tag 标签: 真空管

相关博文
  • 热度 6
    2023-6-2 10:21
    674 次阅读|
    0 个评论
    电子线路中的正反馈
    一、前言 正反馈与负反馈是电路系统设计中的重要概念。在电路系统中使用正反馈可以提高电路增益、制作振荡器等。  正反馈的概念从何而来,又是谁最先想到的呢? 有趣的是,电子线路中的正反馈是一位名叫霍华德·阿姆斯特朗的大学生于 1912 年在他父母的阁楼上发明的。 在 Kathy 老师讲述的这段故事中,包括一本正能量的儿童读物,一个对阿姆斯特朗有知遇之恩的邻居,一个奋发向上的移民和一个非常非常重要的线圈。 ▲ 图 1.1.1 霍华德·阿姆斯特朗 二、早年时期 埃德温·霍华德·阿姆斯特朗在曼哈顿和扬克斯长大,他的家庭属于中上阶层家庭。  1904 年,他 13 岁时,父亲送给他一本儿童科技读物 《男孩的发明书》。  在阅读了吉列尔莫·马可尼 (Guillermo Marconi) 的故事后,年轻的阿姆斯特朗迷上了无线电。 很快,他就成了附近的无线电专家, 甚至还建造了一个 125 英尺的天线。他经常为了好玩在天线上爬上爬下。 16 岁时,他遇到了当地一位名叫查尔斯·安德希尔 (Charles Underhill) 的工程师。 在接下来的两年里,阿姆斯特朗会在放学后骑自行车到安德希尔家学习无线基础知识。 对于阿姆斯特朗来说最重要的知识并不来自于教科书,而是受到安德希尔的影响,阿姆斯特朗从此成为一位具有独创性的思想家,不会被传统事情所束缚。 晚年时,阿姆斯特朗最喜欢说的一句话:“并不是人们的无知造成了世上的麻烦,而是人们的错误认知造成的麻烦。” ▲ 图 1.2.1 查尔斯·安德希尔 三、普平教授 阿姆斯特朗进入哥伦比亚大学学习电子工程,导师是迈克尔·普平教授,从此他不再需要安德希尔的指导了。 普平是一个了不起的人。  35 年前,他 16 岁,兜里只揣着 5 美分从塞尔维亚移民到美国。他卖掉了几乎所有的财产买了船票,包括他那件暖和的冬衣。 他天真的认为在美国不需要穿外套,因为他看到油画中美洲原住民都几乎不穿衣服。  结果呢,在来美国的路上他差一点没被冻死, 生生靠着烟囱上取暖才勉强活了下来。 到美国后举目无亲,也没有谋生的技能, 甚至不懂英语, 神奇的是他设法找到了一份工作,并在五年内自学了英语、希腊语和拉丁语,并设法获得了前往哥伦比亚大学学习的奖学金。  随后,他在德国师从赫尔曼·冯·亥姆霍兹,并在那里获得了博士学位,并于 1899 年重新回到哥伦比亚大学,成为其电气工程系的创始人。  同时,他以 50 万美元的价格将自己的一项专利卖给了 AT&T 。  尽管他获得了很多财富,但还是继续研究和学习,并紧跟最新的电气技术。 ▲ 图 1.3.1 霍华德·阿姆斯特朗 四、真空三极管 普平教授在 1906 年参加了一个名叫李·德福雷斯特 (Lee de Forest) 的人的演讲, 他展示了自己发明的真空管,他为其命名为 Audion 。  现在, de Forest 的最初的 Audion 与另一个 Fleming 真空管的器件很相似,实际上他就是抄袭 弗莱明的真空管,为此他被弗莱明起诉侵犯专利权。 没办法, de Forest 只好费尽心思的要将他的 Audion 与 Fleming 真空管 区分开来,所以他开始在他的真空管内到处增加一些金属电极。 ▲ 图 1.4.1 迈克·普平与李·德福雷斯特 1907 年 1 月 29 日, de Forest 申请了两项专利, 共有 12 种新管。 其中一个有三个输入,包括阳极,灯丝, 以及它们之间的锯齿形电线,称为栅极。  De Forest 将他所有的电子管都称为 Audion , 但这个很快就被称为真空三极管, triode , tri 代表三, ode 代表路径。 ▲ 图 1.4.2 真空三极管 三极管的发明的确带来了电子科技的一场革命,它不仅是一个二极管,它还可以完成放大功能。 让我们初步了解一下它的工作原理把。 三极管工作时需要使用电池加热阴极灯丝,然后在灯丝和阳极之间通过另外一个高压电池, 加速从阴极到阳极的电子,形成阳极电流。