tag 标签: 功率转换

相关博文
  • 热度 5
    2023-1-15 23:47
    570 次阅读|
    0 个评论
    为什么功率转换仍然算不上大宗商品 选择合适的电源转换器仅仅意味着找到最便宜的器件吗?事实证明,电源电压转换领域的创新是值得的,并且在市场上获得了回报——因为这些解决方案带来了更高质量的产品。ADI将在本文概述一些利用低成本电源转换器成功实现高质量产品的应用实例。 选择合适的 电源转换器 仅仅意味着找到最便宜的器件吗?事实证明,电源电压转换领域的创新是值得的,并且在市场上获得了回报——因为这些解决方案带来了更高质量的产品。ADI将在本文概述一些利用低成本电源转换器成功实现高质量产品的应用实例。 几乎所有电气设备都会使用电源转换器。多年来,人们针对不同的应用条件设计和调整电源转换器。今天的制造商之间是否有差异化? “大宗商品”特指这样一类商品——市场上不同制造商生产的该商品之间差别不大,并且各自的价格(像原材料价格一样)主要由制造成本决定,产品创新的空间很小。 大约20年前,我开始在电源半导体领域工作,当时电源行业的很大一部分应用正在经历一场剧变。大多数应用正从 线性稳压器 (LDO)过渡到效率更高的 开关稳压器 。这主要是通过开发内置功率开关的开关稳压器IC,以及大大便利此类开关稳压器解决方案应用的简化设计来实现的。凌力尔特公司(现为ADI公司的一部分)在实现这一根本性变革中发挥了重要作用。 在那段重要时期之后,人们经常听到这样的说法——电源业务再也无法产生重大创新,进一步的发展只会朝着一个方向前进:降低成本。 简单电压转换即足够的应用 当今肯定存在简单电压转换即足够的应用。用于消费类产品的非常便宜的开关模式电源就是此类应用。具有几乎相同技术特性的电源转换器广泛存在。线性稳压器的价格在几欧分左右。简单的开关稳压器也能以每个几美分的价格获得,但其具有明显的优势,例如更高的效率和更大的输出电流。 电压转换器市场的差异化 然而,对于大多数应用而言,电源领域将不再有创新的预测被证明是错误的。即使在赠品等廉价促销品中,电源转换质量也起着决定性作用。这可以用我已使用多年的一件促销礼物来说明:我车上点烟器的USB充电适配器。它承诺提供最高2A的充电电流。集成开关模式电源转换器将12V转换为5V,可以很好地产生2A电流。它使用标准开关稳压器来减少如此高功率下的热损失。遗憾的是,当使用此USB适配器时,车载收音机便停止工作。转换器的开关频率和开关转换的频率引起了强辐射,使无线电接收变得不可能。选择开关稳压器时,注意的是价格,而不是确保低电磁辐射。 另一个例子是带 纽扣电池 的廉价设备,短时间运行后就要更换电池。在这里,最终产品的质量同样直接取决于电源的质量。 适合大多数应用的高质量创新 还要考虑到持续良率以及防止过多电子废料,这也需要开发更高质量的电源产品。因此,在大多数应用中,稳压器并未成为大宗商品。以下是一些非常成功的创新目标。 提高转换效率 能源是要花钱的。这笔钱是支付给电力公司,用于购买电池,还是为光伏系统制造 太阳能电池 所导致的开销,无关紧要。因此,对于所有电源,转换效率都很重要。在某些情况下,它甚至是决定性的。 电压转换过程中发生的能量损耗会导致另一个问题:系统升温。如果必须安装额外的散热器和风扇,成本可能变得相当高。电子电路的可靠性和耐用性通常也严重依赖于工作温度。 无论是极低功率(如能量收集或电池供电应用)还是高功率(如kW范围的电源单元),提高效率基本上是所有功率转换的创新目标。20年前,85%的转换效率对于开关稳压器来说可能很不错,但在今天的许多应用中,即使93%也不够高。看起来这种趋势不会很快消失。100%的转换效率似乎并不容易达到,但仍将是目标。100%效率的电压转换意味着没有任何损失。 为了提高效率,可以进行许多创新。创新之一是可以降低RDS(ON)(即处于“导通”状态的开关的电阻)和开关的栅极电容。