tag 标签: 电池保护板

相关帖子
相关博文
  • 热度 4
    2024-10-12 11:24
    222 次阅读|
    0 个评论
    01 锂动力电池保护板构成 锂动力电池保护板是针对锂动力电池设计的起保护作用的集成电路板,锂动力电池需要保护是由其本身特性决定的。由于锂动力电池本身的材料决定了它不能被过充、过放、过流、短路及超高温充放电,因此在设计锂动力电池包时,会附带设计一块保护板。 锂动力电池保护板通常由控制IC、开关管、精密采用电阻、NTC、PTC、ID存储器等构成,控制IC在锂动力电池包一切正常的情况下控制开关管导通,使电芯与外电路沟通,而当电芯电压或回路电流、温度超过规定值时,它立刻(数十毫秒)控制开关管关断,保护电芯的安全。 NTC是Negative temperature coefficient的缩写,即负温度系数电阻,在环境温度升高时,其阻值降低。ID存储器常为单线接口存储器,在ID存储器存储着锂动力电池包种类、生产日期等信息,可起到产品的可追溯和使用寿命信息。 PTC是英文Positive Temperature Coefficient的缩写,是正温度系数电阻,锂动力电池包产品内PTC可以防止锂动力电池包高温放电和不安全的大电流的发生,根据锂动力电池包的电压、电流密度特性和应用环境,对PTC有专门的要求。PTC是锂动力电池包产品内一个非常重要的部件,对锂动力电池包的安全担负着重要使命,它本身的性能和品质也是锂动力电池包性能和品质的一个重要因数。 02 过流保护 锂动力电池包的过流保护定义:当电池组P+与P-输出电流超过过流/短路电流值,并达到过流延时,控制电路控制放电开关管关断放电回路,停止放电。电流过大产生热量累积是需要一个持续的过程,所以过电流一般会有两重保护,第一重保护的设定值比较小,延时时间比较长,第二重保护的设定值比较大,延时时间很短。当过电流保护动作后,回路电流瞬间就变成了0A,要想恢复保护状态,一般有两种条件 : 1)不需要人工干预,在经过一段时间之后,自动打开回路,如果此刻依然为过流状态,则锂动力电池包又会进入保护,若过流解除,锂动力电池包将进入工作状态。 2)需要人工干预,等负载或者充电机移除后,人工复位过电流保护。 锂动力电池包在对负载正常放电过程中,放电电流在经过串联的2个开关管时,由于开关管的导通阻抗,会在其两端产生一个电压,该电压值U=I×RDS×2(RDS为单个开关管的导通阻抗),控制IC对该电压值进行检测,若负载因某种原因导致异常,使回路电流增大,当回路电流大到使U》0.1V(该值由控制IC决定,不同的IC有不同的值)时,控制IC使Q1由导通转为关断,从而切断了放电回路,使回路中电流为零,起到过电流保护作用。 在控制IC检测到过电流发生至发出关断信号之间有一段延时时间,该延时时间的长短由C2决定,通常为13毫秒左右,以避免因干扰而造成误判断。在上述控制过程中,其过电流检测值大小不仅取决于控制IC的控制值,还取决于开关管的导通阻抗,开关管导通阻抗越大时,对同样的控制IC,其过电流保护值越小。 03 短路保护 短路保护其实也是过电流保护的一种,只不过当系统短路以后,电流理论上会变成无限大,这样产生的热量也是无限大,如果要等到软件反应过来再保护,锂动力电池包可能已损坏,因此,对于短路保护一般是采用硬件来自动触发,触发后传递给控制IC一个信号即可。 当锂动力电池包P+与P-输出电流超过短路电流值,并达到短路延时,控制电路控制放电开关管关断放电回路,停止放电。短路保护是过电流保护的一种极限形式,其控制过程及原理与过电流保护一样,短路只是在相当于在P+、P-间加上一个阻值小的电阻(约为0Ω)使保护板的负载电流瞬时达到设定值,保护板立即触发短路保护。 电池保护板原理图,先看看池保护板概述,顾名思义锂电池保护板主要是针对可充电(一般指锂电池)起保护作用的集成电路板。锂电池(可充型)之所以需要保护,是由它本身特性决定的。由于锂电池本身的材料决定了它不能被过充、过放、过流、短路及超高温充放电,因此锂电池锂电组件总会跟着一块带采样电阻的保护板和一片电流保险器出现。 