tag 标签: 小型化

相关博文
  • 热度 21
    2014-7-18 09:04
    1416 次阅读|
    0 个评论
    介绍了一种新颖的小型化射频收发前端设计方法,采用这种方法在LTCC基片上实现了一款L波段双频段射频收发前端,其电路尺寸仅为6.5 mm × 5mm × 0.5mm。样品测试结果表明,该射频收发前端的各项性能指标均达到了设计预期要求,并且具有接收损耗低、收发隔离度高等优点。文章分工作原理介绍、详细电路设计、三维结构实现、参数仿真优化几个方面对整个设计过程进行了较为详细的讲解,最后结合测试曲线对样品的测试结果作了简单分析。 随着现代无线通讯技术的发展,射频微波器件和功能模块的小型化需求日益迫切。本文介绍的L波段收发射频前端采用LTCC工艺,利用无源电路的三维叠层结构,大大缩小了电路尺寸。在电路设计上,使用单节λ/4短截线收发开关电路,既保证了高收发隔离和低损耗接收的电路性能,又比传统的并联式开关电路节省了一节λ/4短截线占据的空间,缩小了电路尺寸。 1 工作原理 本文介绍的收发前端包括一个900MHz与1800MHz双工器、两路PIN 管收发开关和两个声表面滤波器,电路原理如图1。 图1射频收发前端原理图 【分页导航】 第1页: 工作原理 第2页: 电路设计:开关电路设计 第3页: 电路设计:双工器设计 第4页: 三维结构实现/实验结果 2 电路设计 2.1 开关电路设计 射频微波电路中经常使用PIN二极管作开关器件。其结构像三明治一样,在高掺杂的P+和N+层之间夹有一本征的I层或低掺杂半导体中间附加层。设I层厚度为W,在正向偏压下,对于轻掺杂N型本征层,流过PIN二极管的电流为: 由上面的公式导出的结电阻和扩散电容可以在实际应用中很近似地模拟PIN二极管的性能。PIN管在正偏压下等效为结电阻Rs(本文中正偏压为2.5V,Rs约1欧姆);反偏压卜等效为扩散电容CT(本文中为零偏,CT约0.5PF,在2GHz以下阻抗为千欧级)。 λ/4短截线常用于窄带内两个网络之间的阻抗匹配。设Z 1 、Z 2 为两个不等的阻抗,Z 0 为传输线的特征阻抗,调整Z 0 使之满足: Z 2 0 =Z 1 ×Z 2 (4) 则两个阻抗之间实现了匹配。图1中,Z 0 已知(50欧),Z 1 为PIN 管正偏时的自谐振阻抗Rs或反偏时的开路隔离阻抗。当PIN管正偏置时,Z 1 很小接近于短路,经过λ/4短截线后在公共端口等效为开路,接收端被隔离,发射支路工作。当二极管反偏置时Z 1 接近开路状态(C T ),发射端被隔离,保证低损耗接收。 【分页导航】 第1页: 工作原理 第2页: 电路设计:开关电路设计 第3页: 电路设计:双工器设计 第4页: 三维结构实现/实验结果 2.2 双工器设计 由图1可见,天线接收发射的信号都要经过一个双工器,该双工器的主要功能是隔离GSM900频段与DCS1800频段信号。本文介绍的是一个GSM 手机前端,GSM 频段上下行频率范围为890-915MHz(TX)和935-960MHz(RX),DCS频段上下行频率范围为1710-1785 MHz(Tx)和1805-l880MHz(Rx)。图2为双工器的电路结构。 图2 双工器电路图 如图2,在天线和GSM端口之间是一个低通滤波器,其截止频率在1000MHz左右,C1和L1组成并联谐振产生传输零点,我们设计其谐振点在1800MHz左右,用来抑制DCS频段信号,同时又可增加对GSM 频段二次谐波的抑制。 同时,在DCS端口天线之间是一个高通滤波器,C 5 和L 2 、L 3 和C 6 同时产生串联谐振,谐振频率在900MHz左右,用来抑制GSM频段信号。 