tag 标签: 氮化硅基板

相关博文
  • 热度 2
    2021-1-28 10:55
    2703 次阅读|
    1 个评论
    当前,全球新一轮科技革命和产业变革蓬勃发展,汽车与能源、交通、信息通信等领域有关技术加速融合,电动化、网联化、智能化成为汽车产业的发展潮流和趋势。新能源汽车融汇新能源、新材料和互联网、大数据、人工智能等多种变革性技术已成为全球汽车产业转型发展的主要方向和促进世界经济持续增长的重要引擎。 拿新能源车的电机驱动部分来说,最核心的元件就是IGBT。IGBT约占电机驱动系统成本的一半,而电机驱动系统占整车成本的15-20%,也就是说IGBT占整车成本的7-10%,是除电池之外成本第二高的元件,IGBT的质量很大一部分也决定了整车的能源效率。 IGBT全称为绝缘栅双极型晶体管(Insulated Gate Bipolar Transistor),所以它是一个有MOS Gate的BJT晶体管,可以简单理解为IGBT是MOSFET和BJT的组合体。兼有MOSFET的栅极电压控制晶体管(高输入阻抗),又利用了BJT的双载流子达到大电流(低导通压降)的目的 (Voltage-Controlled Bipolar Device)。从而达到驱动功率小、饱和压降低的完美要求,广泛应用于600V以上的变流系统如交流电机、变频器、开关电源、照明电路、牵引传动等领域。 IGBT投入市场这么多年以来,其自身的潜力已经挖掘得差不多了,大家都把精力转移到IGBT的封装上,也就是散热。车用IGBT的散热效率要求比工业级要高得多,逆变器内温度极高,同时还要考虑强振动条件,车规级的IGBT远在工业级之上。电动汽车用IGBT 模块的功率导电端子需要承载数百安培的大电流,对电导率和热导率有较高的要求,车载环境中还要承受一定的振动和冲击力,机械强度要求高。这就不得不提到我们今天的主角,氮化硅基板了。 氮化硅的优点 1、在高温下具有高强度和断裂韧性。 2、散热系数高,热膨胀系数与芯片匹配,同时具有极高的耐热冲击性。 3、使用氮化硅陶瓷基板的设备还能进一步缩小体积, 4、具有极高的耐化学腐蚀性和良好的耐磨性能。 5、斯利通氮化硅陶瓷基板还提供高端的定制化服务。 终上所述,对于车用IGBT,氮化硅是再适合不过的。氮化硅陶瓷电路板可以适应高温高压的工作环境。能及时散去电源系统中的高热量,能适应汽车内部恶劣的环境,保证各大功率负载的正常运行的同时,保护芯片正常工作。延长电子设备的使用周期。节约更多空间,为新能源汽车提供更多可能性。
  • 热度 2
    2021-1-21 11:51
    3360 次阅读|
    1 个评论
    氮化硅陶瓷基板助力新能源汽车市场
    11月2日,国务院办公厅印发《新能源汽车产业发展规划(2021-2035)》(以下简称《规划》)提出,到2025年,纯电动乘用车新车平均电耗降至12.0千瓦时/百公里,新能源汽车新车销售量达到汽车新车销售总量的20%左右。 “此次规划的亮点可以总结为’四个新’:顺应新形势,适应新要求,明确新方向,提出新路径。”工业和信息化部副部长辛国斌表示,如今全球新一轮科技革命和产业变革蓬勃发展,新能源汽车发展既有新挑战,也迎来了难得的发展机遇,要抢抓机遇,推动新能源汽车产业发展再上新台阶。 (图片来源:中汽协) 新能源汽车包含大量高压、大功率器件,如IGBT、MOSFET等对散热都有较高要求,使得PCB的布置不能太密集,这进一步加大了新能源车PCB的用量。每辆新能源车上,仅上述几种设备所需的PCB板合计就达到0.8平方米左右。相对于传统燃油汽车普遍采用的12V电气系统,新能源电车的电力平台可支撑更多的智能设备载荷,但同时对散热要求就更高。这也意味着需要更加先进,更匹配,更环保的PCB板———氮化硅陶瓷基板。 为什么说氮化硅陶瓷基板是最适合新能源汽车的PCB板呢? 氮化硅在高温下具有 高 强度和断裂韧性。可以适应高温高压的工作环境。氮化硅的散热系数高,热膨胀系数与芯片匹配,同时具有极高的耐热冲击性。能在及时散去电源系统中的高热量,保证各大功率负载的正常运行的同时,保护芯片正常工作。使用氮化硅陶瓷基板的设备还能进一步缩小体积,节约更多空间,为新能源汽车提供更多可能性。氮化硅还具有极高的耐化学腐蚀性和良好的耐磨性能,能在汽车内部恶劣的环境下,延长电子设备的使用周期。斯利通氮化硅陶瓷基板还提供高端的定制化服务,可以根据用户给出的产品设计图和要求来进行批量生产,用户可以拥有更多选择,更加人性化。 全球汽车的形态和格局正在重塑,5G时代下汽车“电动化、智能化、网联化、共享化”发展已是大势所趋。新能源汽车需要氮化硅陶瓷基板,而氮化硅基板 必将在未来很长一段时间,随着新能源汽车的浪潮发光发热。斯利通将与客户携手,一同面对未来市场的挑战与机遇。
