tag 标签: 旁路电容

相关帖子
相关博文
  • 热度 16
    2015-8-20 07:53
    938 次阅读|
    0 个评论
    电容器在电子电路中几乎是不可缺少的储能元件,它具有隔断直流、连通交流、阻止低频的特性。广泛应用在耦合、隔直、旁路、滤波、调谐、能量转换和自动控制等电路中。熟悉电容器在不同电路中的名称意义,有助于我们读懂电子电路图。 1.滤波电容 :它接在直流电源的正、负极之间,以滤除直流电源中不需要的交流成分,使直流电平滑。一般常采用大容量的电解电容器,也可以在电路中同时并接其他类型的小容量电容以滤除高频交流电。 2.退耦电容:并接于放大电路的电源正、负极之间,防止由电源内阻形成的正反馈而引起的寄生振荡。 3.旁路电容 :在交、直流信号的电路中,将电容并接在电阻两端或由电路的某点跨接到公共电位上,为交流信号或脉冲信号设置一条通路,避免交流信号成分因通过电阻产生压降衰减。 4.耦合电容 :在交流信号处理电路中,用于连接信号源和信号处理电路或者作两放大器的级间连接,用以隔断直流,让交流信号或脉冲信号通过,使前后级放大电路的直流工作点互不影响。 5.调谐电容 :连接在谐振电路的振荡线圈两端,起到选择振荡频率的作用。 6.衬垫电容 :与谐振电路主电容串联的辅助性电容,调整它可使振荡信号频率范围变小,并能显著地提高低频端的振荡频率。适当地选定衬垫电容的容量,可以将低端频率曲线向上提升,接近于理想频率跟踪曲线。 7.补偿电容: 它是与谐振电路主电容并联的辅助性电容,调整该电容能使振荡信号频率范围扩大。 8.中和电容 :并接在三极管放大器的基极与发射极之间,构成负反馈网络,以抑制三极管极间电容造成的自激振荡。 9.稳频电容: 在振荡电路中,起稳定振荡频率的作用。 10.定时电容 :在RC时间常数电路中与电阻R串联,共同决定充放电时间长短的电容。 11.加速电容 :接在振荡器反馈电路中,使正反馈过程加速,提高振荡信号的幅度。 12.缩短电容: 在UHF高频头电路中,为了缩短振荡电感器长度而串接的电容。 13.克拉泼电容: 在电容三点式振荡电路中,与电感振荡线圈串联的电容,起到消除晶体管结电容对频率稳定性影响的作用。 14.锡拉电容: 在电容三点式振荡电路中,与电感振荡线圈两端并联的电容,起到消除晶体管结电容的影响,使振荡器在高频端容易起振。 15.稳幅电容 :在鉴频器中,用于稳定输出信号的幅度。 16.预加重电容: 为了避免音频调制信号在处理过程中造成对分频量衰减和丢失,而设置的RC高频分量提升网络电容。 17.去加重电容 :为恢复原伴音信号,要求对音频信号中经预加重所提升的高频分量和噪声一起衰减掉,设置在RC网络中的电容。 18.移相电容 :用于改变交流信号相位的电容。 19.反馈电容 :跨接于放大器的输入与输出端之间,使输出信号回输到输入端的电容。 20.降压限流电容: 串联在交流电回路中,利用电容对交流电的容抗特性,对交流电进行限流,从而构成分压电路。 21.逆程电容: 用于行扫描输出电路,并接在行输出管的集电极与发射极之间,以产生高压行扫描锯齿波逆程脉冲,其耐压一般在1500V以上。 22.校正电容: 串接在偏转线圈回路中,用于校正显像管边缘的延伸线性失真。 23.自举升压电容: 利用电容器的充、放电储能特性提升电路某点的电位,使该点电位达到供电端电压值的2倍。 24.消亮点电容: 设置在视放电路中,用于关机时消除显像管上残余亮点的电容。 25.软启动电容: 一般接在开关电源的开关管基极上,防止在开启电源时,过大的浪涌电流或过高的峰值电压加到开关管基极上,导致开关管损坏。 26.启动电容 :串接在单相电动机的副绕组上,为电动机提供启动移相交流电压。在电动机正常运转后与副绕组断开。 27.运转电容: 与单相电动机的副绕组串联,为电动机副绕组提供移相交流电流。在电动机正常运行时,与副绕组保持串接。
  • 热度 23
    2015-6-4 14:53
    1376 次阅读|
    1 个评论
    从电路来说,总是存在驱动的源和被驱动的负载。如果负载电容比较大,驱动电路要把电容充电、放电,才能完成信号的跳变,在上升沿比较陡峭的时候,电流比较大,这样驱动的电流就会吸收很大的电源电流,由于电路中的电感,电阻(特别是芯片管脚上的电感,会产生反弹),这种电流相对于正常情况来说实际上就是一种噪声,会影响前级的正常工作。这就是耦合。 去藕电容就是起到一个电池的作用,满足驱动电路电流的变化,避免相互间的耦合干扰。旁路电容实际也是去藕合的,只是旁路电容一般是指高频旁路,也就是给高频的开关噪声提供一条低阻抗泄放途径。高频旁路电容一般比较小,根据谐振频率一般是 0.1u,0.01u 等,而去耦合电容一般比较大,是 10u 或者更大,依据电路中分布参数,以及驱动电流的变化大小来确定。 旁路是把输入信号中的干扰作为滤除对象,而去耦是把输出信号的干扰作为滤除对象,防止干扰信号返回电源。这应该是他们的本质区别。 去耦电容在集成电路电源和地之间的有两个作用: 一方面是本集成电路的蓄能电容,另一方面旁路掉该器件的高频噪声。 数字电路中典型的去耦电容值是 0.1μF。这个电容的分布电感的典型值是 5μH。 0.1μF 的去耦电容有 5μH 的分布电感,它的并行共振频率大约在 7MHz 左右,也就是说,对于 10MHz 以下的噪声有较好的去耦效果,对 40MHz 以上的噪声几乎不起作用。 1μF、10μF 的电容,并行共振频率在 20MHz 以上,去除高频噪声的效果要好一些。 每 10 片左右集成电路要加一片充放电电容,或 1 个蓄能电容,可选 10μF 左右。最好不用电解电容,电解电容是两层薄膜卷起来的,这种卷起来的结构在高频时表现为电感。要使用钽电容或聚碳酸酯电容。 去耦电容的选用并不严格,可按 C = 1 / F,即 10MHz 取 0.1μF,100MHz 取 0.01μF。 分布电容是指由非形态电容形成的一种分布参数。一般是指在印制板或其他形态的电路形式,在线与线之间、印制板的上下层之间形成的电容。这种电容的容量很小,但可能对电路形成一定的影响。 在对印制板进行设计时一定要充分考虑这种影响,尤其是在工作频率很高的时候。也成为寄生电容,制造时一定会产生,只是大小的问题。 