锂电池的保护功能通常由保护电路板和PTC等电流器件协同完成,保护板是由电子电路组成,在-40℃至+85℃的环境下时刻准确的监视电芯的电压和充放回路的电流,及时控制电流回路的通断;PTC在高温环境下防止电池发生恶劣的损坏。 04 电池保护板原理图 电池保护板原理图解析如下文,普通锂电池保护板通常包括控制IC、MOS开关、电阻、电容及辅助器件FUSE、PTC、NTC、ID、存储器等。其中控制IC,在一切正常的情况下控制MOS开关导通,使电芯与外电路导通,而当电芯电压或回路电流超过规定值时,它立刻控制MOS开关关断,保护电芯的安全。 在保护板正常的情况下,Vdd为高电平,Vss,VM为低电平,DO、CO为高电平,当Vdd,Vss,VM任何一项参数变换时,DO或CO端的电平将发生变化。 1、过充电检出电压:在通常状态下,Vdd逐渐提升至CO端由高电平 变为低电平时VDD-VSS间电压。 2、过充电解除电压:在充电状态下,Vdd逐渐降低至CO端由低电平 变为高电平时VDD-VSS间电压。 3、过放电检出电压:通常状态下,Vdd逐渐降低至D O端由高电平 变为低电平时VDD- VSS间电压。 4、过放电解除电压:在过放电状态下,Vdd逐渐上升到DO端由低电平 变为高电平时 VDD-VSS间电压 。 5、过电流1检出电压:在通常状态下,VM逐渐升至DO由高电平 变为低电平时VM-VSS间电压。 6、过电流2检出电压:在通常状态下,VM从OV起以1ms以上4ms以下的速度升到 DO端由高电平变为低电平时VM-VSS间电压。 7、负载短路检出电压:在通常状态下,VM以OV起以1μS以上50μS以下的速度升至DO端由高电平变为低电平时VM-VSS间电压。 8、充电器检出电压:在过放电状态下,VM以OV逐渐下降至DO由低电平变为变为高电平时VM-VSS间电压。 9、通常工作时消耗电流:在通常状态下,流以VDD端子的电流(IDD)即为通常工作时消耗电流。 10、过放电消耗电流:在放电状态下,流经VDD端子的电流(IDD)即为过流放电消耗电流。 11、通常状态:电池电压在过放电检出电压以上(2.75V以上),过充电检出电压以下(4.3V以下),VM端子的电压在充电器检出电压以上,在过电流/检出电压以下(OV)的情况下,IC通过监视连接在VDD-VSS间的电压差及VM-VSS间的电压差而控制MOS管,DO、CO端都为高电平,MOS管处导通状态,这时可以自由的充电和放电; 当电池被充电使电压超过设定值VC(4.25-4.35V)后,VD1翻转使Cout变为低电平,T1截止,充电停止,当电池电压回落至VCR(3.8-4.1V)时,Cout变为高电平,T1导通充电继续, VCR小于VC一个定值,以防止电流频繁跳变。 当电池电压因放电而降低至设定值VD(2.3-2.5V)时, VD2翻转,以IC内部固定的短时间延时后,使Dout变为低电平,T2截止,放电停止。 电池保护板原理图 当电路放电电流超过设定值或输出被短路时,过流、短路检测电路动作,使MOS管(T2)关断,电流截止。 该保护回路由两个MOSFET(T1、T2)和一个控制IC(N1)外加一些阻容元件构成。控制IC负责监测电池电压与回路电流,并控制两个MOSFET的栅极,MOSFET在电路中起开关作用,分别控制着充电回路与放电回路的导通与关断,C2为延时电容,该电路具有过充电保护、过放电保护、过电流保护与短路保护功能,其工作原理分析如下: 1、短路保护 0.9V(该值由控制IC决定,不同的IC有不同的值)时,控制IC则判断为负载短路,其“DO”脚将迅速由高电压转变为零电压,使T2由导通转为关断,从而切断放电回路,起到短路保护作用。短路保护的延时时间极短,通常小于7微秒。其工作原理与过电流保护类似,只是判断方法不同,保护延时时间也不一样。 2、过放电保护 电池在对外部负载放电过程中,其电压会随着放电过程逐渐降低,当电池电压降至2.5V时,其容量已被完全放光,此时如果让电池继续对负载放电,将造成电池的永久性损坏。 在电池放电过程中,当控制IC检测到电池电压低于2.3V(该值由控制IC决定,不同的IC有不同的值)时,其“DO”脚将由高电压转变为零电压,使T2由导通转为关断,从而切断了放电回路,使电池无法再对负载进行放电,起到过放电保护作用。