tag 标签: 饱和

相关帖子
相关博文
  • 热度 6
    2023-8-2 19:55
    355 次阅读|
    0 个评论
    EMC滤波器在变频器中的应用 分析了变频调速系统运行中的长线缆驱动、电机并联和内置线圈饱和产生及抑制干扰的情况,对比了变频器内置干扰抑制器件与外置EPCOS 滤波器的EMI 特性曲线,证明EPCOS 的EMC 滤波器非常适用于变频器的外置应用。   0 引言   虽然大多厂家提供的 变频器 都配有内部干扰抑制器件,但是外置EMC 滤波器 在某些应用中仍是需要的。 EPC OS 的两种EMC滤波器,就非常适用于变频器的外置应用。   当前随着变频器市场不断扩大,激烈的竞争、成本压力和技术创新导致产品价格不断下降,体积不断缩小,与此同时也扩大了变频器的应用领域。今天的变频器厂家一般提供的产品都含有内置干扰抑制器件,但是这只能保证在其精确定义的运转条件下满足EMC 的要求。如果超过限值,就需要配置外置滤波器并进行另外的干扰测试,这就意味着更多的费用,并最终导致更高昂的系统成本。   根据变频器产品说明,满足EMC 要求的最大运行范围,通常和变频器开关频率以及变频器和 电机 之间的最大线缆长度有关。一般情况下,更高的开关频率,意味着更强的干扰。更长的线缆,意味着更大的共模电流将流过用以抑制干扰的共模扼流圈。如果实际应用的线缆超过变频器产品手册中定义的最大线缆长度,那么不符合限值的情况就会发生。另外,变频器内置的噪声抑制线圈甚至会发生饱和,导致整个滤波器完全失效。   1 EPCOS B84143A 和B84143B 系列滤波器   EPCOS B84143A和B84143B 系列EMC 滤波器有如下特点:   1)是 长电 机线缆和满载运转的优化方案;   2)高插入损耗性能;   3)容易安装,重量轻(0.58~13.5 kg),体积小(51.4 mm伊63 mm伊165 mm ~110 mm伊220 mm伊440 mm);   4)适用于所有 工业电源 ,最大电压520 V,50/60 Hz;   5)产品拥有UL 和CSA 认证,最大认证电流200 A;   6)可提供电流至2 500 A的订制解决方案;   7)高过载容量,可承受最大2.5 倍额定电流的过载。   其外形图如图1所示。   现在我们对在不同应用条件下的配置有内置干扰抑制器件的商用变频器进行性能测试,以说明这两种EMC滤波器在变频器应用中的效果。      2 长线缆驱动的问题   通常情况下,配有内置干扰抑制器件的变频器的最大运行线缆长度是5 m。带有内部干扰抑制器件的测试曲线如图2所示。被测变频器带有内部干扰抑制器件,电机线缆长度为5 m或50 m,电机功率为11 kW。在电机线缆长度为50 m的情况下,发生超过限值的情况。测试表明在满足这些条件下的最大传导发射满足EN55011/Class A 的要求。然而,如果变频器使用更长的线缆,那么电源线上的传导干扰将会增加,变频器内置滤波器将不能保证足够的噪声抑制。由于屏蔽线缆本身的高寄生 电容 所产生的共模电流也将随着线缆长度而增加,这些电流将导致内部滤波器的共模扼流圈饱和,因而EMC 的要求将很难被满足,配置外置滤波器成为了必要条件。      在这个例子中,变频器配有50 m长的线缆。测试记录清楚的表明内部滤波器的线圈饱和,发出了嗡嗡的让人烦躁的噪声,因此必须配置外置滤波器来保证重新满足EMC 限值的要求。相应的配有外置滤波器,电机功率11 kW屏蔽线缆长度为50 m 的变频器的 EMI 测试曲线如图3 所示。其中型号为B84143-A25-R105 的EPCOS 超紧凑、低成本滤波器在此应用中被使用。
  • 热度 14
    2022-4-21 00:20
    690 次阅读|
    0 个评论