按照同样方法可完成发射端口低通滤波器设计。最后利用ansof公司的电路仿真软件designer对收发前端模块进行整体电路仿真,优化参数,得到准确的电路模型。 【分页导航】 第1页: 工作原理 第2页: 电路设计:开关电路设计 第3页: 电路设计:双工器设计 第4页: 三维结构实现/实验结果 3 三维结构实现 电路仿真优化设计完成之后,对合适的无源元件在电磁仿真软件Q3D中建模,优化其C、L值,然后导入HFSS中整体仿真优化S参数。对于一些取值较大的元件如扼流线圈和限流电阻,由于模块基板尺寸和材料介电常数的限制,采用LTCC难以实现,将其和非线性元件PIN二极管、声表面波滤波器(SAW)一起表贴在基板上。对于λ/4短截线,由于每层的平面空间有限,采用多层螺旋线来实现,既可以节约空间又可以利用其产生电容来等效缩短λ/4传输线的长度。 4 实验结果 将最终加工得到的模块实物焊接在测试夹具上进行测试,两个频段的接收插损均小于1.9dB(通带内波动小于0.5dB),两个频段收发隔离均大于25dBc。 5 结语 本文介绍了一款小型化L波段射频收发前端模块的设计过程,从电路设计、三维建模、仿真优化、测试结果分析几个方面进行了较为详细的讲解。其中使用的单节λ/4短截线收发开关电路既有效地降低了接收损耗、改善了收发隔离,又缩小了电路尺寸,值得借鉴。 【分页导航】 第1页: 工作原理 第2页: 电路设计:开关电路设计 第3页: 电路设计:双工器设计 第4页: 三维结构实现/实验结果
  • 热度 15
    2014-7-6 07:27
    913 次阅读|
    0 个评论
    1 前言 电源是一切电子设备的心脏部分,其质量的好坏直接影响电子设备的可靠性。目前各种高效便携式电子产品发展趋于小型化,要求供电系统体积更小、重量更轻、效率更高。目前DC-DC转换器普遍应用于电池供电的设备和要求省电的紧凑型电子设备中。应用DC-DC转换器的目的是进行电压转换,给一些器件提供合适的工作电压,保证有较高的系统效率和较小的体积。 POWER INTEGRATION(PI)公司推出的DPA Switch系列高电压DC-DC转换电路,将功率MOSFET、PWM控制器、故障保护及其他控制电路高效集成在一个单片CMOS芯片上,大大减少了电源的器件数目,降低了成本,减小了开关电源的体积和重量,简化了设计,缩短了研制生产周期,可以通过对引脚不同的配置实现高性能的设计。它同时还具备迟滞热关断的保护特性,提高了开关电源的效率和可靠性。此外,所有关键参数(比如限流点、频率、PWM增益)都具有严格的温度及绝对容差,从而简化了设计并降低了系统成本。本文以DPA422主控芯片设计了双路输出DC/DC变换器,其全部元器件约40个。 2 DPA-Switch单片开关电源 图1是DPA-Switch的内部结构框图,主要由高压电流源、5.8 V并联调整器、软启动电路、内部欠压比较器、电流限制调整电路、电流限制比较器、输入线欠压和过压检测电路、振荡器、过温保护电路、前沿消隐、功率MOSFET等模块构成。其引脚功能见下: (1)漏极DRAIN(D)引脚 这一引脚是高压功率MOSFET的漏极输出点。此引脚经过一个开关的高压电流源给芯片内部提供开机偏置电流。同时该引脚也是漏极电流的限流点检测点。 (2)控制CONTROL(C)引脚 误差放大器及用来控制占空比的反馈电流的输入引脚。内部分流稳压电路连接节点。在正常工作时提供内部偏置电流。同时,它也用来连接供电去耦及自动重启动/补偿的电容。 (3)线电压检测LINE-SENSE(L)引脚 过压(OV)、欠压(UV)锁存、降低DCMAX的线电压前馈、远程开/关和同步时使用的输入引脚。