  • 热度 10
    2021-1-5 14:21
    1188 次阅读|
    0 个评论
    氮化硅基板具有优良的综合性能,是汽车工业领域中很重要的材料,在汽车上的应用也越来越广泛.对于提高汽车的性能,降低油耗,减少排气污染,陶瓷材料都有着极其重要价值。随着科学技术的不断发展,汽车的研发及生产阶段越来越多地采用新材料及新工艺,这也使得人们对汽车轻质化、低成本、智能化、经济性和可靠性的要求成为可能,而对于新材料的使用,氮化硅陶瓷基板材料便是其中最好的功能材料之一。氮化硅基板具有各种优异、独特的性能,应用在汽车上,对减轻车辆自身质量、提高发动机热效率、降低油耗、减少排气污染、提高易损件寿命、完善汽车智能性功能都具有积极意义。 一、在汽车发动机上应用 氮化硅陶瓷基板能耐1000摄氏度以上高温,推进了汽车上新用途的开发。例如:要将柴油机的燃耗费降低30%以上,可以说氮化硅陶瓷是不可缺少的材料。现在汽油机中,燃烧能量中的78%左右是在热能和热传递中损失掉的,柴油机热效率为33%,与汽油机相比已十分优越,然而仍有60%以上的热能量损失掉。因此,为减少这部分损失,用隔热性能好的陶瓷材料围住燃烧室进行隔热,进而用废气涡轮增压器和动力涡轮来回收排气能量,有试验证明,这样可把热效率提高到48%。同时,由于氮化硅陶瓷基板的使用,柴油机瞬间快速起动将变得可能。 二、在汽车传感器上应用 对汽车用传感器的要求是能长久适用于汽车特有的恶劣环境(高温、低温、振动、加速、潮湿、噪声、废气),并应当具有小型轻量,重复使用性好,输出范围广等特点。氧化铝陶瓷电路板耐热、耐蚀、耐磨及其潜在的优良的电磁、光学机能,近年来随着制造技术的进步而得到充分利用,氮化硅陶瓷材料制成的传感器完全能够满足上述要求。 三、在汽车减振器上应用 高级轿车的减振装置是综合利用氧化铝陶瓷正压电效应、逆压电效应和电致伸缩效应研制成功的智能减振器。由于采用高灵敏度氧化铝陶瓷元件,这种减振器具有识别路面且能做自我调节的功能,可以将轿车因粗糙路面引起的振动降到最低限度。 总之,氮化硅陶瓷基板是一种正在不断开发中的陶瓷材料产品,但原料的制取、材料的评价和利用技术等许多方面都有尚待解决的课题。目前,氮化硅陶瓷基板在汽车的应用并不广泛,其中的主要原因有:制造工艺复杂、要求高;因氮化硅基板对原材料要求比较严格、工艺难以掌握,使得各批制品的性能难以保持均匀一致;目前国内能够熟练批量生产的陶瓷电路板厂家并不多,以斯利通为首的区区几家并不足以撑起整个需求端,还需要更多的制造商崛起,才能将我国特种陶瓷行业推向顶峰。 人们有充分理由相信,随着科学技术的飞速发展,在未来的汽车制造业中将会有更多的氮化硅陶瓷基板、智能陶瓷制品被引入和采用到汽车上,而且一定会在汽车生产中得到广泛的应用。
  • 热度 6
    2020-12-22 11:08
    3545 次阅读|
    2 个评论
    绝缘栅双极晶体管(IGBT)是实现电能转换和控制的最先进的电力电子器件,大规模应用于电动汽车、电力机车、智能电网等领域。氮化硅陶瓷基板既具有陶瓷的高导热性、高电绝缘性、高机械强度、低膨胀等特性,又具有无氧铜的高导电性和优异的焊接性能,是IGBT模块封装的关键基础材料。本文采用直接覆铜工艺(DBC)和活性金属焊接工艺(AMB)制备了氮化硅陶瓷覆铜板,对比了两种工艺的异同点和制备的氮化硅陶瓷覆铜板的性能差异,并指出氮化硅陶瓷覆铜板有望在下一代功率模块上广泛应用。 