    ​ 转载-Gavin 攻城师达摩院 2021-08-17 23:26 电感作为DC/DC电源的地标级器件, 你对其了解有多深? 电感很敏感,设计需谨慎。 而电感饱和是电感工作时最大的雷区。 电感为何会饱和? 如何判断电感发生饱和? 本期电源小课堂将为您深入剖析。 一. 电感饱和的原因 1、先直观的认识下什么是电感饱和,如图1: ​ 图1 我们知道当图1线圈中通过电流时,线圈会产生磁场; 磁芯在磁场的作用下会被磁化,其内部磁畴会慢慢旋转; 当磁芯被完全磁化时,磁畴方向全部和磁场一致,即使再增加外磁场,磁芯也没有可以旋转的磁畴了,此时的电感就进入了饱和状态 2、从另一个角度来看,如图2所示的磁化曲线,磁通密度B与磁场强度H之间满足图2中右侧公式: 当磁通密度达到Bm时,磁通密度不再随磁场强度的增大而大幅度增大,此时电感达到饱和。 由电感与磁导率µ的关系式可知: 当电感饱和后,µ会大幅度减小,最终导致电感量大幅降低,失去抑制电流的能力。 ​ 图2 二. 判断电感饱和的诀窍 Q: 在实际应用中有没有判断电感饱和的诀窍呢? A: 可以总结为两大类:理论计算和实验测试。 理论计算可从最大磁通密度和最大电感电流入手; 实验测试主要关注电感电流波形和一些其他初步判断方法。 ​ 下面就一一介绍这些方法。 方法1:计算磁通密度 此方法适用于利用磁芯来设计电感的场景。磁芯参数包括磁路长度le,有效面积Ae等。磁芯的型号还决定了相应的磁材牌号,磁材对磁芯损耗,饱和磁通密度等做了相应规定。 ​ 有了这些材料,我们就能根据实际设计情况来计算最大磁通密度,公式如下: ​ 实际中可简化计算,用ui来代替ur;最后与磁材饱和磁通密度相比较,就能判断设计的电感是否有饱和的风险。 方法2:计算最大电感电流 此方法适用于直接利用成品电感来设计电路。 不同的电路拓扑对电感电流计算有不同的公式。 以Buck芯片MP2145为例,可以按照如下公式计算,将计算结果与电感规格值相比较就能判断电感是否会饱和。 ​ 方法3:通过电感电流波形来判断电感是否饱和 此方法也是工程实际中最常见和最实用的的方法。 还是以MP2145为例,使用MPSmart仿真工具进行仿真,从仿真波形可以知道,当电感没有饱和时,电感电流是一个斜率一定的三角波,当电感饱和时电感电流波形会有一个明显畸变,这是由于饱和后感量降低造成的。 ​ 我们在工程实际中就可以基于此观察电感电流波形是否存在畸变,来判断电感是否饱和。 下面是在MP2145 Demo板上实测波形,可以看到饱和后有明显的畸变,与仿真结果一致。 ​ 方法4:测量电感是否异常温升,听是否有异常啸叫 在工程实际中还有很多情况,我们可能不能准确知道磁芯型号,也很难知道电感饱和电流大小,有时候也不能方便的测试电感电流;这时候我们还可以通过测量电感是否有异常温升,或者听是否有异常啸叫等手段来初步判断是否发生了饱和。 ​ ​ 到此判断电感饱和的几个小诀窍已经介绍完了。希望对大家有所帮助。 ​ ​
  • 热度 20
    2015-6-1 14:49
    1125 次阅读|
    0 个评论
    三极管饱和问题总结: 1.在实际工作中,常用Ib*β=V/R作为判断临界饱和的条件。根据Ib*β=V/R算出的Ib值,只是使晶体管进入了初始饱和状态,实际上应该取该值的数倍以上,才能达到真正的饱和;倍数越大,饱和程度就越深。 2.集电极电阻 越大越容易饱和; 3.饱和区的现象就是:二个PN结均正偏,IC不受IB之控制 问题:基极电流达到多少时三极管饱和? 解答:这个值应该是不固定的,它和集电极负载、β值有关,估算是这样的:假定负载电阻是1K,VCC是5V,饱和时电阻通过电流最大也就是5mA,用除以该管子的β值(假定β=100)5/100=0.05mA=50μA,那么基极电流大于50μA就可以饱和。 对于9013、9012而言,饱和时Vce小于0.6V,Vbe小于1.2V。下面是9013的特性表: 问题:如何判断饱和? 