带负电的电子从加热的灯丝上逸出,路过中间的栅极到达阳极。 将需要放大的电压信号施加在栅线和阴极灯丝之间。如果栅极为正,更多的电子通过栅极到达阳极,阳极输出电流增加了。 如果栅极为负,产生的电场会阻碍电子从灯丝飞行到阳极,阳极输出电流减少。这样栅极的电压变化会引起阳极电流发生很大的变化。 如果从能量角度来看, 栅极电流很小,所以输入信号功率很小。阳极电流变化很大,再乘以很高的阳极电压,就会产生很大功率的输出信号,所以三极管可以放大信号的功率。放大后的音频信号可以通过耳机转换成声音。 ▲ 图 1.4.3 真空三极管放大原理 五、 LC 谐振 德福雷斯特是如何接收到需要放大的无线电信号的呢?  实际上很简单,只需要使用天线就可以接受无线电波。 到 1900 年代, 通常的做法是用两个器件形成谐振电路来选择放大需要接受的无线电信号: 一个器件是由两个由玻璃或空气隔开的金属板构成电容器, 另一个是由线圈构成的电感器。 两块相互绝缘的金属板之所以被称为称为电容器, 因为金属板表面能够存储电荷,它们之间的玻璃或空气可防止电荷从一块板流到另一块板。  线圈之所以重要,有两个原因: 其一,如果电流通过线圈中的电线,它会产生类似于条形磁铁的磁场。 第二,如果线圈内部的磁场发生变化,它会在线圈中感应出新的电流。 ▲ 图 1.5.1 电感和电容组成谐振回路 现在,如果电容器表面带电荷,然后通过线圈放电,它会导致线圈中的电流发生变化,从而产生变化的磁场。变化的磁场又会在线圈中感应出更多电流。  电感中的电流具有类似的“惯性”,它可以相反的方向给电容器充电。充完电的电容器又会以另一个方向放电,重新开始这个过程。 振荡频率取决于线圈和电容器的容量,  分别对应电感线圈的长度和电容器的面积。 如果想调谐你的频率,只需改变线圈的长度或电容器的面积, 使其与无线电信号产生共振。 ▲ 图 1.5.2 可变电容器和电感器 六、真空管放电电路 下面我们再回顾一下 de Forest 如何利用他发明的三极管放大无线电信号的。  用天线接收信号,通过由电容器和线圈组成的调谐回路, 改变调谐回路的谐振频率, 使他与接受的无线电波共振,此时信号幅度最大。然后将该信号施加在三极管的栅极。  他用位于金属板和灯丝之间的回路中的耳机收听了放大后的信号。 ▲ 图 1.6.1 李·德福雷斯特与他的真空三极管 De Forest 的电路对 Fleming 真空二极管进行了实质的改进。  然而 de Forest 从未使用过阳极输出电路。此外他还迷信的认为三极管中需要保留微量气体,结果这是画蛇添足,使得三极管在无线电高频下无法正常工作。  De Forest 的真空三极管非常脆弱,很容易坏掉。电极多了使得电路设置复杂。 此外它还非常昂贵,当时的零售价格高达 5 美元,所以它们很不受欢迎。 然而,财大气粗的迈克尔·普平 (Michael Pupin) 在他位于哥伦比亚大学的储备丰富的无线电实验室中有一些。 ▲ 图 1.6.2 迈克·普平教授 七、正反馈 现在再谈谈年轻的霍华德·阿姆斯特朗。 通过 Pupin 阿姆斯特朗在 1911 年左右得到了一个三极管,尽管他大部分时间都在忙于功课,但他还是挤出时间摆弄这些真空三极管组成的电子线路。 1912 年的一天, 他在耳机上加了一个电容器,耳机中的信号变大了一点。  阿姆斯特朗开始怀疑阳极回路中是否存在高频震荡信号。如果是这样,该怎么办? 有一天他和家人一起外出爬山游玩时,突然想起一个电路设计中常用的方法:“哪里有高频振荡,就增加电感进行谐振。”  他决定尝试通过加一个线圈来调谐接收机的阳极回路。 和家人下了山回到家里,阿姆斯特朗就冲到阁楼实验室进行试验。顿时,他得到了更强的信号。 ▲ 图 1.7.1 阳极回路中的电容和耳机 " 霍华德叔叔冲进房间,吵醒了我妈妈,他拿着这个盒子在房间里跳来跳去。他说:“我做到了,我做到了,我做到了。”  他真做到了,这将带来无线电技术的一场革命。 经过几个月的实验, 改变了不同线圈和电容器的组合,阿姆斯特朗成功地提高了信号。  他可以从阁楼和扬克斯收听来自旧金山、巴西和爱尔兰的无线。  