连接至源极引脚则禁用此引脚的所有功能。 (4)外部流限设定EXTERNAL CURRENTLIMIT(X)引脚 外部流限调节和远程开/关控制引脚。连接至源极引脚则禁用此引脚的所有功能。 (5)频率FREQUENCY(F)引脚 选择开关频率的输入引脚,如果连接到源极引脚则开关频率为400 kHz,连接到控制引脚则开关频率为300 kHz。 (6)源极SOURCE(S)引脚 此引脚是输出MOSFET的源极连接点,用于功率返回端。它也是初级控制电路的公共点及参考点。 图1 功能结构框图 3 应用DPA422的开关电源设计 3.1 电路原理图 图2所示的电路为使用DPA422的双路输出反激式转换器原理图。对于输入输出要求隔离的应用,此设计简单、元件数目少,工作频率高,高频开关变压器尺寸小,因此该变换器设计大小为31 mm×32 mm(样机见图3),实现小型化设计。在22~32 V的直流输入电压范围内,此设计可输出±5 V、2.5 W的功率,在27 V输入时的效率大于75%。电阻R1、R2确定了输入欠压及过压的保护阈值,分别为20 V和56 V。初级侧的稳压箝位二极管VR1可以确保在输入浪涌及过压情况下U1峰值漏极电压低于220 V BVDSS的额定值。初级偏置绕组在启动后给控制引脚提供电流。二极管D2对偏置绕组电压进行整流,而C6用于减低高频开关噪声的影响,防止偏置电压的峰值充电发生。电容C2给U1提供去耦,因此要尽可能靠近控制引脚和源极引脚来放置。C3完成开机时能量的存储及自动重启动的定时。滤波电感L3为输入提供一定的滤波作用。 图2 开关电源的原理图 以+5 V输出作为主路输出,次级+5 V由肖特基二极管D4整流,-5 V由肖特基二极管D3整流,经低ESR的钽电容C7~C10滤波,从而降低开关纹波并使效率最大化。使用一个很小的次级输出电感L1、L2和陶瓷输出电容C13/C14就足以在满载时将峰峰值的高频噪音及纹波抑制到小于30 mV以下。输出电压+5 V由R8和R9构成的电压分压器进行检测,连接至2.5 V的电压参考U3。反馈补偿由R6、R7、R10、C11、C3和R3完成。电容C15作为软启动结束电容,防止开机期间输出端出现过冲。由R5、C5以及R4、C4组成的RC网络为吸收电路。为保证输出电压调整率,输出电压-5 V在输出整流后增加三端稳压管79L05(因尺寸要求,这里使用79L05,为保证效率,可选用其他DC/DC转换电路)。 3.2 高频变压器设计 高频变压器设计是电源设计的关键,可利用PIExpert专用软件实现,也可根据反激式变压器设计方法进行设计。该设计中选择开关频率为400 kHz,目的是减小变压器体积,使整个电源小型化。 下面是变压器初级绕组设计参数: 最大占空比:D max =0.65; 初级峰值电流: 传输功率: 初级电感量: 取L1=98 μH,峰值电流为I P =0.36 A。 初次级匝比: 下面是变压器次级绕组设计参数: 次级绕组峰值电流: 次级绕组整流管最高反向峰值电压: 反馈绕组整流管最高反向峰值电压: 次级绕组匝数: 反馈绕组匝数: U F1 :次级绕组肖特基整流管正向压降; U F2 :反馈电路中高速开关整流管正向压降; U DS(ON) :开关管导通电压。 另外,-5 V在本设计中输出因有79L05,故考虑其最小压差2.5 V,该路输出的绕组电压考虑7.5 V。在空间允许的情况下可采用非隔离DC/DC电路进行稳压,可适当增加其效率。 