判断饱和时应该求出基级最大饱和电流IBS,然后再根据实际的电路求出当前的基级电流,如果当前的基级电流大于基级最大饱和电流,则可判断电路此时处于饱和状态。 饱和的条件: 1.集电极和电源之间有电阻存在 且越大就越容易管子饱和;2.基集电流比较大以使集电极的电阻把集电极的电源拉得很低,从而出现b较c电压高的情况。 影响饱和的因素: 1.集电极电阻 越大越容易饱和;2.管子的放大倍数 放大倍数越大越容易饱和;3.基集电流的大小; 饱和后的现象: 1.基极的电压大于集电极的电压;2.集电极的电压为0.3左右,基极为0.7左右(假设e极接地) 谈论饱和不能不提负载电阻。 假定晶体管集-射极电路的负载电阻(包括集电极与射极电路中的总电阻)为R,则集-射极电压Vce=VCC-Ib*hFE*R,随着Ib的增大,Vce减小,当Vce0.6V时,B-C结即进入正偏,Ice已经很难继续增大,就可以认为已经进入饱和状态了。当然Ib如果继续增大,会使Vce再减小一些,例如降至0.3V甚至更低,就是深度饱和了。以上是对NPN型硅管而言。 另外一个应该注意的问题就是: 在Ic增大的时候,hFE会减小,所以我们应该让三极管进入深度饱和IbIc(max)/hFE,Ic(max)是指在假定e、c极短路的情况下的Ic极限,当然这是以牺牲关断速度为代价的。 注意:饱和时VbVc,但VbVc不一定饱和。一般判断饱和的直接依据还是放大倍数,有的管子VbVc时还能保持相当高的放大倍数。例如:有的管子将Ic/Ib10定义为饱和,Ic/Ib1应该属于深饱和了。 从晶体管特性曲线看饱和问题:我前面说过:谈论饱和不能不提负载电阻。现在再作详细一点的解释。 以某晶体管的输出特性曲线为例。由于原来的Vce仅画到2.0V为止,为了说明方便,我向右延伸到了4.0V。 如果电源电压为V,负载电阻为R,那么Vce与Ic受以下关系式的约束:Ic = (V-Vce)/R 在晶体管的输出特性曲线图上,上述关系式是一条斜线,斜率是 -1/R,X轴上的截距是电源电压V,Y轴上的截距是V/R(也就是前面NE5532第2帖说的“Ic(max)是指在假定e、c极短路的情况下的Ic极限”)。这条斜线称为“静态负载线”(以下简称负载线)。各个基极电流Ib值的曲线与负载线的交点就是该晶体管在不同基极电流下的工作点。见下图: 图中假定电源电压为4V,绿色的斜线是负载电阻为80欧姆的负载线,V/R=50MA,图中标出了Ib分别等于0.1、0.2、0.3、0.4、0.6、1.0mA的工作点A、B、C、D、E、F。据此在右侧作出了Ic与Ib的关系曲线。根据这个曲线,就比较清楚地看出“饱和”的含义了。曲线的绿色段是线性放大区,Ic随Ib的增大几乎成线性地快速上升,可以看出β值约为200。兰色段开始变弯曲,斜率逐渐变小。红色段就几乎变成水平了,这就是“饱和”。实际上,饱和是一个渐变的过程,兰色段也可以认为是初始进入饱和的区段。在实际工作中,常用Ib*β=V/R作为判断临界饱和的条件。在图中就是假想绿色段继续向上延伸,与Ic=50MA的水平线相交,交点对应的Ib值就是临界饱和的Ib值。图中可见该值约为0.25mA。 由图可见,根据Ib*β=V/R算出的Ib值,只是使晶体管进入了初始饱和状态,实际上应该取该值的数倍以上,才能达到真正的饱和;倍数越大,饱和程度就越深。 图中还画出了负载电阻为200欧姆时的负载线。可以看出,对应于Ib=0.1mA,负载电阻为80欧姆时,晶体管是处于线性放大区,而负载电阻200欧姆时,已经接近进入饱和区了。负载电阻由大到小变化,负载线以Vce=4.0为圆心呈扇状向上展开。负载电阻越小,进入饱和状态所需要的Ib值就越大,饱和状态下的C-E压降也越大。在负载电阻特别小的电路,例如高频谐振放大器,集电极负载是电感线圈,直流电阻接近0,负载线几乎成90度向上伸展(如图中的红色负载线)。这样的电路中,晶体管直到烧毁了也进入不了饱和状态。以上所说的“负载线”,都是指直流静态负载线;“饱和”都是指直流静态饱和。 