接着他将无线电信号以相同的相位馈入栅极,信号进一步得到放大。放大的信号又从电子管阳极输出并直接反馈到灯丝中,再次通过真空三极管形成放大。 这个过程称为正反馈或再生。它将单管的放大倍数从大约 20 倍提高到大约 1000 到 100000 倍。 八、震荡电路 在 1912 年的那个重要的夜晚,阿姆斯特朗还注意到了另外一件事。 当他通过改变线圈的长度改变放大信号时,谁知放大的信号消失了,取而代之的是雷人的嘶嘶声。  他很快意识到他的系统不仅可以接收信号,而且还能产生自己的无线电波。  在多年后,普平教授说,“阿姆斯特朗电路的震荡信号,在当时是精度最高的。”  这种震荡频率的稳定性对于使用无线电波传输声音至关重要。 Michael Pupin 再次说道:“毫无疑问,如果没有这项发明,长距离无线电通信和无线电广播是不可能的。”  ▲ 图 1.8.1 普平与阿姆斯特朗 1914 年 1 月 30 日,来自马可尼电报公司的一位名叫大卫·萨尔诺夫的年轻高管会见了阿姆斯特朗, 并观看了实验演示。 他们一整夜都在进行实验, 连续 13 个小时接受无线电信号。 22 岁的萨尔诺夫觉得阿姆斯特朗拥有“ 当时最好的无线接受装置”。 加下来萨尔诺夫就劝说他的上司来投资真空管收音机, 这可以利用无线电波传输音乐。 九、后记 正式由于 Sarnoff 的推动,再加上 Armstrong 的另外一项新发明,即超外差式无线电接收机,使得收音机走进千家万户。 这项当时的高科技并让 Sarnoff 和 Armstrong 都获得了巨大的财富,至少在一段时间内是这样。  关注公众号“优特美尔商城”,获取更多电子元器件知识、电路讲解、型号资料、电子资讯,欢迎留言讨论。
  • 热度 11
    2022-5-26 15:33
    1299 次阅读|
    0 个评论
    半导体起源 一切由电子开始谈起 。电子元件本来就是一项专精的电子物理学,利用材质以及结构上的特性,对电形成不同的反应。 例如,利用两片紧贴但不接触的金属 薄板,就可以形成电容; 将铜线以绝缘漆封装形成漆包线,将漆包线卷起来就形成电感、加入铁芯则成为变压器、并接在一起就是李玆线。 利用以硅为主的材质,经过适当的制程,就可以变成半导体如二极体、电晶体以及IC集成电路等; 还有其他诸多电子元件,其实都是架构在基础物理现象上的精巧设计。 金属之所以能导电,就是因为金属的自由电子较多,便于电子的相互流动,因此电子材料必须由导电性佳的材质制成。电子还有个特性,带负电的电子容易受到正电压的吸引,所谓同性相斥、异性 相吸。又从爱迪生效应中得知,当加热金属物质时,活跃于质子外围的自由电子容易产生游离现象,温度高导致电子活性增强,此时若空间中有一正电压强力吸引,游离的电子就会在空间中流动。基于这几个当时已被了解的知识,佛来明(J.A. Fleming)于1904年制造出第一支二极真空管, 李·德弗雷斯特 (De Forest Lee)将二极管加以改良,于1907年制造出第一支三极管,既然成功研发了三极管,真空管的应用开始实现, 三极管是最基本的真空管. 使得收音机、电视机等消费类电子产品成为可能, 真空管的发展从此一日千里。 真空三极管还是世界上第一台电子计算机的大脑,一台占地近140㎡,重达30吨的大家伙,使用了近19000个真空管以及数千个电阻及电容器。 真空三极管是由一个栅极和两个被栅极分开的电极,在玻璃密封的空间中构成的,密封空间内部是真空,一方面防止部件烧毁一方面易于电子的自由移动。其有两大功能即开关和放大,开关指接通和切断电流,放大指电流或小信号放大,并保持信号原有的特征功能。但是有一系列的缺点,如体积大,连接处易于松动,并且寿命较短,老化速度较快。这一系列的缺点导致其必然要发展或者是被替代. 1949年,贝尔实验室的John Bardeen(约翰·巴丁)、Walter Brattin(沃尔特·布拉顿)、William Shockley(威廉·肖克利)三人发明了 半导体材料锗制成的电子放大器 ,也就是第一代晶体管(这三位科学家也因此获得了1956年诺贝尔物理奖),晶体管最初叫“传输电阻器”,后来才更名为晶体管(Transistor)。