布高速 PCB 时,过孔可以减少板层电容,但会增加电感。分布电感是指在频率提高时,因导体自感而造成的阻抗增加. 电容器选用及使用注意事项: 1. 一般在低频耦合或旁路,电气特性要求较低时,可选用纸介、涤纶电容器;在高频高压电路中,应选用云母电容器或瓷介电容器;在电源滤波和退耦电路中,可选用电解电容器。 2. 在振荡电路、延时电路、音调电路中,电容器容量应尽可能与计算值一致。在各种滤波及网(选频网络),电容器容量要求精确;在退耦电路、低频耦合电路中,对同两级精度的要求不太严格。 3. 电容器额定电压应高于实际工作电压,并要有足够的余地,一般选用耐压值为实际工作电压两倍以上的电容器。 4. 优先选用绝缘电阻高,损耗小的电容器,还要注意使用环境。 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 我们知道,一般我们所用的电容最重要的一点就是滤波和旁路,我在设计中也正是这么使用的。 对于高频杂波,一般我的经验是不要过大的电容,因为我个人认为,过大的电容虽然对于低频的杂波过滤效果也许比较好,但是对于高频的杂波,由于其谐振频率的下降,使得对于高频杂波的过滤效果不很理想。所以电容的选择不是容量越大越好。 疑问点: 1. 以上都是我的经验,没有理论证实,希望哪位可以在理论在帮忙解释一下是否正确。或者推荐一个网页或者网站。 2. 是不是超过了谐振频率,其阻抗将大大增加,所以对高频的过滤信号,其作用就相对减小了呢? 3. 理想的滤波点是不是在谐振频率这点上???(没有搞懂中) 4. 以前只知道电容的旁路作用是隔直通交,现在具体于PCB 设计中,电容的这一旁路作用具体体现在哪里? ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 在用电容抑制电磁骚扰时,最容易忽视的问题就是电容引线对滤波效果的影响。电容器的容抗与频率成反比,正是利用这一特性,将电容并联在信号线与地线之间起到对高频噪声的旁路作用。然而,在实际工程中,很多人发现这种方法并不能起到预期滤除噪声的效果,面对顽固的电磁噪声束手无策。出现这种情况的一个原因是忽略了电容引线对旁路效果的影响。 实际电容器的电路模型是由等效电感(ESL)、电容和等效电阻(ESR)构成的串联网络。理想电容的阻抗是随着频率的升高降低,而实际电容的阻抗是图 1 所示的网络的阻抗特性,在频率较低的时候,呈现电容特性,即阻抗随频率的增加而降低,在某一点发生谐振,在这点电容的阻抗等于等效串联电阻 ESR。在谐振点以上,由于 ESL 的作用,电容阻抗随着频率的升高而增加,这是电容呈现电感的阻抗特性。在谐振点以上,由于电容的阻抗增加,因此对高频噪声的旁路作用减弱,甚至消失。 电容的谐振频率由 ESL 和 C 共同决定,电容值或电感值越大,则谐振频率越低,也就是电容的高频滤波效果越差。ESL 除了与电容器的种类有关外,电容的引线长度是一个十分重要的参数,引线越长,则电感越大,电容的谐振频率越低。因此在实际工程中,要使电容器的引线尽量短。 根据 LC 电路串联谐振的原理,谐振点不仅与电感有关,还与电容值有关,电容越大,谐振点越低。许多人认为电容器的容值越大,滤波效果越好,这是一种误解。电容越大对低频干扰的旁路效果虽然好,但是由于电容在较低的频率发生了谐振,阻抗开始随频率的升高而增加,因此对高频噪声的旁路效果变差。表 1 是不同容量瓷片电容器的自谐振频率,电容的引线长度是1.6mm(你使用的电容的引线有这么短吗?)。表 1 电容值自谐振频率(MHz) 电容值自谐振频率(MHz)1m F 1.7 820 pF 38.50.1m F 4 680 pF 42.50.01m F 12.6 560 pF 453300pF 19.3 470 pF 491800 pF 25.5 390 pF 541100pF 33 330 pF 60 尽管从滤除高频噪声的角度看,电容的谐振是不希望的,但是电容的谐振并不是总是有害的。当要滤除的噪声频率 确定时,可以通过调整电容的容量,使谐振点刚好落在骚扰频率上。 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 一般来说,容量为uf 级的电容,象电解电容或钽电容,他的电感较大,谐振频率较小,对低频信号通过较好,而对高频信号,表现出较强的电感性,阻抗较大,同时,大电容还可以起到局部电荷池的作用,可以减少局部的干扰通过电源耦合出去;容量为0.001~0.1uf 的电容,一般为陶瓷电容或云母电容,电感小,谐振频率高,对高频信号的阻抗较小,可以为高频干扰信号提供一条旁路,减少外界对该局部的耦合干扰在电子电路中,去耦电容和旁路电容都是起到抗干扰的作用,电容所处的位置不同,称呼就不一样了。 对于同一个电路来说,旁路(bypass)电容是把输入信号中的高频噪声作为滤除对象,把前级携带的高频杂波滤除,而去耦(decoupling,也称退耦)电容是把输出信号的干扰作为滤除对象。 在供电电源和地之间也经常连接去耦电容,它有三个方面的作用:一是作为本集成电路的蓄能电容;二是滤除该器件产生的高频噪声,切断其通过供电回路进行传播的通路;三是防止电源携带的噪声对电路构成干扰。我来总结一下,旁路实际上就是给高频干扰提供一个到地的能量释放途径,不同的容值可以针对不同的频率干扰。所以一般旁路时常用一个大贴片加上一个小贴片并联使用。对于相同容量的电容的Q 值我认为会影响旁路时高频干扰释放路径的阻抗,直接影响旁路的效果,对于旁路来说,希望在旁路作用时,电容的等效阻抗越小越好,这样更利于能量的排泄。 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 数字电路输出信号电平转换过程中会产生很大的冲击电流,在供电线和电源内阻上产生较大的压降,使供电电压产生跳变,产生阻抗噪声(亦称开关噪声),形成干扰源。 一、冲击电流的产生: (1)输出级控制正负逻辑输出的管子短时间同时导通,产生瞬态尖峰电流 (2)受负载电容影响,输出逻辑由“0”转换至“1”时,由于对负载电容的充电而产生瞬态尖峰电流。瞬态尖峰电流可达50ma,动作时间大约几ns 至几十ns。 