用三极管需要考虑的问题: 1)耐压够不够 2)负载电流够不够大 3)速度够不够快(有时却是要慢速) 4)B极控制电流够不够 5)有时可能考虑功率问题 6)有时要考虑漏电流问题(能否“完全”截止)。 7)一般都不怎么考虑增益(我的应用还没有对此参数要求很高) 实际使用时,晶体管注意四个要素就行:-0.1~-0.3V振荡电路, 0.65-0.7V放大电路,0.8V以上为开关电路,β值中放、高放为30-40,低放60-80,开关100-120以上就行,不必研究其它的,研究它的共价键、电子、空穴没用 Vce=VCC(电源电压)-Vc(集电极电压)=VCC-Ic(集电极电流)Rc(集电极电阻)。 可以看出,这是一条斜率为-Rc的直线,称为“负载线”。当Ic=0时,Vce=Vcc。当Vce=0时(实际上正常工作时Vce不可能等于0,这是它的特性决定的),Ic=Vcc/Rc。也就是说,Ic不可能大于这个数值。对应的基极电流Ib=Ic/β=Vcc/βRc,这就是饱和基极电流的计算公式。 饱和分临界饱和和过度饱和两种状态。当Ib=Vcc/βRc时,三极管基本处于临界饱和状态。 当基极电流大于此值的两倍,三极管就基本进入深度饱和状态。三极管深度饱和和临界饱和的Vce差很大。临界饱和压降大,但退出饱和容易;深度饱和压降小但不容易退出饱和。所以,不同用途选择的基极电流是不一样的。 还有,饱和压降和集电极电流有直接关系。集电极电阻越小,饱和集电极电流就越大,饱和压降越大。反之也相反(集电极电阻越大,饱和集电极电流就越小,饱和压降越小)。如果集电极电流5毫安时三极管饱和,9013、9012之类的饱和压降一般不超过0.6伏。基极电流超过两倍Vcc/βRc时,一般饱和压降就小到0.3V左右了。 转:这是我当年教电子技术时的一点心得,谈到三极管,初学的人很难理解,为了讲通讲透彻,我给学生做了一个形象的比喻:三极管就是一个资本家(全课堂哄然),比如一个生产手机的资本家,生产一部手机,原材料100元,售价400元,利润率400%,相对于三极管的放大倍数就是4,原来一天生产100部,利润好几万,资本家觉得这生意不错,想扩大利润,提高产能,改成一天生产200部,也就是三极管的输入电流增加了,这时资本家发现了,利润成倍上涨,好啊!随即改成一天生产300部,后来改成一天生产400部、500部……直到1000部,但是资本家很快发现,当产能超过800部时,利润就不再成比例上升了,而是缓慢上升,超过1000部,利润根本就不上升,维持原样,这是因为产量太大,市场饱和,售价下降等等,这时三极管就进入了饱和状态,输入电流再怎么增加,输出电流也不会增加。由于经济危机,产品销售不出去,资本家只好停产,每天一部也不生产,这时就相当于三极管进入截止状态,但是工厂总要维持,于是,就每天卖点原材料、废旧设备、废材料,或者组织工人打扫卫生,清理仓库和车间,卖点破烂,好歹每天能有点收益,这点收益就是三极管截止状态的漏电流。也就是说,输入端没有一点电流,输出端还是有些微电流的。从这个过程,我们可以发现,其实资本家只是放大了利润,原材料变成了成品,这中间要消耗大量的人力、脑力和电力。三极管与此类同,三极管电流放大其实放大的是三极管输入端的信号,输出的是放大之后的信号,中间要消耗大量的电能,这些电能必须是直流电,例如电池或者整流后的交流电。跟资本家维持工厂运转一样,人力、脑力和电力要基本维持稳定,不能天天乱变。当然对于功率放大三极管,道理基本一样,不过放大的是信号的电流和电压,当然,投入的人力、脑力和电力仍旧是必不可少的。三个级,基极是采购,集电极是加工车间,发射极是销售。
  • 热度 7
    2015-1-15 09:58
    2177 次阅读|
    4 个评论
