号(机械震动),这就是我们平常所说的 超声波 信号。也就是说,压电陶瓷具有机械能与电能之间的转换和逆转换的功能,这种相互对应的关系确实非常有意思。正是因为这种固有的机-电耦合效应使得压电材料在工程中得到了广泛的应用。例如,压电材料已被用来制作智能结构,此类结构除具有自承载能力外,还具有自诊断性、自适应性和自修复性等功能,在未来的飞行器设计中占有重要的地位。目前应用最广泛的压电陶瓷材料是以锆钛酸铅(PZT)为基,通过用B位离子M92+、Nb5+、Ta5+进行单独或复合取代,形成ABO3结构的复合钙钛矿型的固溶体类陶瓷材料。 国内对压电陶瓷材料的研究开始于五十年代末期,比国外晚了十年左右。经过几十年的努力,我国的压电陶瓷有了很大发展。21世纪初叶,低温压电陶瓷的改进对于压电陶瓷广泛用于电子技术领域起了巨大的推动作用。然而,由于压电陶瓷硬度高、脆性大、难于加工。因此结构复杂的压电陶瓷体的制造一直是一大难题。清华大学材料系新型陶瓷与精细工艺国家重点实验室GuoDongt利用凝胶注模成型(gelcasting)制备PZT压电陶瓷,解决了压电陶瓷制备中亟待解决的问题。同时低温烧结压电陶瓷也抑制了烧结渗银过程中银离子向陶瓷内部进行扩散。我们知道,陶瓷属于绝缘介质,只有经过极化后的陶瓷才有压电性。但是陶瓷不能象金属那样被直接极化,必须先被金属化。 压电陶瓷是绝缘体,必须在陶瓷元件工作部位的表面上涂覆一层具有高导电率、结合牢固的金属作为电极(一般为银电极)。电极的作用有两方面:一是在强绝缘体表面附着的金属电极承受高压电场,以利于充分极化;二是在陶瓷元件表面聚集电荷和传递电荷。斯利通专注于各种新型陶瓷材料的金属化领域,通过大量的研发和试验,最终研究出一种新型薄膜生产工艺取代传统被银工艺,既节省了成本(用金属铜层取代银层),同时具备直接制作导通线路图形的能力。压电陶瓷在覆铜前需要保证表面光洁度,不能有油污类污染,需用特殊药水对其表面进行清洁,不可采用常规碱性溶液处理表面脏污。镀膜时瓷片需要平铺在炉体底部,偏压调试到合适值,以免产生击裂。钛层控制在200NM左右,铜层控制在300UM左右,镀膜之后需要立即进行一次铜,将表面疏松的铜层保护起来,如需制作出条状铜线路,需要进行线路转移,制作出相应的线路层后进行二次镀铜。完成后使用药水将表面干膜层取出掉,这里不可以使用碱性溶液,因为瓷片一般是单面敷铜,背面浸泡在碱性溶液过久会溶解或更加催化,以致于粉碎。取出掉干膜后,表面使用纯水清洗干净,吸干水分烘干即可得到成品。 近年来,PZT压电陶瓷在以下方面得到了广泛的应用: 1、 高位移新型压电致动器 自从发明压电致动器特别是多层压电致动器以来,其应用日益扩大,特别是精密定位方面。现在多层压电致动器在国外已经大量地应用于汽车的燃料注入系统和悬置系统。 压电陶瓷超声马达 2、 压电变压器压电变压器 从50年代就己开始研制,但是直到90年代才进入商品化,获得成功的应用。压电陶瓷变压器体积小,质量轻,可以做成扁平形状,它实际上没有电磁噪声,只产生有限的热,而转换效率高达95%,所以90年代随着薄形电源以及高频(大于2 MHz)开关电源对压电变压器迫切要求,对压电变压器的研制又重新活跃起来。现在己研制成多层压电变压器,最大功率已超过50 W,并且己大量地应用在笔记本式计算机液晶显示器的背光电源以及复印机和传真机的高压电源。 笔记本电脑背光电源 3、 用于主动减震和降噪的压电器件 许多机械结构往往会发生振动,由此又常常会引发噪声,对运动结构的减振降噪控制(如运行的机械、潜艇壳体、航空航天飞行器以及舱内),具有重要的意义。特别是大型精密的航空航天的挠性结构,一般质量轻,阻尼小,一旦发生振动,其衰减过程十分缓慢;长期如此便会影响到结构运行的精度,甚至会引发结构疲劳、失稳等现象,因此对挠性结构的减振研究是十分必要的。传统的被动减振降噪方法是通过增加质量、阻尼、刚度、或者是通过结构的重新设计而改变系统的特性。压电材料自身具有的正反压电效应,使其成为挠性结构主动分布控制中检测器与执行器的理想材料。 4、 医用微型压电陶瓷传感器 美国密苏里一罗拉大学陶瓷工程系的W.Huebner教授研制出一种微型 电压陶瓷传感器 ,它比人的头发还要细小,可以将它用来帮助医生探测病人的心脏附近,如冠状动脉,具有潜在致命危险的胆固醇的累积情况,使用时,将这种十分细小的传感器插入动脉血管并通过微细光缆输送到心脏部位,用来诊断有生命危险的胆固醇堵塞部位的位置和厚度,为在血管内采用激光外科手术将其清除铺平道路。
  • 热度 3
    2022-4-6 13:47
    2198 次阅读|
    0 个评论
    陶瓷谐振器与石英晶振的对比与替代
    陶瓷谐振器(Ceramic Resonator)是利用压电陶瓷 (一般为锆钛酸铅,PZT) 的压电效应产生谐振频率的电子元件,电路符号与石英晶体谐振器(Quartz Crystal)相同。 与石英晶体谐振器(Quartz Crystal)相比,陶瓷谐振器也属于无源谐振元件,两者的起振原理也非常相似,但陶瓷元件的频率精度不如石英谐振器,通常用于消费、工业、汽车领域中对频率精度要求不高,但使用温度范围更广的应用。 图1. 陶瓷谐振器及电路符号 谐振原理 陶瓷谐振器的振子为压电陶瓷材料,施加电压时陶瓷会膨胀或收缩,受力时陶瓷会产生电压,这就是压电效应。 陶瓷材料的基本单元是微晶体,每个晶体由带正电荷或负电荷的原子构成。在自然状态下,大多数陶瓷带有的正、负电荷是平衡的,但也有一种介电陶瓷 (称为铁电体) 在晶体中带有不平衡的正、负电荷,会造成偏电荷,也就是发生自发极化。 焙烧后,铁电陶瓷会立即发生自发极化并产生随机极轴,而正、负电荷整体上是平衡的。但是,随着高直流电压的应用,自发极化产生的极轴在相同的方向上对齐,即使去掉电压,极轴也不会随之消失。使自发极化极轴对准的过程被称为极化过程。 如果将极化过程应用于铁电陶瓷,就会生成压电陶瓷。当给压电陶瓷施加外部电压时,陶瓷内的正、负电荷的中心会相互吸引或排斥,就会造成陶瓷的膨胀或缩小。或者,给压电陶瓷施加压力,就会在压电陶瓷的对面产生正、负电荷;如果对压电陶瓷施加张力,电荷的极性会相反。 利用这种晶体极化,可以使电能和机械能相互转化。基于压电陶瓷的机械谐振频率随振动模式的变化而变化的特性,可以制作出各种陶瓷元件,如陶瓷谐振器、陶瓷滤波器、陶瓷陷波器、声表滤波器、压电蜂鸣器等。 性能特点 与石英晶体谐振器对比,虽然陶瓷谐振器的频率和温度稳稳定度欠佳,但尺寸小,可在150度下运作,符合AEC-Q200标准,而且成本只有晶体的一半。 图2. 陶瓷谐振器与其他谐振组件的比较 (1) 尺寸小,重量轻。陶瓷谐振器为独石结构,尺寸只有普通石英晶体谐振器尺寸的一半,而且坚固抗震。 (2)成本低,免调整。与CR、LC电路不同,陶瓷谐振器利用的是机械谐振而不是电谐振,基本上不受外部电路或电源电压波动的影响,可以制作成无需调整的高度稳定的振荡电路,便于客户批量生产。 (3)内置负载电容。陶瓷谐振器属于负载电容内置型,谐振电路设计较为简单。同时,它还能节省包括负载电容在内的基板贴装面积。 (4)轻薄、外形小。采用轻薄的小外形设计,可减少元件数量。无外置电容的尺寸减少了约48%(与晶体3225尺寸相比),有助于实现模块元件的小型化。 (5)高可靠性需求。具有支持CAN通信等高精度通信的电气特性,为在发动机、电池附近等以及温度更高的环境中工作,工作温度最高可达到150度。 主要技术指标上,陶瓷谐振器和石英晶体相似,有频率、频率公差、工作温度范围、频率温度特性、频率老化等。 图3. 陶瓷谐振器的技术指标 选型及替代 从技术参数看,只要价格和安装尺寸允许,石英晶振可以直接代替陶瓷谐振器。对于频率要求不苛刻的应用,陶瓷谐振器依然是的优选时钟元件,例如电动汽车EV/PHEV的车载电池管理系统(BMS)、充电机(OBC)、水泵(WP)以及DC-DC转换器等。 用陶瓷谐振器代替石英晶振,元件价格降低了,温度性能也提高了。但须注意谐振电阻和负载电容,有的陶瓷谐振器已经内置了负载电容,这样可大幅降低BOM成本,还节省了PCB安装尺寸,有利于实现轻薄短小的终端产品。
相关资源