这种晶体管包括真空管的功能,同时是固态的,没有真空,体积小、质量轻、耗电低并且寿命长的优点。从此便进入了“固态时代”,也就是目前我们见的最多的。 从第一个晶体管发展到我们现在的许多电力电子器件,使得电力电子技术得到了飞跃的发展,这些器件我们一般统称为分立器件,即每个芯片只含有一个元件。 而半导体相关的另一个器件,我们之前并没有提及过的,即集成电路。集成电路(Integrated circuit)是一种微型电子器件 采用一定工艺,在一块半导体基材上将一个电路中所需的晶体管、电阻、电容和电感等元件及布线互连在一起,然后封装在管壳儿内,形成具有所需电路功能的微型结构。 第一个集成电路是由德州仪器的Jack Kilby(杰克·基尔比)发明,但是其并不是现今集成电路的形式。 其最初使用的是单独的线连接起来的,而早些时候仙童照相机的Jean Horni(吉恩·霍尼)已经开发出了一种在芯片表面上形成电子结来制作晶体管的平面制造工艺,即利用硅易于形成绝缘体氧化硅的优点。 而后Robert Noyce(罗伯特·诺伊斯)应用这种技术把预先在硅表面上形成的分立器件连接起来,最终形成了所有集成电路所使用的模式。 从1949年开始,半导体行业就已经开始在工艺上进行提高和发展,时至今日也依旧还在不断的发展。工艺的改进可以归结于两类:工艺和结构。 工艺的改进:以更小尺寸来制造器件和电路,使其具有更高的密度,更多的数量和更高的可靠性。 结构的改进:在新器件设计上的发明使其性能更好,实现更佳的能耗控制和更高的可靠性。 这两种改进带来的效果,我们从IGBT几代的发展历程可以很好的体会,当然我们之前提到的很多因素,比如设备过程中的一些缺陷等等都可以归结于工艺的改进。 集成电路中器件的尺寸和数量是IC发展的两个共同标志。器件的尺寸是以设计中的最小尺寸来表示的,我们称之为特征图形尺寸。 从小规模集成电路发展到今天的百万芯片,得益于其中单个元件的特征图形尺寸的减小,这得益于光刻机图形化工艺和多层连线技术的极大提高。 这一点在如今讨论的也是比较多的,比如22nm芯片,10nm甚至7nm等等。更专业的表述是栅条宽度,即我们控制部分栅极的宽度,更小更快的晶体管以及更高密度的电路,得益于更小的栅条宽度。 说到这里不得不提到前段时间经常看到的词汇--“摩尔定律”,英特尔的创始人之一Gordon Moore(戈登·摩尔)在1965年预言的 芯片上的晶体管数量会以每18个月翻一番的速度增长,经过多年实际验证这一速度较为准确,也成为预测未来芯片上晶体管密度的依据。 按照电路中器件的数量,即集成度水平,我们可以分为几个等级: 小规模集成(SSI):2~50个/chip; 中规模集成(MSI):50~5000个/chip; 大规模集成(LSI):5000~100000个/chip; 超大规模集成(VLSI):100000~1000000个/chip; 甚大规模集成(ULSI):>1000000个/chip。 摩尔定律并不是随着时间无限制地发展的,主要受限于半导体材料和制备的限制,所以会听到半导体材料硅快到极限的消息,故而需要发展新的材料和不停地提升设备和设计。 我们都知道,芯片是在称为晶圆(wafer)的薄硅片或者其他半导体材料薄片上制成的。在圆形wafer上制造矩形的芯片,导致了在wafer的边缘处剩余了一些不可用区域。 当芯片尺寸较大时,这些不可用区域也会随之较大,所以逐渐采用更大尺寸的wafer,这也就变相地“减小”了芯片的尺寸,也使得生产效率和产量得到一定的提升,这是为什么从6英寸到8英寸再到现在12英寸晶圆的原因之一。 现在的芯片尺寸越做越小,成本越来越低,性能越来越高,这得益于以上我们说到的工艺改进、设备的发展。 就目前而言,生产厂商的类型大概有三类: 集成器件制造商(IDM):集设计、制造、封装和销售为一体; 代工厂(Foundry):其他芯片供应商制造芯片; 无加工厂(Fabless):只负责芯片设计和销售,其他环节大多外包。 参考文献: 1, 真空管_百度百科 (baidu.com) 2, 科普:半导体的起源 - 知乎 (zhihu.com)
相关资源