    三极管饱和问题总结: 1.在实际工作中,常用Ib*β=V/R作为判断临界饱和的条件。根据Ib*β=V/R算出的Ib值,只是使晶体管进入了初始饱和状态,实际上应该取该值的数倍以上,才能达到真正的饱和;倍数越大,饱和程度就越深 。 2.集电极电阻 越大越容易饱和; 3.饱和区的现象就是:二个PN结均正偏,IC不受IB之控制 问题: 基极电流达到多少时三极管饱和? 解答:这个值应该是不固定的,它和集电极负载、β值有关,估算是这样的:假定负载电阻是1K,VCC是5V,饱和时电阻通过电流最大也就是5mA,用除以该管子的β值(假定β=100)5/100=0.05mA=50μA,那么基极电流大于50μA就可以饱和。 对于9013、9012而言,饱和时Vce小于0.6V,Vbe小于1.2V。下面是9013的特性表: 问题:如何判断饱和? 判断饱和时应该求出基级最大饱和电流IBS,然后再根据实际的电路求出当前的基级电流,如果当前的基级电流大于基级最大饱和电流,则可判断电路此时处于饱和状态。 饱和的条件: 1.集电极和电源之间有电阻存在  且越大就越容易管子饱和;2.基集电流比较大以使集电极的电阻把集电极的电源拉得很低,从而出现b较c电压高的情况。              影响饱和的因素:1.集电极电阻 越大越容易饱和;2.管子的放大倍数  放大倍数越大越容易饱和;3.基集电流的大小; 饱和后的现象:1.基极的电压大于集电极的电压;2.集电极的电压为0.3左右,基极为0.7左右(假设e极接地) 谈论饱和不能不提负载电阻。假定晶体管集-射极电路的负载电阻(包括集电极与射极电路中的总电阻)为R,则集-射极电压Vce=VCC-Ib*hFE*R,随着Ib的增大,Vce减小,当Vce0.6V时,B-C结即进入正偏,Ice已经很难继续增大,就可以认为已经进入饱和状态了。当然Ib如果继续增大,会使Vce再减小一些,例如降至0.3V甚至更低,就是深度饱和了。以上是对NPN型硅管而言。 另外一个应该注意的问题就是:在Ic增大的时候,hFE会减小,所以我们应该让三极管进入深度饱和IbIc(max)/hFE,Ic(max)是指在假定e、c极短路的情况下的Ic极限,当然这是以牺牲关断速度为代价的。 注意:饱和时VbVc,但VbVc不一定饱和。一般判断饱和的直接依据还是放大倍数,有的管子VbVc时还能保持相当高的放大倍数。例如:有的管子将Ic/Ib10定义为饱和,Ic/Ib1应该属于深饱和了。 从晶体管特性曲线看饱和问题:我前面说过:谈论饱和不能不提负载电阻。现在再作详细一点的解释。 以某晶体管的输出特性曲线为例。由于原来的Vce仅画到2.0V为止,为了说明方便,我向右延伸到了4.0V。 如果电源电压为V,负载电阻为R,那么Vce与Ic受以下关系式的约束:Ic = (V-Vce)/R 在晶体管的输出特性曲线图上,上述关系式是一条斜线,斜率是 -1/R,X轴上的截距是电源电压V,Y轴上的截距是V/R(也就是前面NE5532第2帖说的“Ic(max)是指在假定e、c极短路的情况下的Ic极限”)。这条斜线称为“静态负载线”(以下简称负载线)。各个基极电流Ib值的曲线与负载线的交点就是该晶体管在不同基极电流下的工作点。见下图: 图中假定电源电压为4V,绿色的斜线是负载电阻为80欧姆的负载线,V/R=50MA,图中标出了Ib分别等于0.1、0.2、0.3、0.4、0.6、1.0mA的工作点A、B、C、D、E、F。据此在右侧作出了Ic与Ib的关系曲线。根据这个曲线,就比较清楚地看出“饱和”的含义了。 曲线的绿色段是线性放大区,Ic 随Ib的增大几乎成线性地快速上升,可以看出β值约为200。兰色段开始变弯曲,斜率逐渐变小。红色段就几乎变成水平了,这就是“饱和”。实际上,饱和是一个渐变的过程,兰色段也可以认为是初始进入饱和的区段。在实际工作中,常用Ib*β=V/R作为判断临界饱和的条件 。在图中就是假想绿色段继续向上延伸,与Ic=50MA 的水平线相交,交点对应的Ib值就是临界饱和的Ib值。图中可见该值约为0.25mA。 