二、降低冲击电流影响的措施: (1)降低供电电源内阻和供电线阻抗 (2)匹配去耦电容 三、何为去耦电容 在IC(或电路)电源线端和地线端加接的电容称为去耦电容。 四、去耦电容如何取值 去耦电容取值一般为0.01~0.1uf,频率越高,去耦电容值越小。 五、去耦电容的种类 (1)独石 (2)玻璃釉 (3)瓷片 (4)钽 六、去耦电容的放置 去耦电容应放置于电源入口处,连线应尽可能短。 一般来说,容量为uf 级的电容,像电解电容或钽电容,他的电感较大,谐振频率较小,对低频信号通过较好,而对高频信号,表现出较强的电感性,阻抗较大,同时,大电容还可以起到局部电荷池的作用,可以减少局部的干扰通过电源耦合出去;容量为0.001~0.1uf 的电容,一般为陶瓷电容或云母电容,电感小,谐振频率高,对高频信号的阻抗较小,可以为高频干扰信号提供一条旁路,减少外界对该局部的耦合干扰旁路是把前级或电源携带的高频杂波或信号滤除; 去藕是为保正输出端的稳定输出(主要是针对器件的工作)而设的“小水塘”,在其他大电流工作时保证电源的波动范围不会影响该电路的工作; 补充一点就是所谓的藕合:是在前后级间传递信号而不互相影响各级静态工作点的元件有源器件在开关时产生的高频开关噪声将沿着电源线传播。去耦电容的主要功能就是提供一个局部的直流电源给有源器件,以减少开关噪声在板上的传播和将噪声引导到地。
  • 热度 23
    2015-3-14 22:40
    1184 次阅读|
    0 个评论
      摘 要:在当今高速数字系统设计中,电源完整性的重要性日益突出。其中,电容的正确使用是保证电源完整性的关键所在。本文针对旁路电容的滤波特性以及理想电容和实际电容之间的差别,提出了旁路电容选择的一些建议;在此基础上,探讨了电源扰动及地弹噪声的产生机理,给出了旁路电容放置的解决方案,具有一定的工程应用价值。   1 引言   随着系统体积的减小,工作频率的提高,系统的功能复杂化,这样就需要多个不同的嵌入式功能模块同时工作。只有各个模块具有良好的EMC和较低的EMI,才能保证整个系统功能的实现。这就要求系统自身不仅需要具有良好的屏蔽外界干扰的性能,同时还要求在和其他的系统同时工作时,不能对外界产生严重的EMI。另外,开关电源在高速数字系统设计中的应用越来越广泛,一个系统中往往需要用到多种电源。不仅电源系统容易受到干扰,而且电源供应时产生的噪声会给整个系统带来严重的EMC问题。因此,在高速PCB设计中,如何更好的滤除电源噪声是保证良好电源完整性的关键。本文分析了电容的滤波特性,电容的寄生电感电容的滤波性能带来的影响,以及PCB中的电流环现象,继而针对如何选择旁路电容做出了一些总结。本文还着重分析了电源噪声和地弹噪声的产生机理并在其基础上对旁路电容在PCB中的各种摆放方式做出了分析和比较。   2 电容的插入损耗特性、频率响应特性与电容的滤波特性   2.1 理想电容的插入损耗特性    EMI电源滤波器对干扰噪声的抑制能力通常用插入损耗(Insertion Loss)特性来衡量。插入损耗的定义为:没有滤波器接入时,从噪声源传输到负载的噪声功率P1和接入滤波器后,噪声源传输到负载的噪声功率P2之比,用dB(分贝)表示。图1是理想电容的插入损耗特性,可以看出,1μF电容对应的插入损耗曲线斜率接近20dB/10倍频。   观察其中某一条插入损耗特性,当频率增加时,电容的插入损耗值是增加的,也就是说P1/P2值是增加的,这意味着系统通过电容滤波以后,能够传输到负载的噪声减少,电容滤除高频噪声的能力增强。从理想电容的公式 分析,当电容一定时,信号频率越高,回路阻抗越低,也即电容易于滤除高频的成分。从两个方面得出的结论是相同的。   再观察不同电容所对应的曲线,在频率很低的情况下,各种电容所对应的插入损耗值是近似相同的,但是随着频率的增加,小电容的插入损耗值增加的幅度较大电容要慢一些,P1/P2值增加得也就较慢,也就是说大电容更容易滤除低频噪声。因而我们在设计高速电路板时,通常在电路板的电源接入端放置一个1~10μF的电容,滤除低频噪声;在电路板上每个器件的电源与地线之间放置一个0.01~0.1μF的电容,滤除高频噪声。    连接在电源和地之间的电容的阻抗可由如下公式计算: ,电容滤波的目的是滤除叠加在电源系统中的交流成分,从上面的公式可以看出,当频率一定时,电容值越大,回路中的阻抗就越小,这样交流信号就越容易通过电容流到地平面上去,换句话说,即似乎电容值越大其滤波效果越好,事实上并非如此,因为实际电容并不具有理想电容的所有特性。实际电容存在寄生成分,这是构造电容器极板和引线时所形成的,而这些寄生成分可等效为串联在电容上的电阻与电感,通常称之为等效串联电阻(ESR)和等效串联电感(ESL),其模型如图2的左半部分所示。如果忽略电容的寄生电阻则模型可等效为图2的右半部分。这样电容实际上就是一个串联谐振电路。在实际的电路或者PCB设计中,电容寄生电感的存在将对电容的滤波性能带来很大的影响,因此在系统设计时应该选择寄生电感比较小的电容。   2.2 实际电容的高频响应特性    从2.1节我们知道,实际电容在工作时由于存在寄生电感的缘故,使得电容回路成为一个串联谐振回路。谐振频率为 ,式中:L为等效电感;C为实际电容。如图3所示,当频率小于f0时,呈现为电容;频率大于f0时,呈现为电感。所以,电容器更像是一个带阻滤波器,而不是一个低通滤波器。电容的ESL和ESR是由电容的构造和所用介质材料决定的,与电容容量无关。对于高频的抑制能力并不会因为更换大容量的同类型电容而增强。更大容量的同类型电容器的阻抗在频率低于f0时,比小容量电容器的阻抗小,但是,当频率大于f0时,ESL决定了二者的阻抗没有差别。可见,为了改进高频滤波特性,必须使用具有较低ESL的电容器。任何一种电容器的有效频率范围是有限的,而对于一个系统,既有低频噪声,又有高频噪声,所以通常要用不同类型的电容并联来达到更宽的有效频率范围。     3 利用电容模型分析PCB中的环流问题    电源去耦电容放置位置不当将会在印制电路板上产生很大的电流环。为了减少噪声,在高速印制电路板的设计当中,有一个很重要的原则是:减少信号电流环的面积。过去我们习惯于只考虑电流的流出起点、途径及终点,而很少去考虑电流的返回路径。