另外也可以提高开关转换的速度,这会降低开关损耗。许多此类改进是由GaN和SiC等新型开关技术提供的。 另一种选择是降低无源元件(如电感和电容)的损耗。 除了这些明显的调整之外,还有涉及开关稳压器拓扑结构的方法。LTC7821混合转换器就是一个例子。它将电荷泵与降压转换器相结合,在电源电压转换为较低电压时可实现非常高的效率。对于48V至12V转换,在20A输出电流和500kHz开关频率的条件下,可以实现97.3%的转换效率。使用标准商用硅 MOSFET 可产生240W的输出功率。图1说明了混合降压转换概念。损耗之所以如此之低,是因为电荷泵的工作效率极高,而且由于电源电压已经减半,下游降压转换器可以在最优电压范围内工作。 图1.混合开关稳压器拓扑结构,用于在某些应用中实现特别高的转换效率 改善电磁兼容性 正在进行重要创新的第二个领域是电磁兼容性(EMC)。这是电路获得批准的重要先决条件。开关稳压器总是会产生电磁辐射。辐射是每个开关稳压器都有的脉冲电流产生的,其大小取决于开关频率和开关转换的速度。所用电源中的辐射和传导发射也可能引发电子设备中其他电路部分的功能问题。因此,减少所产生的干扰非常重要。 买电子元器件现货上唯样商城 推动创新的动力之一是以减少对额外滤波器的需求。开关稳压器的干扰越少,则附加滤波器和屏蔽元件的成本越低。因此,改进的开关稳压器IC很受用户欢迎。 过去几年最大的创新之一是ADI的Silent Switcher®概念。它通过各种技巧,例如平衡对称脉冲电流和去除键合线,显著降低了开关稳压器电路的辐射发射。此概念如图2所示。该创新可配合各种开关稳压器拓扑使用。图2显示了降压转换器拓扑的脉冲电流和所产生的磁场。磁场分为两部分,由于对称排列,它们方向相反,在很大程度上彼此抵消。 图2.降压开关稳压器中的脉冲电流,Silent Switcher技术使所产生的脉冲磁场相互抵消 EMC仿真 在经过认证的测试实验室进行EMI测量的成本很高。修改已经开发好的硬件也很昂贵。因此,电压转换电路设计的另一个重要支柱是使用ADI LTpowerCAD®等工具进行EMC优化。在开发过程中使用仿真工具实现EMC优化具有巨大的潜力。图3显示了作为LTpowerCAD开发环境一部分的 EMI滤波器 设计器。利用此工具可以计算开关稳压器的传导发射,如果干扰太高,可以设计滤波器来提供补救措施。 高开关频率和快速控制环路 电源的另一个趋势是开关频率越来越高,这使得低成本且节省空间的电路成为可能。在电源输出端的电压纹波相同的情况下,使用较低的电感和电容值可以降低电感和电容的成本。LTC3311就是这种现代开关稳压器IC的一个例子。它是基于ADI Silent Switcher平台的降压开关稳压器。对于高开关频率(LTC33xx开关稳压器系列可扩展到10MHz),除了上述优势外,还存在实现非常快速控制环路的可能性。 快速控制环路意味着即使动态负载发生变化,输出电压也仅表现出很小的电压偏差。尤其是 FPGA ,它要求即使在高负载瞬变情况下,电源电压也不能超出一个很窄的调节范围。确保这一点的方法之一是添加大量高质量输出电容,而更优雅且更便宜的方法是使用高开关频率的开关稳压器IC,从而获得高控制环路带宽。 电容成本的节省为开关稳压器IC创新提供了资金。 图3.LTpowerCAD工具,用于简单计算开关稳压器电路中的传导发射 更高的集成度和易用性 正在出现大量创新的第四个领域是高集成度的完整电源电路。第一步是将多个开关稳压器集成到一个IC外壳中。这些产品通常被称为电源管理集成电路(PMIC)。它们节省了电路板空间,可作为大批量电源管理ASIC提供,或作为目录产品提供,用作常见应用的通用PMIC解决方案。 ADP5014 是一款受欢迎的电源构建模块——例如,用于FPGA。 图4显示了一个使用这种PMIC模块为FPGA供电的电路。 图4.