tag 标签: 扫描仪

相关博文
  • 热度 25
    2013-9-10 09:14
    1252 次阅读|
    1 个评论
      生物芯片是20世纪末随“人类基因组计划”的研究和发展而产生的一项高新技术,是人们高效地大规模获取生物信息的有效手段。目前大部分生物芯片采用荧光染料标记待测样品分子。生物芯片扫描仪用激光激发荧光染料,通过对激发点的成像,检测一个点;结合生物芯片X-Y二维精密扫描台上移动,实现对整片的扫描。 X-Y二维扫描台的位置检测精度直接影响着扫描分辨率——生物芯片扫描仪性能的关键参数。基于传统的数字电路的生物芯片扫描仪中X-Y二维扫描台的位置检测电路存在计数误差和误清零问题,本文以基于FPGA设计的位置检测电路来解决。以FPGA芯片代替传统的数字电路,不仅可提高系统的集成度和可靠性,而且FPGA最高工作频率已超过200MHz,通过硬件描述语言对FPGA编程,电路设计更加灵活,为生物芯片扫描仪进一步提高扫描速度和扫描分辨率留了更大的裕量。    1 X-Y二维扫描台位置检测原理   X-Y二维扫描台X向、Y向位置检测元件采用开式光栅,50线/mm,由专用细分尺10细分后,测量分辨为2μm。开式光栅直接利用光电转换原理输出三相方波A、B、Z相。A、B相方波相位差90°(如图1、2所示),Z相用于基准点定位,其逻辑电平都为5V。当A相方波超前B相方波90°时,表示位移方向为正方向,如图1所示;当A相方波滞后B相方波90°时,表示位移方向为反方向,如图2所示。扫描台X向、Y向每位移2μm,光栅发出一个周期的方波。 图1 2   因此,X-Y二维扫描台的位置检测首先要解决对光栅信号的辨向问题,辨别出X、Y向的位移方向;其次,为保证生物芯片扫描在最高扫描分辨率为5μm时仍有较高扫描质量,X、Y方向位置检测精度应高于2μm,以减少扫描台的定位误差,因此要对光栅信号进一步细分;此外,还要完成将光栅信号转换成控制器能读取的位置数据,当X向、Y向位移方向为正时,此位置数据递增;当X向、Y向位移方向为负时,此位置数递减,并要保证实时的准确可靠的提供X、Y向的位置数据,作为控制器(如单片机、DSP)精确定位X-Y二维扫描台位置的依据。   原有的生物芯片扫描仪中X-Y二维扫描台的一个方向的位置检测采用4倍频专用集成电路QA740210对光栅信号进行辨向、细分,用4片4位二进制74LS193计数器级联实现对细分后的光栅信号16位计数,计数值(即位置数据)通过2片8位74LS245缓冲器输出至控制器。这样,X、Y两个方向的位置检测电路多达14片芯片,占用大量的PCB空间,布线复杂,板上信号间的串扰易引起计数误差和误清零现象,影响扫描台的精确定位。若只用一片FPGA实现位置检测电路,输入为光栅信号,输出即为位置数据,直接送入控制器,避免PCB板间信号串扰,就能有效消除计数误差和误清零现象。    2 X-Y二维扫描台位置检测的FPGA设计方案   选用Spartan-II系列FPGA(XC2S15-5VQ100)作为X-Y二维扫描台的位置检测电路,并行的对X、Y两路光栅信号的进行辨向、细分、计数,并提供与控制器的接口,实时可靠的将X、Y向位置数据传送给控制器。   FPGA内部模块划分如图3所示:从X向光栅来的A、B两相方波信号XA,XB由X向辨向细分电路辨向细分后,输出两路脉冲信号XCU、XCD,16位计数模块分别对这两路脉冲信号进行计数,并将两计数值XUPCNT、XDOWNCNT相减,其差作为X向的16位位置数据XCNT。接口电路对3位地址信号ADDR译码,通过XCLR、YCLR对X、Y计数器分别清零,并选通X向或Y向位置数据输出到控制器。 图3   对Y向同样如此。本论文只以X向说明之。    2.1 辨向细分设计   由图1和图2可知,当光栅正向移动时,A相、B相的电平逻辑表现为“00”→“10”→“11”→“01”→“00” 序列;当光栅反向移动时,A相、B相的电平逻辑表现为“00”→“01”→“11”→“10”→“00”序列。因此,只要能辨别出这两种序列,就能实现辨向。   引入外部频率为10MHz的时钟源,利用这个时钟的上升沿同时对A相、B相信号采样,作为当前XA、XB值,以二维向量AB_new记之,AB_new通过一级触发器后,记为AB_old, AB_new 和AB_old都跟随A相、B相方波信号变化而变化,只是AB_old要滞后AB_new一个采样时钟周期。