在高频电路中,通常认为电源和地是等价的,因此电流的流出途径和返回途径将形成一个电流环,在这些电流环中,会由于种种原因,例如电容的寄生电感,PCB连线的固有电感等,使得环路的阻抗不为零,这样电流流经这一环路时将产生电势差,如果电流是变化的,则将产生辐射,对系统产生干扰。为了给电源滤波,在电路设计中常常要在电源和地之间加上一些旁路电容,在回路中增加旁路电容主要有两个目的,一是增加环路中存储电荷的能力,以免瞬间电流过大,产生地弹噪声。二是适当的放置旁路电容的位置,可为噪声信号提供就近的地回路,减少电流环路的面积,从而减少了环路的电感。采用了旁路电容的回路中,由于欲滤除的噪声频率通常是高频交流信号,因而这样的回路仍旧将会对外产生辐射。为了减少这一辐射,我们需要尽可能的降低回路的阻抗,必须合理放置旁路电容的位置。图4显示了由于滤波电容放置位置不当产生的大电流环。    图5为电流环的模型。从电流环模型中我们可以看出,环路中存在寄生电感,它们在高频状态下表现为环路的阻抗可导致供给电源产生尖峰,并会辐射电磁波从而干扰系统的其他部分。环路中Ll为电容管脚引线的封装电感;Lpc为电容管脚到器件电源或者地管脚之间的PCB传输线的寄生电感;Lic为器件管脚引线的寄生电感。另外,在前面我们讨论过电容本身也是具有寄生电感ESL的。这样回路的总电感为:L=2Ll+ 2Lpc+2Lic+ESL。由于环路的寄生电感将会给整个系统带来电磁干扰,产生电压尖峰,这个电压尖峰值同串联电感之间存在一定的关系,近似计算公式如下:    这里V为最大噪声电压尖峰值,△t为瞬态持续时间,△I为器件瞬态电流,△t、△I值可以从器件手册中查得。例如74HC的瞬态电流典型值Icc为20mA,输出信号从零上升到Icc或者从Icc下降到零需要的时间为4ns,如果现在我们试图控制感性噪声的尖峰在100mV以内,那么由上面的公式我们可以求得串联电感L的最大值不超过20nH。在PCB板设计时,设计者可以通过以下几种方式来降低回路电感:选择寄生电感比较小的电容,降低ESL(不同型号电容的寄生电感值见表1);尽量使用贴片电容以减小电容引线长,降低Ll值;合理的放置电容,使用电源层或地平面层代替电源或者地传输线,减小电源地传输线电感Lpc;合理选择集成器件的封装,以降低Lic值,比如对于器件ADV478来说,PLCC封装的寄生电感比DIP封装的寄生电感要小2nH到3nH。   4 电源扰动及地弹噪声的产生机理    图6为一个简单的图腾柱I/O口电路,驱动一个串联源端匹配的传输线。图中LV和LG为器件电源管脚和地管脚的封装电感,A、B为两个场效应管,作为开关使用。假设初始时刻传输线上各点的电压和电流均为零,在某一时刻器件将驱动传输线为高电平,这时候器件就需要从电源管脚吸收电流。在时间t1,合上开关A,电流从PCB板上的VCC流入,流经封装电感LV,跨越开关A,串联终端电阻,然后流入传输线,输出电流幅度为(1/2)VCC/Z0。电流在传输线网络上持续一个完整的轮回(round-trip)时间,在时间t2结束。至此以后,整个传输线处于电荷充满状态,不需要额外流入电流来维持。当电流瞬间涌过封装电感LV时,将在结点V1处导致芯片电压的扰动。在时间t3,关闭开关A,这一动作不会导致脉冲噪声的产生,因为在开关A打开的瞬间是没有电流流过的。同时,合上开关B,这时传输线、地平面、封装电感LG以及开关B形成一环路,有瞬间电流流过开关B,这样在结点G1处产生地弹扰动。如果在V1和G1之间加上一旁路电容(放置在芯片内部)的话,可以使得V1点处和G1点处的瞬态电压扰动相同,这样在每一次开关切换时,V1点和G1点均会产生电压扰动,然而幅度将会减半。   在高速PCB设计中,在电源管脚附近放置滤波电容就是为了消除电源扰动以及地弹噪声的。系统加上旁路电容以后,由于电容寄生电感的存在,环路的总电感将增加,可能产生的噪声强度也就会更大。因此设计者应该尽可能的选择寄生电感小的旁路电容并合理的将其放置在PCB中。   5 器件电源管脚旁路电容的放置    当电流在瞬间通过器件电源管脚流入器件或者通过地管脚流入地时,由于器件封装电感的存在以及电源供给环路中电感的存在,将会产生电源扰动和地弹噪声,因此需要在电源管脚附近放置滤波电容以达到消除电源扰动以及地弹噪声目的。    从上文可知,电源扰动和地弹噪声主要来自于芯片的引脚,由于芯片的输出阻抗(芯片的电源或者地管脚的输出阻抗)一般要比电源平面或者地平面的阻抗大得多(如果不是这样的话,将会有大量的电源、地噪声产生),因此可将芯片看作一个噪声源,对于一块合理设计的电路板而言,无论在什么时候,当噪声源的阻抗比负载大得多的时候,噪声源可以看作一个电流源,它将灌入一定量的电流到电源或者地系统中。为了减小电源或者地噪声,就需要采取措施来减小灌入到电源或者地平面当中的电流量。为了切实做到这一点,理论上需要将电源或者地管脚串联一个阻抗,这个阻抗必须足够大,最好比芯片电源地管脚的输出阻抗还大。但串联这样一个大的阻抗是不现实的,因为如果这样的话,将会在芯片内部产生更大的地弹噪声或者电源扰动,导致芯片不能够正常工作。因此正确的做法还应该是设法将噪声通过低阻抗的回路引到地平面上去。通常的做法是给芯片的电源管脚加旁路电容。下面简单的分析了电容的四种放置方式。   如图7及图8(a)所示,为旁路电容的一种放置方式。将芯片的地管脚直接通过一个低阻抗的过孔D(一般过孔的寄生电感约为1~2nH)连接到地平面上,这样芯片地管脚上的地弹噪声将通过过孔流入到地平面上,抑制了地弹噪声对芯片的影响。芯片的电源管脚通过一小段传输线(通常约为50~80mil长,寄生电感约为1~1.6nH)连接到电容的电源盘垫上,电容的电源盘垫和地盘垫直接通过过孔连接到电源平面和地平面上,这样电源管脚到地平面之间也将有一条低阻抗的通路,有效的克服了电源管脚上的电源噪声对芯片的影响。同时旁路电容附近的电源层上的噪声也将通过过孔B、旁路电容、过孔C这样一条低阻抗通道流入到地平面上,这样的放置方式有效的抑制了噪声对芯片以及电源和其他系统的影响。   如图8(b)所示,将过孔B放在电容电源管脚和芯片电源管脚之间,这样将增加通路A的环路电感,当电容和芯片不是位于同一层时,一般采用这种方式。   