下面是变压器选择设计参数: 视在功率: P T =P 0 +P 0 /η(η取0.98) 面积乘积: K W :变压器窗口系数,一般取0.3; J:电流密度,取5 A/mm 2 ; K f :波形系数,取4; 则A P =0.005 cm 4 。 根据A P 查磁芯手册,磁芯选择EPC13(3F3材料)。 原边匝数: 因n=5,取N s1 (+5 V)为6匝,于是N p =N s1 ·n=30,N s2 (-5 V)=9,反馈绕组匝数:N F =14。 为了避免磁芯饱和,在磁回路中加入一个适当的气隙,计算如下: 在选择绕组线径时,考虑趋肤效应和临近效应,反馈绕组采用#31AWG线双线并绕。绕线长度尽可能短,为减小损耗,尽可能减小变压器的漏感,原边绕组和负边绕组采用间绕方式。在变压器的绕制中注意两点:(1)将变压器的原边绕组放在骨架的最内层,可减少原边线圈的平均每匝长度,从而减少原边绕组的杂散电容。同时,由于原边绕组在变压器的最内层,可以被变压器的其他绕组所屏蔽,从而减少变压器与其他邻近元件的噪声耦合。(2)将辅助供电绕组放在变压器的最外层,可增强该绕组与其他副边绕组的耦合而减弱与原边绕组的耦合。由于增强了与副边绕组的耦合,辅助供电绕组上的电压可以更准确地跟随输出电压变化。同时由于减弱了与原边绕组的耦合,可减少由于初级漏感尖峰而引起的偏置绕组电压尖峰。这两方面都增强了输出电压调节性能。 3.3 输出LC滤波器的选择 由输出电感和输出电容所组成的滤波器,在滤波器谐振频率点处的环路响应上具有两个极点。由于滤波器为损耗相当低的谐振电路,因而在接近谐振频率点处的增益和相位的变化相当突然。因此,用于调整环路响应的极点和零点应避开该频率区域或者对此谐振加以补偿。适当地选择输出滤波器的谐振频率点可以降低反馈环路设计的复杂性。谐振频率点的位置应允许设计者采用有限数目且数值合理的补偿元件来调整得到所需要的响应特性。输出电容的ESR具有一个零点,可以对滤波器的一个极点进行补偿。但是,对于低ESR的钽电解电容,通常其零点所对应的频率过高,在所希望的环路带宽内不能够充分地抵消滤波器的影响。在某些可以使用标准低ESR电解电容的情况下,较高的ESR使得ESR零点位于足够低的频率点上,从而增加了有效的附加相位裕量。 输出滤波电容为足够多的电容并联在一起使用最为合理。 4 实验结果 笔者通过对以上设计数据进行优化和微调,研制出符合设计要求的样机(如图3),常温条件下测试结果见表1。 图3 样机照片 表1 样机测试结果 最后对开关电源进行了高低温实验,分别在-45 ℃和85 ℃的条件下考核,实验结果表明该电源可以在-45~85 ℃条件下正常工作,达到了设计要求,表明该电源运行可靠,输出稳定。
  • 热度 16
    2014-6-29 10:30
    966 次阅读|
    0 个评论
    1 前言 电源是一切电子设备的心脏部分,其质量的好坏直接影响电子设备的可靠性。目前各种高效便携式电子产品发展趋于小型化,要求供电系统体积更小、重量更轻、效率更高。目前DC-DC转换器普遍应用于电池供电的设备和要求省电的紧凑型电子设备中。应用DC-DC转换器的目的是进行电压转换,给一些器件提供合适的工作电压,保证有较高的系统效率和较小的体积。 POWER INTEGRATION(PI)公司推出的DPA Switch系列高电压DC-DC转换电路,将功率MOSFET、PWM控制器、故障保护及其他控制电路高效集成在一个单片CMOS芯片上,大大减少了电源的器件数目,降低了成本,减小了开关电源的体积和重量,简化了设计,缩短了研制生产周期,可以通过对引脚不同的配置实现高性能的设计。它同时还具备迟滞热关断的保护特性,提高了开关电源的效率和可靠性。