由图可见,根据Ib* β=V/R算出的Ib值,只是使晶体管进入了初始饱和状态,实际上应该取该值的数倍以上,才能达到真正的饱和;倍数越大,饱和程度就越深 。 图中还画出了负载电阻为200欧姆时的负载线。可以看出,对应于Ib=0.1mA,负载电阻为80欧姆时,晶体管是处于线性放大区,而负载电阻200欧姆时,已经接近进入饱和区了。负载电阻由大到小变化,负载线以Vce=4.0为圆心呈扇状向上展开。 负载电阻越小,进入饱和状态所需要的Ib 值就越大,饱和状态下的C-E压降也越大。 在负载电阻特别小的电路,例如高频谐振放大器,集电极负载是电感线圈,直流电阻接近0,负载线几乎成90度向上伸展(如图中的红色负载线)。这样的电路中,晶体管直到烧毁了也进入不了饱和状态。以上所说的“负载线”,都是指直流静态负载线;“饱和”都是指直流静态饱和。 用三极管需要考虑的问题: 1)耐压够不够 2)负载电流够不够大 3)速度够不够快(有时却是要慢速) 4)B极控制电流够不够 5)有时可能考虑功率问题 6)有时要考虑漏电流问题(能否“完全”截止)。 7)一般都不怎么考虑增益(我的应用还没有对此参数要求很高) 实际使用时,晶体管注意四个要素就行:-0.1~-0.3V振荡电路, 0.65-0.7V放大电路,0.8V以上为开关电路,β值中放、高放为30-40,低放60-80,开关100-120以上就行,不必研究其它的,研究它的共价键、电子、空穴没用 Vce=VCC(电源电压)-Vc(集电极电压)=VCC-Ic(集电极电流)Rc(集电极电阻)。 可以看出,这是一条斜率为-Rc的直线,称为“负载线”。当Ic=0时,Vce=Vcc。当Vce=0时(实际上正常工作时Vce不可能等于0,这是它的特性决定的),Ic=Vcc/Rc。也就是说,Ic不可能大于这个数值。对应的基极电流Ib=Ic/β=Vcc/βRc,这就是 饱和基极电流的计算公式 。 饱和分临界饱和和过度饱和两种状态。当Ib=Vcc/βRc时,三极管基本处于临界饱和状态。 当基极电流大于此值的两倍,三极管就基本进入深度饱和状态。 三极管深度饱和和临界饱和的Vce差很大。临界饱和压降大,但退出饱和容易;深度饱和压降小但不容易退出饱和。所以,不同用途选择的基极电流是不一样的。 还有,饱和压降和集电极电流有直接关系。集电极电阻越小,饱和集电极电流就越大,饱和压降越大。反之也相反( 集电极电阻越大,饱和集电极电流就越小,饱和压降越小 )。如果集电极电流5毫安时三极管饱和,9013、9012之类的饱和压降一般不超过0.6伏。基极电流超过两倍Vcc/βRc时,一般饱和压降就小到0.3V左右了。 转:这是我当年教电子技术时的一点心得,谈到三极管,初学的人很难理解,为了讲通讲透彻,我给学生做了一个形象的比喻:三极管就是一个资本家(全课堂哄然),比如一个生产手机的资本家,生产一部手机,原材料100元,售价400元,利润率400%,相对于三极管的放大倍数就是4,原来一天生产100部,利润好几万,资本家觉得这生意不错,想扩大利润,提高产能,改成一天生产200部,也就是三极管的输入电流增加了,这时资本家发现了,利润成倍上涨,好啊!随即改成一天生产300部,后来改成一天生产400部、500部……直到1000部,但是资本家很快发现,当产能超过800部时,利润就不再成比例上升了,而是缓慢上升,超过1000部,利润根本就不上升,维持原样,这是因为产量太大,市场饱和,售价下降等等,这时三极管就进入了饱和状态,输入电流再怎么增加,输出电流也不会增加。由于经济危机,产品销售不出去,资本家只好停产,每天一部也不生产,这时就相当于三极管进入截止状态,但是工厂总要维持,于是,就每天卖点原材料、废旧设备、废材料,或者组织工人打扫卫生,清理仓库和车间,卖点破烂,好歹每天能有点收益,这点收益就是三极管截止状态的漏电流。也就是说,输入端没有一点电流,输出端还是有些微电流的。从这个过程,我们可以发现,其实资本家只是放大了利润,原材料变成了成品,这中间要消耗大量的人力、脑力和电力。三极管与此类同,三极管电流放大其实放大的是三极管输入端的信号,输出的是放大之后的信号,中间要消耗大量的电能,这些电能必须是直流电,例如电池或者整流后的交流电。跟资本家维持工厂运转一样,人力、脑力和电力要基本维持稳定,不能天天乱变。当然对于功率放大三极管,道理基本一样,不过放大的是信号的电流和电压,当然,投入的人力、脑力和电力仍旧是必不可少的。三个级,基极是采购,集电极是加工车间,发射极是销售。