如图8(c)所示,将电容电源管脚处的电源过孔B改打到接近芯片电源管脚A处,这种放置方式类似于上述第二种放置方式,将导致环路电感的增加,此方式应避免。   如图8(d)所示去掉电容电源管脚和芯片电源管脚之间的传输线,而将芯片电源管脚直接通过一个过孔连接到地平面上,电容电源管脚和芯片电源管脚之间通过大的电源平面连接到一起,这样通路A包括:两个过孔、一个电源平面、一个电容,也同样增加了环路的电感,而且噪声将对电源平面带来不可预知的影响,另外还增加了过孔的数量,减少了板子上的布线面积。此方式也应尽量避免。   6 结束语   当前数字系统板级频率越来越高,各种EMI问题也越来越严重。合理的选择和使用旁路电容是消除EMI、获得电源完整性的一个关键方面。而且,随着半导体技术的进一步发展,电容也在不同的更新换代以满足高速电路设计的要求。因此,旁路电容选择、旁路电容的摆放等问题需要不断的进行深入探讨。   参考文献 1 Bill Slattery and John Wynne. Design and Layout of a Video Graphics System for Reduced EMI. AN-333 Application note,ANALOG DEVICES. 2 Howard Johnson. On Chip Bypassing with Series Terminations. EDN Magazine, April 29, 2004. 3 Howard Johnson and Martin Graham. High-Speed Digital Design, A Handbook of Black Magic.New Jersey: Pearson Education,Inc 4 The datasheet of AV9170, Integrated Circuit Systems. 5 Howard Johnson . Bypass Arrays . Http://www.signalintegrity.com
  • 热度 17
    2014-6-13 09:35
    1153 次阅读|
    0 个评论
      设计人员在选择旁路电容,以及电容用于滤波器、积分器、时序电路和实际电容值非常重要的其他应用时,都必须考虑这些因素。若选择不当,则可能导致电路不稳定、噪声和功耗过大、产品生命周期缩短,以及产生不可预测的电路行为。    电容技术   电容具有各种尺寸、额定电压和其他特性,能够满足不同应用的具体要求。常用电介质材料包括油、纸、玻璃、空气、云母、聚合物薄膜和金属氧化物。每种电介质均具有特定属性,决定其是否适合特定的应用。   在电压调节器中,以下三大类电容通常用作电压输入和输出旁路电容:多层陶瓷电容、固态钽电解电容和铝电解电容。    多层陶瓷电容   多层陶瓷电容(MLCC)不仅尺寸小,而且将低ESR、低ESL和宽工作温度范围特性融于一体,可以说是旁路电容的首选。不过,这类电容也并非完美无缺。根据电介质材料不同,电容值会随着温度、直流偏置和交流信号电压动态变化。另外,电介质材料的压电特性可将振动或机械冲击转换为交流噪声电压。大多数情况下,此类噪声往往以微伏计,但在极端情况下,机械力可以产生毫伏级噪声。   电压控制振荡器(VCO)、锁相环(PLL)、RF功率放大器(PA)和其他模拟电路都对供电轨上的噪声非常敏感。在VCO和PLL中,此类噪声表现为相位噪声;在RF PA中,表现为幅度调制;而在超声、CT扫描以及处理低电平模拟信号的其他应用中,则表现为显示伪像。尽管陶瓷电容存在上述缺陷,但由于尺寸小且成本低,因此几乎在每种电子器件中都会用到。不过,当调节器用在噪声敏感的应用中时,设计人员必须仔细评估这些副作用。    固态钽电解电容   与陶瓷电容相比,固态钽电容对温度、偏置和振动效应的敏感度相对较低。新兴一种固态钽电容采用导电聚合物电解质,而非常见的二氧化锰电解质,其浪涌电流能力有所提高,而且无须电流限制电阻。此项技术的另一好处是ESR更低。固态钽电容的电容值可以相对于温度和偏置电压保持稳定,因此选择标准仅包括容差、工作温度范围内的降压情况以及最大ESR。   导电聚合物钽电容具有低ESR特性,成本高于陶瓷电容而且体积也略大,但对于不能忍受压电效应噪声的应用而言可能是唯一选择。不过,钽电容的漏电流要远远大于等值陶瓷电容,因此不适合一些低电流应用。   固态聚合物电解质技术的缺点是此类钽电容对无铅焊接过程中的高温更为敏感,因此制造商通常会规定电容在焊接时不得超过3个焊接周期。组装过程中若忽视此项要求,则可能导致长期稳定性问题。    铝电解电容   传统的铝电解电容往往体积较大、ESR和ESL较高、漏电流相对较高且使用寿命有限(以数千小时计)。而OS-CON电容则采用有机半导体电解质和铝箔阴极,以实现较低的ESR。这类电容虽然与固态聚合物钽电容相关,但实际上要比钽电容早10年或更久。由于不存在液态电解质逐渐变干的问题,OS-CON型电容的使用寿命要比传统的铝电解电容长。大多数电容的工作温度上限为105℃,但现在OS-CON型电容可以在最高125℃的温度范围内工作。   虽然OS-CON型电容的性能要优于传统的铝电解电容,但是与陶瓷电容或固态聚合物钽电容相比,往往体积更大且ESR更高。与固态聚合物钽电容一样,这类电容不受压电效应影响,因此适合低噪声应用。    为LDO电路选择电容    1 输出电容   低压差调节器(LDO)可以与节省空间的小型陶瓷电容配合使用,但前提是这些电容具有低等效串联电阻(ESR);输出电容的ESR会影响LDO控制环路的稳定性。为确保稳定性,建议采用至少1μF且ESR最大为1Ω的电容。   输出电容还会影响调节器对负载电流变化的响应。控制环路的大信号带宽有限,因此输出电容必须提供快速瞬变所需的大多数负载电流。当负载电流以500mA/μs的速率从1mA变为200mA时,1μF电容无法提供足够的电流,因而产生大约80mV的负载瞬态,如图1所示。当电容增加到10μF时,负载瞬态会降至约70mV,如图2所示。当输出电容再次增加并达到20μF时,调节器控制环路可进行跟踪,主动降低负载瞬态,如图3所示。这些示例都采用线性调节器ADP151,其输入和输出电压分别为5V和3.3V。 