一、引言 IGBT(Insulated Gate Bipolar Transistor)全称绝缘栅双极型晶体管,是实现电能转换和控制的最先进的电力电子器件,具有输入阻抗大、驱动功率小、开关速度快、工作频率高、饱和压降低、安全工作区大和可耐高电压和大电流等一系列优点,被誉为现代工业变流装置的“CPU”,在轨道交通、航空航天、新能源汽车、风力发电、国防工业等战略性产业广泛应用。 随着《中国制造2015》、《工业绿色发展专项行动实施方案》、《关于加快新能源汽车推广应用的指导意见》以及“特高压规划”等一系列的政策密集出台,我国的高速铁路、城市轨道交通、新能源汽车、智能电网和风能发电等项目成为未来几年“绿色经济”的热点。而这些项目对于高压大功率IGBT模块的需求迫切且数量巨大。由于高压大功率IGBT模块技术门槛较高,难度较大,特别是要求封装材料散热性能更好、可靠性更高、载流量更大。但是国内相关技术水平落后导致国内高压IGBT市场被欧、美、日等国家所垄断,高压IGBT产品价格高、交货周期长、产能不足,严重限制了我国动力机车、电动汽车和新能源等领域的发展。 高压大功率IGBT模块所产生的热量主要是通过氮化硅陶瓷覆铜板传导到外壳而散发出去的,因此氮化硅陶瓷覆铜板是电力电子领域功率模块封装的不可或缺的关键基础材料。它既具有陶瓷的高导热性、高电绝缘性、高机械强度、低膨胀等特性,又具有无氧铜金属的高导电性和优异的焊接性能,并能像PCB线路板一样刻蚀出各种图形。氮化硅陶瓷覆铜板集合了功率电子封装材料所具有的各种优点: 1)陶瓷部分具有优良的导热耐压特性; 2)铜导体部分具有极高的载流能力; 3)金属和陶瓷间具有较高的附着强度和可靠性; 4)便于刻蚀图形,形成电路基板; 5)焊接性能优良,适用于铝丝键合。 陶瓷基板材料的性能是陶瓷覆铜板性能的决定因素。目前,已应用作为陶瓷覆铜板基板材料共有三种陶瓷,分别是氧化铝陶瓷基板、碳化铝陶瓷基板和氮化硅陶瓷基板。氧化铝陶瓷基板是最常用的陶瓷基板,由于它具有好的绝缘性、好的化学稳定性、好的力学性能和低的价格,但由于氧化铝陶瓷基片相对低的热导率、与硅的热膨胀系数匹配不好。作为高功率模块封装材料,氧化铝材料的应用前景不容乐观。 氮化铝覆铜板在热特性方面具有非常高的热导率,散热快;在应力方面,热膨胀系数与硅接近,整个模块内部应力较低,提高了高压IGBT模块的可靠性。这些优异的性能都使得氮化铝覆铜板成为高压IGBT模块封装的首选。本文研究了直接覆铜工艺(DBC)和活性金属焊接工艺(AMB)制备氮化铝陶瓷覆铜板的工艺方法,对比了两种工艺的异同点和制备的氮化铝陶瓷覆铜板的性能差异。 二、直接覆铜工艺(DBC)制备氮化铝陶瓷覆铜板的研究 所谓的DBC技术,是指在在含氧的氮气中以1063℃左右的高温加热,氧化铝或氮化铝陶瓷表面直接焊接上一层铜箔。其基本原理是:利用了铜与氧在烧结时形成的铜氧共晶液相,润湿相互接触的两个材料表面,即铜箔表面和陶瓷表面,同时还与氧化铝反应生成CuAlO2、Cu(AlO2)2等复合氧化物,充当共晶钎焊用的焊料,实现铜箔与陶瓷的牢固结合 ,限制了其作为功率模块基板材料的应用。因此,目前更多的研究关注于如何提高氮化硅陶瓷的热导率。 高导热陶瓷应具备以下条件:(1)平均原子量小;(2)原子键合强度高;(3)晶体结构较为简单;(4)晶格非谐性振动低。 提高氮化硅陶瓷热导率的方法包括: (1)β-Si3N4相晶种的引入; (2)烧结助剂的选择; (3)成型工艺以及热处理工艺。 因此,在高功率IGBT模块领域,氮化硅陶瓷覆铜板因其可以焊接更厚的无氧铜以及更高的可靠性在未来电动汽车用高可靠功率模块中应用广泛。根据材料及工艺特性展示了陶瓷覆铜板的技术发展方向,在大功率功率模块领域氮化铝陶瓷覆铜板为主要发展方向,在高可靠功率模块领域氮化硅陶瓷覆铜板为主要发展方向。 随着我国战略性新兴产业的兴起,电力电子技术在风能、太阳能、热泵、水电、生物质能、绿色建筑、新能源装备、电动汽车、轨道交通等先进制造业等重要领域都发挥着重要的作用,而这其中的许多领域在“十三五”规划中都具备万亿以上的市场规模,其必将带来电力电子技术及其产业的高速发展,迎来重大的发展机遇期。这些将对IGBT模块封装的关键材料---陶瓷覆铜板形成了巨大需求。因此,需要抓住机遇,开发系列化的陶瓷覆铜基板以适应不同领域的需求,特别是需要加快高可靠氮化铝基板、氮化硅基板的研发及产业化进度,为我国高压IGBT模块的国产化奠定基础。