此外,所有关键参数(比如限流点、频率、PWM增益)都具有严格的温度及绝对容差,从而简化了设计并降低了系统成本。本文以DPA422主控芯片设计了双路输出DC/DC变换器,其全部元器件约40个。 2 DPA-Switch单片开关电源 图1是DPA-Switch的内部结构框图,主要由高压电流源、5.8 V并联调整器、软启动电路、内部欠压比较器、电流限制调整电路、电流限制比较器、输入线欠压和过压检测电路、振荡器、过温保护电路、前沿消隐、功率MOSFET等模块构成。其引脚功能见下: (1)漏极DRAIN(D)引脚 这一引脚是高压功率MOSFET的漏极输出点。此引脚经过一个开关的高压电流源给芯片内部提供开机偏置电流。同时该引脚也是漏极电流的限流点检测点。 (2)控制CONTROL(C)引脚 误差放大器及用来控制占空比的反馈电流的输入引脚。内部分流稳压电路连接节点。在正常工作时提供内部偏置电流。同时,它也用来连接供电去耦及自动重启动/补偿的电容。 (3)线电压检测LINE-SENSE(L)引脚 过压(OV)、欠压(UV)锁存、降低DCMAX的线电压前馈、远程开/关和同步时使用的输入引脚。连接至源极引脚则禁用此引脚的所有功能。 (4)外部流限设定EXTERNAL CURRENTLIMIT(X)引脚 外部流限调节和远程开/关控制引脚。连接至源极引脚则禁用此引脚的所有功能。 (5)频率FREQUENCY(F)引脚 选择开关频率的输入引脚,如果连接到源极引脚则开关频率为400 kHz,连接到控制引脚则开关频率为300 kHz。 (6)源极SOURCE(S)引脚 此引脚是输出MOSFET的源极连接点,用于功率返回端。它也是初级控制电路的公共点及参考点。 图1 功能结构框图 3 应用DPA422的开关电源设计 3.1 电路原理图 图2所示的电路为使用DPA422的双路输出反激式转换器原理图。对于输入输出要求隔离的应用,此设计简单、元件数目少,工作频率高,高频开关变压器尺寸小,因此该变换器设计大小为31 mm×32 mm(样机见图3),实现小型化设计。在22~32 V的直流输入电压范围内,此设计可输出±5 V、2.5 W的功率,在27 V输入时的效率大于75%。电阻R1、R2确定了输入欠压及过压的保护阈值,分别为20 V和56 V。初级侧的稳压箝位二极管VR1可以确保在输入浪涌及过压情况下U1峰值漏极电压低于220 V BVDSS的额定值。初级偏置绕组在启动后给控制引脚提供电流。二极管D2对偏置绕组电压进行整流,而C6用于减低高频开关噪声的影响,防止偏置电压的峰值充电发生。电容C2给U1提供去耦,因此要尽可能靠近控制引脚和源极引脚来放置。C3完成开机时能量的存储及自动重启动的定时。滤波电感L3为输入提供一定的滤波作用。 图2 开关电源的原理图 以+5 V输出作为主路输出,次级+5 V由肖特基二极管D4整流,-5 V由肖特基二极管D3整流,经低ESR的钽电容C7~C10滤波,从而降低开关纹波并使效率最大化。使用一个很小的次级输出电感L1、L2和陶瓷输出电容C13/C14就足以在满载时将峰峰值的高频噪音及纹波抑制到小于30 mV以下。输出电压+5 V由R8和R9构成的电压分压器进行检测,连接至2.5 V的电压参考U3。反馈补偿由R6、R7、R10、C11、C3和R3完成。电容C15作为软启动结束电容,防止开机期间输出端出现过冲。由R5、C5以及R4、C4组成的RC网络为吸收电路。为保证输出电压调整率,输出电压-5 V在输出整流后增加三端稳压管79L05(因尺寸要求,这里使用79L05,为保证效率,可选用其他DC/DC转换电路)。 3.2 高频变压器设计 高频变压器设计是电源设计的关键,可利用PIExpert专用软件实现,也可根据反激式变压器设计方法进行设计。