tag 标签: 磁通量

相关博文
  • 热度 2
    2023-10-16 14:01
    756 次阅读|
    0 个评论
    整数霍尔效应和分数霍尔效应是再明显不过的磁通量量子化证据。把霍尔器件的边界看作等效回路,而不是应用霍尔器件的电路看作回路。霍尔器件需要外部提供电流才能工作,而我们要想象,这份电流在器件内部绕边界回流的情景。霍尔器件两侧建立的电压阻止了外部提供电流变成绕边界回流的电流。然而,这份假想的电流有助于理解霍尔效应。况且,它在霍尔器件刚开始建立电压时是真实存在的,被一等效电容隔断。霍尔器件不会提供类似超导的抗磁性,然而,观察磁通量量子化不需要看霍尔器件制造了多少磁通,只需要看外部磁场贡献多少磁通时霍尔器件发生状态改变。 整个回路的磁通量是量子化的。在电源提供固定电流的实验条件下,参加霍尔效应的电子具有 “最佳”个数和速度。个数和速度综合起来就是电流值,刚好为匹配磁通量。经过等效电容积累电荷,初始电流值转化为最终电压值,器件两端的电压是“量子化”的。 特别要指出:分数量子霍尔效应的分母总是奇数,直接说明了磁通量以 1、3、5……倍规律递增。尤其注意,从0到1经过一份,而从1到3经过两份,以后递增都是两份。 以上是考察一个电子得出的结论。当多个电子并行前进时,多一个电子就多一份倍数。是单个电子基础之上的倍数。说简单点。记分数量子霍尔效应所指的分数是 A/B (A属于整数,B属于奇数)。实验回路的磁通量量子化呈现 A乘以B 的值 按从小到大排列的规律。 这里出现了一个问题,一个电子单独制造的磁通量变化,与多个电子并行制造的磁通量变化要分开讨论。一份磁通量量子是 h/2e。一个电子单独制造的磁通量变化含有h/e。多个电子依次进行从0到1的跳变,磁通量变化是h/2e。 在讨论分数量子霍尔效应的段落,有个细节必须澄清。实验里,回路有两个,一个是提供实验电流的回路,另一个是测量霍尔电压的回路,这两个回路不是平行而是交叉的。霍尔电阻是一个人为定义的 “电阻”。奇数个的波腹发生在测量霍尔电压的回路中。之所以驻波两端以导体边界为界,是因为边界恰好是均匀介质的边界。 从霍尔器件的磁通量量子化,到超导的磁通量量子化,必须是一致的。在超导的实验公布之前,我们通过分数量子霍尔器件回路的磁通量量子化说明从第二个阶梯开始出现 h/e的事实。事实的前提是只看分数量子霍尔效应中分子为1的情况。 超导磁通量量子化实验也不例外。我们指出经典的磁通量量子化实验实质只观察了多个电子并行制造的磁通量阶梯。当选用极少载流子超导材料进行磁通量量子化实验,必然看见 h/e阶梯。从前都没有把霍尔效应和磁通量量子化放一块研究。一旦放一块研究,结论不同凡响。 至今,针对超导双电子导电的最有力证据就是磁通量量子化实验。现在,经过以上揭发。我们指出经典的磁通量量子化实验实质只观察了多个电子并行制造的磁通量阶梯。分数量子霍尔效应明确告诉我们还有 h/e份额的阶梯,它来自于单电子。 古典的磁通量量子化解释有误。电子经过环路一圈,物质波相位绝对不是变化 pi 的偶数倍。相反地,费米子就该变化 pi 的奇数倍。量子力学基础呀,不解释那么多。最后,原本证明双电子超导的推理,实际证明单电子超导。不服咋地,拿证据而已。
  • 热度 6
    2023-10-8 16:08
    525 次阅读|
    0 个评论
    磁通量指的是设在磁感应强度为 B 的匀强磁场中,有一个面积为 S 且与磁场方向垂直的平面,磁感应强度 B 与面积 S 的乘积,叫做穿过这个平面的磁通量,简称磁通( Magnetic Flux )。标量,符号“Φ”。在一般情况下,磁通量是通过磁场在曲面面积上的积分定义的。其中,Φ为磁通量, B 为磁感应强度, S 为曲面, B · dS 为点积, dS 为无穷小矢量(见曲面积分)。磁通量通常通过专业磁通计进行测量。 磁通计 通过测量线圈以及估计测量线圈上电压变化的电路,从而计算磁通量。 在国际单位制中,磁通量的单位是韦伯,是以德国物理学家威廉 ·韦伯的名字命名的。 Weber ,符号是 Wb , 1Wb=1T*m2=1V*S ,是标量,但有正负,正负仅代表穿向。 磁通量广泛应用于磁铁原材料,传感器,电子电磁厂等等相关应用领域。磁通量检测设备为磁通计。
  • 热度 4
    2023-8-14 10:43
    540 次阅读|
    0 个评论
    电磁感应是指因为磁通量变化产生感应电动势的现象。电磁感应现象的发现,是电磁学领域中最伟大的成就之一。它不仅揭示了电与磁之间的内在联系,而且为电与磁之间的相互转化奠定了实验基础,为人类获取巨大而廉价的电能开辟了道路,在实用上有重大意义。 电磁感应现象是指放在变化磁通量中的导体,会产生电动势。此电动势称为感应电动势或感生电动势,若将此导体闭合成一回路,则该电动势会驱使电子流动,形成感应电流(感生电流)迈克尔·法拉第是一般被认定为于1831年发现了电磁感应的人。 扩展资料: 电磁感应部分涉及三个方面的知识: 一是电磁感应现象的规律。电磁感应研究的是其他形式能转化为电能的特点和规律,其核心是法拉第电磁感应定律和楞次定律。 楞次定律表述为:感应电流的磁场总是阻碍引起感应电流的磁通量的变化。即要想获得感应电流(电能)必须克服感应电流产生的安培力做功,需外界做功,将其他形式的能转化为电能。法拉第电磁感应定律是反映外界做功能力的,磁通量的变化率越大,感应电动势越大,外界做功的能力也越大。 二是电路及力学知识。主要讨论电能在电路中传输、分配,并通过用电器转化成其他形式能的特点规律。在实际应用中常常用到电路的三个规律(欧姆定律、电阻定律和焦耳定律)和力学中的牛顿定律、动量定理、动量守恒定律、动能定理和能量守恒定律等概念。 三是右手定则。右手平展,使大拇指与其余四指垂直,并且都跟手掌在一个平面内。把右手放入磁场中,若磁力线垂直进入手心(当磁感线为直线时,相当于手心面向N极),大拇指指向导线运动方向,则四指所指方向为导线中感应电流的方向。 电磁学中,右手定则判断的主要是与力无关的方向。为了方便记忆,并与左手定则区分,可以记忆成:左力右电(即左手定则判断力的方向,右手定则判断电流的方向)。或者左力右感、左生力右通电。
相关资源