作为范例,ADP5014是一款提供四个不同输出电压的高集成度开关稳压器 除高度集成外,模块还非常易于使用。模块几乎将整个开关稳压器电路集成在一个外壳中。通常,只有输入和输出电容是外接的,电路其余部分(包括电感器)都是集成的。因此,用户不再需要选择外部无源元件。模块可以简单地焊接到主板上,可靠地产生所需的电压。µModule®选择的存在使得几乎所有应用都有合适的模块可用。目前,大约有200种不同的 电源模块 可供使用。 已经优化的µModule特别适合于满足复杂的电源要求。例如,LTM4700 降压开关稳压器可提供高达100A的输出电流。特殊外壳确保散热最优,因此即使在这种高电流情况下,也能保证可靠运行。 许多µModule采用特别设计,使得作为外壳一部分的内置电感像散热器一样将热量释放到环境空气中,因此电路板只需吸收来自电源的少量额外热量。这大大简化了大功率电源的设计。 µModule创新使得构建不会过热、针对应用进行优化且易于使用的小型电路成为可能。所有这些都能节省资金,使该产品组在众多应用领域中非常受欢迎。进一步创新的潜力仍然很大。 预期电源领域会有更多创新 随着模数转换器、模拟前端、 微控制器 和FPGA等电气负载的发展,对电源的要求在不断变化和调整。需要的电压正在降低,而需要的电流却在增加。因此,标准开关稳压器将不再能够满足未来的需求。这一发现可以解释为什么电源仍有很大的创新潜力,以及为何在可预见的将来,它不会转而成为“大宗商品”。 (来源:ADI公司,作者:Frederik Dostal)
  • 热度 20
    2012-9-17 16:56
    2123 次阅读|
    3 个评论
    作者:飞兆半导体公司 Sungmo Young 引言 功率转换开关频率一直在不断提高,以便最大限度地提升功率密度,软开关技术如零电压开关(zero voltage switching,ZVS)成为通用的技术以进一步提高开关频率。随着开关频率的增大 ,功率MOSFET的寄生特性不再可忽略不计。对于采用ZVS拓扑的功率转换器设计,输出电容是所有寄生成分中至关重要的寄生参数。它决定了需要多少电感 量来提供ZVS的工作条件。传统上,许多设计人员使用粗略的假设来为公式 提供输出电容的固定值。然而常用的等效输出电容值在实际应用中却没有很 大的帮助,因为它是根据漏-源电压变化的,并且在开关管导通/关断转变期间不能提供准确的储能信息。在功率转换器工作电压下,根据输出电容存储能量新定义 的等效输出电容,能够实现更优化的功率转换器设计。 ZVS转换器中的输出电容 在软开关拓扑中,通过使用电感中的储能来达到零电压导通,漏电感和串联电感或变压器中的磁化电感,通过谐振方式使开关管中的输出电容放电。因此,电感必须精确设计,以防止硬开关引起额外的功率损耗。下面的公式是零电压开关的基本要求。           (1) 其中,C eq 是开关等效输出电容,C TR 是变压器寄生电容           (2) 其中,C S 是开关等效输出电容 公式(1)用于移相全桥拓扑 ,公式(2)用于LLC谐振半桥拓扑 。在两个公式中输出电容都起着重要作用。如果在公式(1)中假设输出电容过 大,公式会给出较大的电感。然后,此大电感将降低初级di/dt,并且减低功率转换器的有效占空比。相反,太小的输出电容将导致较小的电感和有害的硬开 关。另外,公式(2)中太大的输出电容将限制磁化电感并引起循环电流的增加。因此,对于优化软开关转换器设计,获取准确的开关输出电容值是非常关键的。通 常,针对等效输出电容的常见假设倾向于使用较大的数值。所以,根据公式(1)或(2)选择电感后,设计人员必须调整其功率转换器参数,并且要经过数次反复 设计,因为每个参数都是相互关联的,例如,匝数比、漏电感、以及有效占空比。而且,功率MOSFET的输出电容是根据漏-源电压变化的。在功率转换器工作 电压下,根据储能来等效出的输出电容值是这些应用的最佳替代选择。 