该设计中选择开关频率为400 kHz,目的是减小变压器体积,使整个电源小型化。 下面是变压器初级绕组设计参数: 最大占空比:D max =0.65; 初级峰值电流: 传输功率: 初级电感量: 取L1=98 μH,峰值电流为I P =0.36 A。 初次级匝比: 下面是变压器次级绕组设计参数: 次级绕组峰值电流: 次级绕组整流管最高反向峰值电压: 反馈绕组整流管最高反向峰值电压: 次级绕组匝数: 反馈绕组匝数: U F1 :次级绕组肖特基整流管正向压降; U F2 :反馈电路中高速开关整流管正向压降; U DS(ON) :开关管导通电压。 另外,-5 V在本设计中输出因有79L05,故考虑其最小压差2.5 V,该路输出的绕组电压考虑7.5 V。在空间允许的情况下可采用非隔离DC/DC电路进行稳压,可适当增加其效率。 下面是变压器选择设计参数: 视在功率: P T =P 0 +P 0 /η(η取0.98) 面积乘积: K W :变压器窗口系数,一般取0.3; J:电流密度,取5 A/mm 2 ; K f :波形系数,取4; 则A P =0.005 cm 4 。 根据A P 查磁芯手册,磁芯选择EPC13(3F3材料)。 原边匝数: 因n=5,取N s1 (+5 V)为6匝,于是N p =N s1 ·n=30,N s2 (-5 V)=9,反馈绕组匝数:N F =14。 为了避免磁芯饱和,在磁回路中加入一个适当的气隙,计算如下: 在选择绕组线径时,考虑趋肤效应和临近效应,反馈绕组采用#31AWG线双线并绕。绕线长度尽可能短,为减小损耗,尽可能减小变压器的漏感,原边绕组和负边绕组采用间绕方式。在变压器的绕制中注意两点:(1)将变压器的原边绕组放在骨架的最内层,可减少原边线圈的平均每匝长度,从而减少原边绕组的杂散电容。同时,由于原边绕组在变压器的最内层,可以被变压器的其他绕组所屏蔽,从而减少变压器与其他邻近元件的噪声耦合。(2)将辅助供电绕组放在变压器的最外层,可增强该绕组与其他副边绕组的耦合而减弱与原边绕组的耦合。由于增强了与副边绕组的耦合,辅助供电绕组上的电压可以更准确地跟随输出电压变化。同时由于减弱了与原边绕组的耦合,可减少由于初级漏感尖峰而引起的偏置绕组电压尖峰。这两方面都增强了输出电压调节性能。 3.3 输出LC滤波器的选择 由输出电感和输出电容所组成的滤波器,在滤波器谐振频率点处的环路响应上具有两个极点。由于滤波器为损耗相当低的谐振电路,因而在接近谐振频率点处的增益和相位的变化相当突然。因此,用于调整环路响应的极点和零点应避开该频率区域或者对此谐振加以补偿。适当地选择输出滤波器的谐振频率点可以降低反馈环路设计的复杂性。谐振频率点的位置应允许设计者采用有限数目且数值合理的补偿元件来调整得到所需要的响应特性。输出电容的ESR具有一个零点,可以对滤波器的一个极点进行补偿。但是,对于低ESR的钽电解电容,通常其零点所对应的频率过高,在所希望的环路带宽内不能够充分地抵消滤波器的影响。在某些可以使用标准低ESR电解电容的情况下,较高的ESR使得ESR零点位于足够低的频率点上,从而增加了有效的附加相位裕量。 输出滤波电容为足够多的电容并联在一起使用最为合理。 4 实验结果 笔者通过对以上设计数据进行优化和微调,研制出符合设计要求的样机(如图3),常温条件下测试结果见表1。 图3 样机照片 表1 样机测试结果 最后对开关电源进行了高低温实验,分别在-45 ℃和85 ℃的条件下考核,实验结果表明该电源可以在-45~85 ℃条件下正常工作,达到了设计要求,表明该电源运行可靠,输出稳定。
相关资源