这样,就可以将AB_old和AB_new进行比较:当AB_old为“00”时,若AB_new为“10”,即A相超B相前90°,XCU输出一个负脉冲,XCD保持为高电平不变;若AB_new为“01”,即A相滞后B相90°,XCD输出一个负脉冲,XCU保持为高电平不变。X向光栅信号变化一个周期,如果A相超B相90°(位移方向为正),XCU就会输出四个负脉冲,如果A相滞后B相90°(位移方向为负),XCD就会输出四个负脉冲,同时实现了辨向与细分功能。    2.2 可逆计数器设计   用两个16位二进制计数器对两路脉冲信号XCU、XCD分别计数,然后用一个16位减法器对此两个计数器的计数值作差,被减数为XCU的计数值XUPCNT,减数为对XCD的计数值XDOWNCNT,其差作为X向的位置数据XCNT。这样, XCU有计数脉冲时,XCNT就会增加,而XCD有计数脉冲时,XCNT就会减小,实现了可逆计数。结合前面的辨向细分电路,使X向的位置数据在正向位移时增加,反向位移时减少。位置数据的变化真实反映了位移情况。    2.3 接口电路设计   接口电路是控制器实时可靠读取X向、Y向的位置数据或清零的接口。接口电路由译码电路、输出三态缓冲器组成。接口电路与控制器的16位数据线CNT用于FPGA向控制器传送位置数据,控制器的3位地址线ADDR作为译码电路的输入:能分别输出X、Y向位置数据,以及分别对X、Y向计数器清零。译码电路可使X向、Y向位置数据复用16位数据线,高效的利用控制器的端口资源;对3位地址信号译码产生清零信号,能有效地防止在只使用一根信号线时受干扰等原因而引起的误清零现象。    3 设计仿真和实现   在 ISE6.1i 开发平台上,用VHDL语言对辨向细分、计数、接口电路进行编程实现。图4是仿真波形。 图4   由图4可看出,X、Y向可并行的对光栅信号辨向、细分、计数,下面只以X向说明:辨向细分电路根据两路正交的方波信号XA、XB的相位差分别在XCU, XCD上输出频率为XA、XB4倍的计数脉冲,实现了辨向细分;可逆计数器分别对XA、XB计数,计数值的差XCNT随X向的位移方向的变化增加或减少;当控制器的地址译码信号ADDR为“101”时, X向的位置数据XCNT输出到16位数据线CNT;当ADDR为“110”时,FPGA将Y向的位置数据YCNT输出到CNT;当地址线ADDR为“001”时,X向位置数据XCNT清零,CNT表现为高阻态;当ADDR为“010”时,Y向位置数据YCNT清零, CNT表现为高阻态;当ADDR为其他任意值时,CNT都表现为高阻态,使控制器能向其他外设交换数据。将代码下载到XC2S15-5VQ100后,用于生物芯片扫描仪中,准确可靠的实现了位置检测功能。    4 结论   用FPGA实现X-Y二维扫描台的位置检测电路,提高了系统的集成度,位置检测快速可靠。并且,FPGA工作频率高、设计灵活,可减少生物芯片扫描仪进一步提升扫描速度和扫描分辨率的开发时间和成本。    参考文献   1 James R.Armstrong, F.Gail Gray. VHDL Design Representation and Synthesis. Prentice Hall PTR, Inc.2003   2 Xilinx DS001 September 3,2003
  • 热度 25
    2013-8-23 11:00
    8742 次阅读|
    3 个评论
    EPSON扫描仪拆解、原理分析、修理分辨率下降故障(有CCD电路图) wxleasyland@sina.com 2013.6.26   近十年前买的一台EPSON扫描仪,型号J141B,当时还400多块,放在家里也没怎么用上,总共也没扫过几张图。去年想用一下,结果发现扫出来不对劲,虽然可以出图,但分辨率差,调成300DPI也没用,而且颜色不对,偏红。 最近又想扫几张图,再重新装了驱动什么的,但故障依旧,于是拆之。   这个是型号铭牌:   这个是内部结构:   原理很简单:长条的CCFL灯照射稿件,反射光进入长条的窄缝中,缝中有镜头组。长条窄光线通过镜头射到线性CCD上,在线性CCD上感光,信号再传送到扫描仪USB主控中处理,再转成USB信号接到电脑上。 