从输出电容中获得储能 在电压-电荷关系图上,电容呈斜直线,电容中的储能为该直线下包含的区域。虽然功率MOSFET的输出电容却是非线性的,并且依据漏源电压的变化而变化, 但是,输出电容中的储能仍为非线性电容线下所包含的区域。因此,如果我们能够找出一条直线,由该直线给出的区域与图1中显示的变化的输出电容曲线所包含的 区域相同,则直线的斜率恰好是产生相同的储能的等效输出电容。   图1. 等效输出电容的概念 对于某些老式平面技术MOSFET,设计人员可能会用曲线拟合来找出等效输出电容,其基于通常指定的25V漏源电压下的数据表中的输出电容值。          (3) 于是,储能可由简单积分公式获得。          (4) 最后,有效输出电容即为            (5) 图2显示了输出电容的测量值以及由公式(3)得出的拟合曲线。相对于图2(a)的老式技术MOSFET,它的效果不错。然而,对于使用新技术如超级结技 术,输出电容有更多非线性特性的MOSFET,则简单的指数曲线拟合有时不够好。图2(b)显示了最新技术MOSFET的输出电容测量值以及用公式(3) 得出的拟合曲线。对于等效输出电容值,两者之间在高电压区的间隙会导致巨大的差异,因为在积分公式中电压对于电容是相乘的。图2(b)中的估计将产生大得 多的等效电容,这会误导转换器的初始设计。   图2. 输出电容估值,(a)老式MOSFET,(b)新MOSFET 如果输出电容值依据漏源电压而变化,输出电容中的储能可以使用公式(4)来求得。虽然电容曲线显示在数据表中,但从图表中精确地读出电容值并不容易。因 此,依据漏源电压,输出电容中的储能由最新功率MOSFET数据表中的图表给出。通过图3显示的曲线,使用公式(5),可以得到在期望的直流(DC)总线 电压下的等效输出电容。   图3. 输出电容中的储能 关于输出电容的常见问题 在许多情况下,开关电源设计人员会有关于MOSFET电容温度系数的疑问,因为功率MOSFET通常工作在高温下。总之,MOSFET电容值对于温度可以 被认为是恒定的。MOSFET电容由耗竭长度(depletion length)、掺杂浓度、沟道宽度和硅介电常数所决定,但所有这些因素不会由温度而产生较大的变化。而且MOSFET开关特性如开关损耗或开/关转换速 度也不会因温度而产生较大的变化,因为MOSFET是多数载流子器件,因而开关特性主要是由其电容来决定。当温度上升时,等效串联栅极电阻会有少量增加。 这会使MOSFET在高温下的开关速度少许降低。图4显示了依据温度变化的电容。温度变化超过150度时,电容值的变化也不超过1%。   图4. MOSFET电容对比温度的变化 另一个设计人员感兴趣的地方是MOSFET电容的测试条件。大多数情况下,输出电容在1MHz频率和V gs 为0V的条件下测得。事实上存在着栅极对漏极电容、栅极对源极电容,以及漏极对源极电容。实践中,单独测量每一种电容是不可能的。因此,栅极对漏极电容和漏极对源极电容总称为输出电容,通过并联两个电容来测量。为使它们并联,栅极和源极短接在一起,即V gs =0V。 在开关应用中,当MOSFET在栅极加偏置电压而导通时,输出电容通过MOSFET内部沟道而短路。仅当MOSFET关断时,输出电容值才值得考虑。关于 频率,如图5所示,在低压下输出电容在低频下增加少许。低频时,因为测试设备的限制,有时无法测量低漏源电压下的电容。图5中,当漏源电压小于4V 时,100kHz处的电容是无法测得的。虽然输出电容仅有微小改变,但等效输出电容几乎是恒定的,因为低电压下输出电容的微小改变不会对储能产生如图3显 示那么大影响。   图5. MOSFET电容对比频率 结论 输出电容是软开关转换器设计的重要部分。必须慎重考虑等效电容值,而不是固定漏源电压下的单一数值,本文也提供了有关输出电容测试条件和温度系数的讨论。