而此时由于T2自带的体二极管VD2的存在,充电器可以通过该二极管对电池进行充电。 3、过充电保护 锂离子电池要求的充电方式为恒流/恒压,在充电初期,为恒流充电,随着充电过程,电压会上升到4.2V(根据正极材料不同,有的电池要求恒压值为4.1V),转为恒压充电,直至电流越来越小。 电池在被充电过程中,如果充电器电路失去控制,会使电池电压超过4.2V后继续恒流充电,此时电池电压仍会继续上升,当电池电压被充电至超过4.3V时,电池的化学副反应将加剧,会导致电池损坏或出现安全问题。 在带有保护电路的电池中,当控制IC检测到电池电压达到4.28V(该值由控制IC决定,不同的IC有不同的值)时,其“CO”脚将由高电压转变为零电压,使T1由导通转为关断,从而切断了充电回路,使充电器无法再对电池进行充电,起到过充电保护作用。而此时由于T1自带的体二极管VD1的存在,电池可以通过该二极管对外部负载进行放电。 在控制IC检测到电池电压超过4.28V至发出关断T1信号之间,还有一段延时时间,该延时时间的长短由C2决定,通常设为1秒左右,以避免因干扰而造成误判断。 4、过电流保护 由于锂离子电池的化学特性,电池生产厂家规定了其放电电流最大不能超过2C(C=电池容量/小时),当电池超过2C电流放电时,将会导致电池的永久性损坏或出现安全问题。 0.1V(该值由控制IC决定,不同的IC有不同的值)时,其“DO”脚将由高电压转变为零电压,使T2由导通转为关断,从而切断了放电回路,使回路中电流为零,起到过电流保护作用。 5、正常状态 在正常状态下电路中N1的“CO”与“DO”脚都输出高电压,两个MOSFET都处于导通状态,电池可以自由地进行充电和放电,由于MOSFET的导通阻抗很小,通常小于30毫欧,因此其导通电阻对电路的性能影响很小。 05 电池保护板的主要作用 1、电流保护:它主要体现在工作电流与过电流使开关MOS断开从而保护电池组或负载。 2、电压保护:过充,过放,这要根据电池的材料不同而有所改变,过充保护,在我们以往的单节电池保护电压都会高出电池充饱电压50~150mV。但是动力电池不一样,如果你要想延长电池寿命,你的保护电压就选择电池的充饱电压,甚至还要比此电压还低些。 3、短路保护:短路的意思就是将电池的输出端连接在一起,短路是一种非常危险的现象,很多时候电池冒烟、爆炸都是由短路引起的,如果电芯的容量比较大,放电比率也比较大的话,一根很粗的铜线,瞬间会烧没有,可想而知有多么的危险,短路保护的原理就是当芯片检测到用户将P+P-或者意外连接起来的时候,会瞬间断开电池的输出端,从而达到保护的效果。 4、温度保护:一般在智能电池上都会用到,也是不可少的。但往往它的完美总会带来另一方面的不足。我们主要是检测电池的温度来断开总开关来保护电池本身或负载。 5、自耗电量, 这个参数是越小越好,最理想的状态是为零,但不可能做到这一点。 6、MOS保护:主要是MOS的电压,电流与温度。当然就是牵扯到MOS管的选型了。MOS的耐压当然要超过电池组的电压,这是必须的。 7、均衡:目前最通用的均衡方式分为两种,一种就是耗能式的,另一种就是转能式的。 本文章源自奇迹物联开源的物联网应用知识库Cellular IoT Wiki,更多技术干货欢迎关注收藏Wiki: Cellular IoT Wiki 知识库(https://rckrv97mzx.feishu.cn/wiki/wikcnBvAC9WOkEYG5CLqGwm6PHf) (如有侵权,联系删除)
相关资源
  • 所需E币: 3
    时间: 2020-6-30 17:51
    大小: 76KB
    上传者: 电子阔少
    电池保护板及检测与化成设备的采样电阻阻值选用.许多电子电力产品如电池保护板,电池检测仪器,各类产品电源部分上常常需要捷比信低阻值电阻,毫欧级JEPSUN取样电阻放置在线路里用来检测线路通过的电流大小,同时超低的阻值不影响线路中电流的原本大小。设计线路时往往担心选用的阻值不是常用电阻阻值,这样在购买时容易有缺货及交期长的问题产生,为方便客户选用,现将部分常用采样取样电阻的阻值列举如下:相关毫欧取样电阻的阻值表示方式及电阻体喷字方式如下: