tag 标签: 电源稳定性

相关博文
  • 热度 30
    2013-4-12 16:49
    4953 次阅读|
    9 个评论
        元芳:大人,元芳寻大人几日不见,甚是担心。今太平盛世,无案可断,想必大人又是去修研电路? 狄:最近宫里的案子快结了,我去垒了几天代码,今天得空出来再与你说一下之前零极点的案子。元芳,你可知其中补偿目的何在? 元芳:开关电源实际也是一个负反馈系统,输入输出电压、输出电流以及输出电感、电容的差异都会导致整个反馈环路的增益、相位变化,可能使系统不稳定,甚至产生振荡。像我们这个案子中的输出波形就很像系统产生了振荡。 狄:正是如此。那你可知上次我们讨论的 3 个零点和 4 个极点所代表的意义? 元芳:大人,我根据上次你的讲解,对照模型标出了各个零极点的位置,其中 Z1 和 P1 是由输出电阻和滤波电容需求决定。其中 C o 是输出滤波电容的容值和, R ESR 是滤波电容的等效串阻,我们的电路中是使用 2 个 10uF/0603 的瓷片电容, R ESR 大概是 5m Ω。 R L 是等效负载,我们使用的 DSP 此路平均电流是 1.2A ,电压是 1.2V ,所以 R L 是 1 Ω。其他零极点元芳猜测是根据这 Z1 与 P1 进行的设置。但具体如何设置我就不得其道了。 狄:元芳,这几天你果然精进,见你这几日功课做的足备,我也放心了。正如你所说,其余 3 个极点和 2 个零点正是根据 Z1 和 P1 的频点进行设置。至于如何设置补偿用的零极点,说来话长……元芳,你看那边夜色压了过来,想必到了做梦的好时辰……(哈欠中……) 元芳:大人,元芳还有一事不明,几日寝食难安,还忘大人先指点一下。我见此电路中有阻容参数,却独没有电感。电感对环路的影响十分大,但此图中却……该不会是此图有误?? 狄:元芳,你有所不知。开关电源主要分两类,一类是电压模式,一类是电流模式。此芯片正是电流模式,该模式优点之一便是在小信号分析时不考虑电感,芯片控制图中的 i L 的值,所以串在通路中的电感可以在计算和模型中去掉。具体情况可以翻阅《开关电源设计》(电子工业出版社)。但这并不意味实际电路中没有电感,关于电感还有电容值的计算,日后有机会再与你讲来。 元芳:原来如此!多谢大人,元芳今夜终于可以安心入睡了! 狄:丑时将近,抓紧睡觉!   元芳,你对此电路有何看法?(1) 元芳,你对此电路有何看法?(2) 元芳,你对此电路有何看法?(3) 元芳,你对此电路有何看法?(4) 元芳,你对此电路有何看法?(5) 元芳,你对此电路有何看法?(6) 元芳,你对此电路有何看法?(7-终结)    
  • 热度 28
    2013-4-12 16:47
    7042 次阅读|
    7 个评论
      元芳,你对此电路有何看法?(6) 元芳:大人,您这闭关几月,今日终于再得见大人一面。上次大人所授,元芳明白了零极点配置大致原理,但还是不知道如何依此调整电路参数,还望大人解惑…… 狄:元芳,你可知一般电源系统稳定有何要求? 元芳:一般电源系统要求 30 度以上的相位裕量和 10dB 以上的增益裕量,否则在负载变化或温度变化时就容易发生异常。 狄:不错,之所以有此要求,是为防止异常情况下发生振荡。按我们之前测到的信号,电源输出有 100KHz 左右振荡产生,幅度稳定,所以系统在 100KHz 左右增益达到 0 ,而且对应的相位应该接近 0 。 元芳:(将信将疑)大人仅是推断? 狄:元芳,你看,这是我托人从西域厂家索取的工具 --Tina-TI ,可以用于仿真他们的一些电源芯片型号。另外又索取了一份该芯片的仿真模型。你且去研究一下它的用法,并按我们之前使用的电路参数设置后进行仿真,看仿真结果如何? (元芳接过工具走入西厢房……)   (半晌过后,元芳欣喜跑出西厢房) 元芳:大人!大人!果然如您所说,我将参数配置好后,进行仿真,刚好在 100K 附近增益曲线穿越 0dB 线,此刻相位也接近 0 度。   狄:嗯,依此看来,此工具仿真结果还是非常可信。 元芳:大人,不知此情形该如何补救? 狄:如此,且听我从需求出发,为你理清整条思路。 元芳:大人,请! 狄: 首先根据输出电压和电流确定开关频率,频率越高则越有利于电感和电容的小型化,提高密度同时降低成本,但频率过高会导致芯片和电感发热严重,降低效率。此案中,根据应用选用开关频率 1MHz 。 元芳:原来如此,难怪好多开关电源只使用几十 K 的开关频率,应当是芯片开关和磁芯的损耗比较大造成的?是不是随着芯片工艺提升和输出电感性能改善,开关频率能越来越高? 狄:正如你所说,目前 1M 以上开关频率的芯片越来越多,也正如此案所见,使用高频率开关电源则需更关注电源稳定性。尤其需要注意调整零极点分布。吾曾听闻,名士挪一零极点,资以万计。只是用的太少,如今几乎已绝迹江湖…… 元芳:如此甚是可惜,如此关系到系统稳定性的绝学,居然也绝迹江湖了…… 狄:此国之悲也,如此绝学除遇到重大事故,难得重视。罢了,说来心痛,天色又晚,明天我们继续讨论如何更改电路参数来使电源系统稳定。 元芳:大人晚安!   元芳,你对此电路有何看法?(1) 元芳,你对此电路有何看法?(2) 元芳,你对此电路有何看法?(3) 元芳,你对此电路有何看法?(4) 元芳,你对此电路有何看法?(5) 元芳,你对此电路有何看法?(6) 元芳,你对此电路有何看法?(7-终结)