图1  瞬态响应(COUT=1μF) 图2 瞬态响应(COUT=10μF) 图3 瞬态响应(COUT=20μF)    2 输入旁路电容   在VIN和GND之间连接一个1μF电容可以降低电路对PCB布局的敏感性,特别是在长输入走线或高信号源阻抗的情况下。如果输出端上要求使用1μF以上的电容,则应增加输入电容,使之与输出电容匹配。    3 输入和输出电容特性   输入和输出电容必须满足预期工作温度和工作电压下的最小电容要求。陶瓷电容可采用各种各样的电介质制造,温度和电压不同,其特性也不相同。对于5V应用,建议采用电压额定值为6.3~10V的X5R或X7R电介质。Y5V和Z5U电介质的温度和直流偏置特性不佳,因此不适合与LDO一起使用。   图4所示为采用0402封装的1μF、10V X5R电容与偏置电压之间的关系。电容的封装尺寸和电压额定值对其电压稳定性影响极大。一般而言,封装尺寸越大或电压额定值越高,电压稳定性也就越好。X5R电介质的温度变化率在-40~+85℃温度范围内为±15%,与封装或电压额定值没有函数关系。 图4 电容与电压的特性关系   要确定温度、元件容差和电压范围内的最差情况下电容,可用温度变化率和容差来调整标称电容,见公式1。 CEFF=CBIAS×(1-TVAR)×(1-TOL)                        (1)   其中,CBIAS是工作电压下的标称电容;TVAR是温度范围内最差情况下的电容变化率(百分率);TOL是最差情况下的元件容差(百分率)。   本例中,X5R电介质在–40~+85℃范围内的TVAR为15%;TOL为10%;CBIAS在1.8 V时为0.94μF,如图4所示。将这些值代入公式1,即可得出: CEFF=0.94μF×(1-0.15)×(1-0.1)=0.719μF   在工作电压和温度范围内,ADP151的最小输出旁路电容额定值为0.70μF,因而此电容符合该项要求。
  • 热度 10
    2014-1-22 21:13
    891 次阅读|
    0 个评论
          在电子电路中,去耦电容和 旁路电容 都是起到抗干扰的作用,电容所处的位置不同,称呼就不一样了。 对于同一个电路来说,旁路(bypass)电容是把输入信号中的高频噪声作为滤除对象,把前级携带的高频杂波滤除; 而去耦(decoupling)电容也称退耦电容,是把输出信号的干扰作为滤除对象。 去耦电容用在放大电路中不需要交流的地方,用来消除自激,使放大器稳定工作。 从电路来说,总是存在驱动电源和被驱动的负载。如果负载电容比较大,驱动电路要把电容充电、放电,才能完成信号的跳变;在上升沿比较陡峭的时候,电流比较大,这样驱动的电流就会吸收很大的电源电流,由于电路中的 电感 ,电阻(特别是芯片管脚上的电感,会产生反弹),这种电流相对于正常情况来说实际上就是一种噪声,会影响前级的正常工作。这就是耦合。 去耦电容就是起到一个电池的作用,满足 驱动电路 电流的变化,避免相互间的耦合干扰。 去耦和旁路都可以看作滤波。 去耦电容相当于电池,避免由于电流的突变而使电压下降,相当于滤纹波。具体容值可以根据电流的大小、期望的纹波大小、作用时间的大小来计算。 去耦电容一般都很大,对更高频率的噪声,基本无效。 旁路电容就是针对高频来的,也就是利用了电容的频率阻抗特性。 芯片附近的电容还有蓄能的作用。 去耦电容在集成电路电源和地之间有两个作用:一方面是本集成电路的蓄能电容,另一方面旁路掉该器件的高频噪声。 数字电路中典型的去耦电容值是0.1μF。 去耦电容的选用并不严格,其电容值可按C=1/F来计算,即10MHz取0.1μF,100MHz取0.01μF。
相关资源
  • 所需E币: 0
    时间: 2020-12-22 16:02
    大小: 347.94KB
    上传者: samewell
    ADI_低压差调节器—为什么选择旁路电容很重要
  • 所需E币: 0
    时间: 2020-12-22 16:25
    大小: 429.69KB
    上传者: samewell
    旁路电容和耦合电容:以正确的方式稳定电压
  • 所需E币: 0
    时间: 2020-9-26 01:50
    大小: 1.27MB
    上传者: LGWU1995
    带内部旁路电容的数据采集μModule器件的PSRR特性表征
  • 所需E币: 0
    时间: 2020-9-26 01:53
    大小: 221.54KB
    上传者: LGWU1995
    电路中的旁路电容的原理及其应用技巧-电源管理
  • 所需E币: 2
    时间: 2020-6-19 22:35
    大小: 363.83KB
    上传者: Goodluck2020
    低压差调节器—为什么选择旁路电容很重要.pdf
  • 所需E币: 5
    时间: 2020-6-18 21:04
    大小: 528.61KB
    上传者: samewell
    旁路电容和耦合电容:以正确的方式稳定电压.pdf
  • 所需E币: 5
    时间: 2019-12-28 20:05
    大小: 1.48MB
    上传者: givh79_163.com
    IC旁路电容的选择策略-低电压・大电流电路的关键点-本文针对逐步趋向低电压,大电流,高速化(高频)方向发展的设备应如何选择应用元器件向您作一些介绍。主要是针对电源线的噪音对策和负荷应答特性的提高,在向您介绍电容基础内容的同时,分3个阶段向您展开相关内容。2……
  • 所需E币: 5
    时间: 2019-12-28 21:20
    大小: 1.22MB
    上传者: 238112554_qq
    IC附近旁路电容的选择策略……
  • 所需E币: 4
    时间: 2019-12-28 21:54
    大小: 344KB
    上传者: 二不过三