  • 热度 25
    2014-8-2 23:34
    2368 次阅读|
    0 个评论
    今天实验室开会,讨论电流互感器不能开路。   这个是在电气工程基础课程中学到的电气常识。还记得,吴老师当时讲,电流互感器是将原边电流变换成副边电流。电流互感器原边输入电流为交流恒流源,根据理想电流互感器原副边电流的变比等于匝数的反比,则副边电流也会是恒定的。当副边开路,就代表着副边电阻为空气电阻,为无穷大,因此恒定的副边电流流过无穷大的电阻,将会在副边产生无穷大的电压,危及人员安全。   电流互感器副边开路,外部表象大概是这样,但其本质的原因是什么?具体真实的表征是什么呢?   电流互感器的本质是变压器(参见变压器原理篇,变压器是电压驱动型还是电流驱动型。应该是电流驱动型,由电流产生磁场,磁场再转变成电流,加到线圈阻抗上表现为电压)。从外形上来看,变压器是在一个磁环(硅钢片、铁硅铝磁环等)上,分别绕上两组线圈。定义第一组为原边线圈,第二组为副边线圈。当在原边线圈加上一交变电压时,交变电压产生交变电流。这一变化的电流又会在磁芯中产生变化的磁场。根据楞次定律,磁芯中变化的磁通在副边感应出变化的电压。这就是变压器进行电压变换的基本原理。在理想变压器中,原边电流产生的磁芯磁通被感应出的副边电流产生的磁通完全抵消,因此原副边电压之比就等于原副边线圈匝数之比。   如果原边加的是恒定的电压,则在磁芯中产生的是恒定的磁场,由电磁学中的麦克斯韦方程组公式,恒定的磁场在副边线圈不能感应产生电流。这也可以由楞次定律得到定性的结论。   对于一般的变压器而言,在用作变压器使用时,认为原边所接的是电压源,根据变压器的原边等效电路,就可以计算副边电压。   在实际情况中,由于存在漏感和磁芯激磁阻抗等的影响,副边电压要略低于理想情况下的副边电压。当然可以通过在等效电路中引入漏抗,计算实际情况下的副边电压。   当变压器用作电流互感器(即原边所接的是电流源)时,由于电流周期变化,则在副边也会感应出周期变化的电流,理想情况下副边电流与原边电流的比例正好是其对应匝数的反比。因此在电流互感器开路时,会在副边因为感应产生高压。   在实际情况中,副边开路的电流互感器副边电压并不会是无穷大。因为根据变压器向原边折合的等效电路,副边开路就意味着副边阻抗无穷大,则其与激磁阻抗相并联,可以忽略。则副边折合电压就等于激磁阻抗上的分压(激磁阻抗一般在多大呢?)。这样计算下来,副边电压一般在几十伏到上百伏。即使该电压不是无穷大,较高的副边电压除了可能伤害人员外,还存在其他的问题,如破坏绝缘。所以必须要避免副边开路。   当电流互感器副边开路时,除了在副边感应产生高压,电流互感器还可能会出现饱和。其原因在于,副边开路时,等效电路为原边漏抗和激磁阻抗的串联,即副边阻抗的折合阻抗被忽略掉了(相比与之并联的激磁阻抗太大)。则原边电流直接作用在激磁阻抗上,较大的电流会造成磁芯的磁通增大,导致磁芯饱和。而在正常工作的电流互感器(即是副边有电阻,且其大小远小于激磁阻抗),副边电阻的折合阻抗相比激磁阻抗较小。则在与激磁阻抗并联时,激磁阻抗可以被忽略。或者可以说,原边电流并不会流过激磁阻抗,磁芯不会饱和。   总而言之,电流互感副边开路,将会在副边感应出高压,存在危及人身安全、破坏绝缘的隐患,还可能造成电流互感器磁芯饱和(磁芯饱和会有什么问题?)。因此,必须要避免电流互感器副边开路。