相关资源
  • 所需E币: 1
    时间: 2021-4-25 17:29
    大小: 4.87MB
    上传者: box520
    燃料电池发电逆变式功率转换的DSP控制技术
  • 所需E币: 1
    时间: 2021-4-8 10:32
    大小: 4.87MB
    上传者: czd886
    燃料电池发电逆变式功率转换的DSP控制技术
  • 所需E币: 0
    时间: 2021-3-17 21:01
    大小: 766.85KB
    上传者: wxlai1998
    能量采集功率转换的新进展
  • 所需E币: 0
    时间: 2020-12-22 16:34
    大小: 476.47KB
    上传者: samewell
    能量采集功率转换的新进展
  • 所需E币: 0
    时间: 2020-9-26 02:52
    大小: 724.16KB
    上传者: LGWU1995
    优化隔离传感器接口的功率转换
  • 所需E币: 0
    时间: 2020-9-2 12:06
    大小: 746.48KB
    上传者: kaidi2003
    Infineon-GaN-on-Si如何帮助提高功率转换和电源管理的效率.rar
  • 所需E币: 0
    时间: 2020-8-21 11:56
    大小: 954.59KB
    上传者: LGWU1995
    Infineon-GaN-on-Si如何帮助提高功率转换和电源管理的效率
  • 所需E币: 5
    时间: 2019-12-27 21:08
    大小: 1.4MB
    上传者: 238112554_qq
    电源系统设计师必需克服的一大障碍是设法降低高功率服务器的功耗水平,因为它们在这些模式中仍然将从交流电源或后备电池系统吸收电流。所以,人们日益强烈地要求功率转换IC在其被置于待机或停机模式中时提供较低的静态电流。绿色科技GreenTechnology绿色技术是现代服务器和笔记本电脑中的关键◆凌力尔特公司电源产品组产品市场总监/TonyArmstrong电源系统设计师必需克服的一大障碍是设法降低高功率服务器的功耗水平,因为它们在这些模式中仍然将从交流电源插座或后备电池系统吸收电流。所以,人们日益强烈地要求功率转换IC在其被置于待机或停机模式中时提供较低的静态电流。当今的便携式笔记本电脑设计师也面临着前所未有的挑战。对高性能电源管理系统的需求便是这些挑战中的一个。引言与此同时,当今的便携式笔记本电脑设计师也面临着前所未有的挑战。对高性能电源管理系统的需求大多数工业化国家普遍认识到了节能的必要性。(以适应系统复杂性的日益增加以及功率预算的不断其原因基于这样的现实情况,即:随着这些国家人口攀升)便是这些挑战中的一个。这些系统努力地在诸数量的增加,那些配备供暖/冷却系统以及照明和电多相互冲突的目标之间寻求着一个最佳的平衡,这些器的新型家居的能量需求也在日益攀升。建造新的发目标……
  • 所需E币: 4
    时间: 2019-12-28 21:17
    大小: 208.16KB
    上传者: givh79_163.com
    新的功率转换拓扑架构及分比功率架构新的功率转换拓朴架构及分比功率架构RobertMarchetti,高级产品经理,DC-DC转换器Vicor公司,美国Andover,MA!80年代,零电流开关准谐振转换技术面世,生产厂家构思出一种砖型的功率转换元件。成为非常灵活的电源元件,取代了大部份客制电源。从此,电源元件工业便诞生了。最近,电源界又发生相类似的突破,又一种新功率转换技术出现了。它的开关频率达3.5MHz,体积只有晶片般大小,把电源模块提升到另一层次。分比式功率架构,带来了前瞻性的优势。!!图2……