    旁路电容是关注度低、没有什么魅力的元器件,一般来说,在许多专题特写中不把它作为主题,但是,它对于成功、可靠和无差错的设计是关键。来自Intersil公司的作者DavidRitter和TamaraSchmitz参加了关于该主题的进一步对话。本文是对话的第三部分。Dave和Tamara信仰辩论的价值、教育的价值以及谦虚地深入讨论核心问题的价值;简而言之,为了获取知识而展开对一个问题的讨论。作者:DavidRitter,TamaraSchmitz应用工程师Intersil公司继续关于排版的讨论通过一次关于基本知识的对话,让我们深入考察那没有什么魅力但是极其关键的旁路电容和去耦电容。编辑引言:旁路电容是关注度低、没有什么魅力的元器件,一般来说,在许多专题特写中不把它作为主题,但是,它对于成功、可靠和无差错的设计是关键。来自Intersil公司的作者DavidRitter和TamaraSchmitz参加了关于该主题的进一步对话。本文是对话的第三部分。Dave和Tamara信仰辩论的价值、教育的价值以及谦虚地深入讨论核心问题的价值;简而言之,为了获取知识而展开对一个问题的讨论。下面是,第三部分的对话,请“聆听”并学习。(Tamara博士拿着一袋发着沙沙响声的书进入她的办公室,当Dave从旁边走过时她把那袋书扔在了桌子上。)Dave:嗨,Tamara:博士,你往那里扔什么?Tamara:那是我们的读者邮件。Dave:我们收到邮件?你的意思是喜欢“来自新泽西FortLee的RichardFader写道:这就是我听说的关于电容器的一切抱怨吗?”之类的邮件?Tamara:是的,就是那样的信件。Dave:关于电容器以及排版吗?Tamara:当然!这是一封来自Kyle(所有读者的姓名被改变,以保护他们隐私)。在高幅度射频场中,他惯常于把电容器级联起来以旁路他的电路。Dave:正如我们所说的,有时候你需要这么做,但是,许多时间你不需要这么做。Tamara:他也问到了耦合电容。看来他们在耦合电容上遇到的问题不如在旁路电容上遇到的问题大。Dave:是的,我已经注意到了那个问题,但是,一些人担心采用大的耦合电容,因为它太慢。我认为,他们的思路不正确。Tamara:在今后……
  • 所需E币: 4
    时间: 2019-12-28 21:56
    大小: 87KB
    上传者: 2iot
    相当有意义的一份旁路电容的说明,详细的介绍了旁路电容的模型,以及简要的举例!关于旁路电容的深度对话(第一部分)通过一次关于基本知识的对话,让我们深入考察那没有什么魅力但是极其关键的旁路电容和去耦电容。编辑引言:旁路电容是关注度低、没有什么魅力的元器件,一般来说,在许多专题特写中不把它作为主题,但是,它对于成功、可靠和无差错的设计是关键。来自Intersil公司的作者DavidRitter和TamaraSchmitz参加了关于该主题的进一步对话。本文是对话的第一部分。Dave和Tamara信仰辩论的价值、教育的价值以及谦虚地深入讨论核心问题的价值;简而言之,为了获取知识而展开对一个问题的讨论。下面请“聆听”并学习。David:有一种观念认为,当我们做旁路设计时,我们对低频成分要采用大电容(微法级),而对高频成分要采用小电容(纳法或皮法级)。Tamara:我赞成,那有什么错吗?David:那听起来很好并且是有意义的,但是,问题在于当我在实验室中验证那个规则时并未得到我们想要的结果!我要向您发出挑战,Tamara博士。Tamara:好啊!我无所畏惧。David:让我们看看,你有一个电压调整器并且它需要电源。电源线具有一些串联阻抗(通常是电感以及电阻),这样对于短路来说,它在瞬间提供的电流就不会出现大变化。它需要有一个局部电容供电,如图1所示。[pic]图1:旁路电容的功能。Tamara:我到目前均赞成你的观点。那就是旁路的定义。Dave,接着说吧。David:例如,有些人可能用0.1μF电容进行旁路。他们也可能用一个1000pF的电容紧挨着它以处理更高的频率。如果我们已经采用了一个0.1μF的电容,那么,紧挨着它加一个1000pF电容就没有意义。它会增加1%……
  • 所需E币: 3
    时间: 2019-12-28 21:55
    大小: 1.57MB
    上传者: rdg1993
    旁路电容是关注度低、没有什么魅力的元器件,但是,它对于成功、可靠和无差错的设计是关键。关于旁路电容的深度对话(第二部分)作者:DavidRitter,TamaraSchmitz应用工程师Intersil公司通过一次关于基本知识的对话,让我们深入考察那没有什么魅力但是极其关键的旁路电容和去耦电容。编辑引言:旁路电容是关注度低、没有什么魅力的元器件,一般来说,在许多专题特写中不把它作为主题,但是,它对于成功、可靠和无差错的设计是关键。来自Intersil公司的作者DavidRitter和TamaraSchmitz参加了关于该主题的进一步对话。本文是对话的第二部分。Dave和Tamara信仰辩论的价值、教育的价值以及谦虚地深入讨论核心问题的价值;简而言之,为了获取知识而展开对一个问题的讨论。下面请“聆听”并学习。Tamara:我们上次关于旁路电容的对话很好,但是,我认为这个话题没有结束。我们假设电容的低边有一块完美的接地层可用。然而,在一半的情况下,这并不是有效的假设。David:我听您说,博士。那天一位同事向我展示了他的最新的板子。“我用的是四层板,完整的接地层,”他真诚地说,“没有问题呀。”我没有把握他说的是否正确。Tamara:是的,接地层大有帮助,如果你使用正确的话。David:正如我们所说的,旁路电容应该尽可能近地放在电源的旁边。我们假设读者知道把电容的另一边连接至良好的接地层。Tamara:可是,让我们确切一点说。你说的“良好的接地”或“良好的接地层”是什么意思?David:啊,接地应该是0V。Tamara:然而,它真是真正的零伏吗?David:不,当然不是。总是存在一些阻抗,总是存在一些引起电压降的电流。Tamara……
  • 所需E币: 4
    时间: 2019-12-28 21:55
    大小: 1.57MB
    上传者: 微风DS
    旁路电容是关注度低、没有什么魅力的元器件,但是,它对于成功、可靠和无差错的设计是关键。关于旁路电容的深度对话(第二部分)作者:DavidRitter,TamaraSchmitz应用工程师Intersil公司通过一次关于基本知识的对话,让我们深入考察那没有什么魅力但是极其关键的旁路电容和去耦电容。编辑引言:旁路电容是关注度低、没有什么魅力的元器件,一般来说,在许多专题特写中不把它作为主题,但是,它对于成功、可靠和无差错的设计是关键。来自Intersil公司的作者DavidRitter和TamaraSchmitz参加了关于该主题的进一步对话。本文是对话的第二部分。Dave和Tamara信仰辩论的价值、教育的价值以及谦虚地深入讨论核心问题的价值;简而言之,为了获取知识而展开对一个问题的讨论。下面请“聆听”并学习。Tamara:我们上次关于旁路电容的对话很好,但是,我认为这个话题没有结束。我们假设电容的低边有一块完美的接地层可用。然而,在一半的情况下,这并不是有效的假设。David:我听您说,博士。那天一位同事向我展示了他的最新的板子。“我用的是四层板,完整的接地层,”他真诚地说,“没有问题呀。”我没有把握他说的是否正确。Tamara:是的,接地层大有帮助,如果你使用正确的话。David:正如我们所说的,旁路电容应该尽可能近地放在电源的旁边。我们假设读者知道把电容的另一边连接至良好的接地层。Tamara:可是,让我们确切一点说。你说的“良好的接地”或“良好的接地层”是什么意思?David:啊,接地应该是0V。Tamara:然而,它真是真正的零伏吗?David:不,当然不是。总是存在一些阻抗,总是存在一些引起电压降的电流。Tamara……
  • 所需E币: 4
    时间: 2019-12-28 21:57
    大小: 330.59KB
    上传者: 微风DS
    用陶瓷输出电容提高LDO稳压器的稳定性LDOAN1482ChesterāSimpsonLDO20065ǖāāESRVOUT=VREF(1+R1/R2)LDOLDOESRāāLDOP……
  • 所需E币: 4
    时间: 2019-12-28 21:58
    大小: 512.53KB
    上传者: rdg1993
    电源完整性理论基础www.pcbtech.net仅供中国PCB技术网转载电源完整性理论基础-------阿鸣随着PCB设计复杂度的逐步提高,对于信号完整性的分析除了反射,串扰以及EMI之外,稳定可靠的电源供应也成为设计者们重点研究的方向之一。尤其当开关器件数目不断增加,核心电压不断减小的时候,电源的波动往往会给系统带来致命的影响,于是人们提出了新的名词:电源完整性,简称PI(powerintegrity)。其实,PI和SI是紧密联系在一起的,只是以往的EDA仿真工具在进行信号完整性分析时,一般都是简单地假设电源绝对处于稳定状态,但随着系统设计对仿真精度的要求不断提高,这种假设显然是越来越不能被接受的,于是PI的研究分析也应运而生。从广义上说,PI是属于SI研究范畴之内的,而新一代的信号完整性仿真必须建立在可靠的电源完整性基础之上。虽然电源完整性主要是讨论电源供给的稳定性问题,但由于地在实际系统中总是和电源密不可分,通常把如何减少地平面的噪声也作为电源完整性中的一部分进行讨论。一.电源噪声的起因及危害造成电源不稳定的根源主要在于两个方面:一是器件高速开关状态下,瞬态的交变电流过大;二是电流回路上存在的电感。从表现形式上来看又可以分为三类:同步开关噪声(SSN),有时被称为Δi噪声,地弹(Groundbounce)现象也可归于此类(图1-a);非理想电源阻抗影响(图1-b);……
  • 所需E币: 3
    时间: 2020-1-2 01:41
    大小: 3.55MB
    上传者: 978461154_qq
    旁路电容的使用和选择旁路电容的使用和选择应用指南2007年8月3日AN1325.0作者:TamaraSchmitz、MikeWong简介.旁路电容常见于电子设备的功能电路。大多数工程师都知道要对系统、电路甚至每个芯片进行旁路。很多时候我们选择旁路电容是根据过往的设计经验而没有针对具体电路进行优化。本应用指南旨在对看似简单的旁路电容的设计思路进行探讨。在分析为什么要使用旁路电容之后,我们会介绍有关电容基础知识、等效电路、电介质所用材料和电容类型。接下来对旁路电容的主要功能和使用场合进行区分。与仅工作在高频的电路不同,会产生大尖峰电流的电路有不同的旁路需求。另外还会讨论一些有针对性的问题,如,运用多个旁路电容以及电路板布局的重要性。最后,我们给出了四个具体的示例。这四个例子涉及图2.示波器所观察到的同相放大器直流电源引脚的波形了高、低电流和高、低频率。……
  • 所需E币: 3
    时间: 2020-1-4 23:25
    大小: 67.11KB
    上传者: 16245458_qq.com
    高速设计中的旁路电容……
  • 所需E币: 3
    时间: 2020-1-6 11:59
    大小: 334.86KB
    上传者: 238112554_qq
    十说电容电子元件技术网十说电容ic网话说电容之一:电容的作用mcoon术作为无源元件之一的电容,其作用不外乎以下几种:s.tr技1、应用于电源电路,实现旁路、去藕、滤波和储能的作用。下面分类详述之:cn件1)旁路旁路电容是为本地器件提供能量的储能器件,它能使稳压器的输出均匀化,降低负载需求。就像小型可充电电池一样,旁路电容能够被充电,并向器件进w.元行放电。为尽量减少阻抗,旁路电容要尽量靠近负载器件的供电电源管脚和地管脚。这能够很好地防止输入值过大而导致的地电位抬高和噪声。地弹是地连接处在通过大电流毛刺时的电压降。ww子2)去藕电去藕,又称解藕。从电路来说,总是可以区分为驱动的源和被驱动的负载。如果负载电容比较大,驱动电路要把电容充电、放电,才能完成信号的跳变,在上升沿比较陡峭的时候,电流比较大,这样驱动的电流就会吸收很大的电源电流,由于电路中的电感,电阻(特别是芯片管脚上的电感,会产生反弹),这种电流相对于正常情况来说实际上就是一种噪声,会影响前级的正常工作,这就是所谓的“耦合”。去藕电容就是起到一个“电池”的作用,满足驱动电路电流的变化,避免相互间的耦合干扰。将旁路电容和去藕电容结合起来将更容易理解。旁路电容实际也是去藕合的,只是旁路电容一般是指……