每次只感光一行,然后扫描仪主控芯片驱动步进电机,通过皮带使镜头组前进一行位置,再感光一下,然后再前进一行,再感光,依此类推。 扫描仪大约是A4稿件大小,长297mm,如果是300dpi,则是有3508行,即镜头组件前进完3508行后,就完成了整张A4纸的扫描。所以,镜头组件每次大约前进0.085mm,还是挺精细的。 A4纸宽是210mm,即按300dpi的话,线性CCD的分辨率是2480个像素。由于是彩色的,故每个像素需要3种颜色RGB感光点。   这是步进电机:   这是步进电机下面的齿轮组,齿轮组带动齿形皮带:   这个是扫描仪USB主控电路板上的元件:   芯片有:M5623(扫描仪主控)、WM8196(CCD信号处理的模拟前端芯片)、M12L16161A、L6219DS、063AB(即34063)。   这个是扫描仪USB主控电路板背面上的元件: 芯片有:7812,1117。 这是安装在镜头组件上的CCD电路板:   这个是背面: CCD电路板上的芯片有:线性CCD、HB04(即74HC04)、。 线性CCD芯片的窗口内有3条感应线,分别是红、绿、蓝线,但型号看不到,在芯片底下。 74HC04是用来驱动线性CCD用的。   CCD工作原理: 线性CCD像素上的光线强,像素感应的电荷就多,像素电压就高,所以CCD输出信号是电压模拟信号。模拟信号经过三极管共射电路,再进入WM8196(CCD信号处理的模拟前端芯片),WM8196内部有ADC,可以将模拟信号转换成数字信号,再进入到M5623(扫描仪主控)中处理。 驱动CCD就是用驱动信号将像素上的电荷信号一个个地转移出来,这个信号还分R、G、B三种。主控M5623输出驱动信号,经74HC04,再进入到CCD中。 具体扫描仪详细原理可参见别人写的: 《基于GL847的大幅面图像数据采集系统底层驱动软件研究与实现》(http://www.docin.com/p-472421556.html) 《基于GL847的扫描图像校正》(http://www.hqew.com/tech/sheji/660770.html)   费了很大劲画了CCD电路板的原理图:   在万用表测量中发现,左边那个74HC04的几个输出脚中,居然有近似对地短路的情况。将它焊下,再测,仍然是有近似对地短路的情况。于是判断很可能是那个74HC04损坏了,造成驱动信号丢失,因此产生分辨率下降、缺色的故障。 右边那个74HC04没有问题。 这个74HC04是TSSOP封装的,很难买,结果买成了SSOP的了,发现虽然脚对得上,但不好焊接,因为SSOP脚比TSSOP的短,空间又太小,怎么焊都焊不成功。后用热风*一下解决,还是热风*好用啊。 装上,试机,OK,故障解决了!!!! 其实,中间过程远没这么简单! CCD电路板上的螺丝孔是二个大孔,这样电路板的安装位置是可调节的!CCD电路板拆下后,装上校正是个大问题!!!! 因为CCD上的感光线一定要正正好对上镜头照过来的光线才行!偏一点,光线就偏了,照不到CCD感光线上了,这时,电脑上打开EPSON扫描软件时,会打开一下,就退出了!软件运行不了!因为软件发现没有CCD扫描信号。只有软件发现CCD有信号,才会继续运行! 厂家肯定有辅助软件进行CCD电路板安装调整,我可没有,没办法,只有一点点地试,先用纸张贴在CCD电路板的位置,手电筒照窄缝,描出光线出现的位置,再测量尺寸距离,再安装,慢慢尝试,最终才大体解决。 所以,拆CCD电路板前,一定要先做好电路板的位置记号!!!!  
  • 热度 39
    2011-1-27 16:15
    25383 次阅读|
    15 个评论
    昨天买了一个扫描仪,今天拿回来拆解了一下。觉得这个设计的非常有意思,拍了一些照片。特别说明,其实扫描仪的主题结构设计,比光谱仪多了步进电机和线扫描的光路以外,基本都是类似的。由于冷光管需要预热,而且随着使用寿命的增加,其亮度会变化,波动很大。因此LED的电路就变得可行了,不过这个设计不多,明基,中晶的都没有LED的CCD扫描仪。而佳能的已经往CIS+LED光源方向发展了。背景到此,上图了: 整个结构可以分为,主板,CCD与光路结构,步进电机。 CCD结构用了整块的薄铁板进行插件焊接,可能是为了防护。 LED有18个,是均匀排布的。按照驱动电路来看,是3个串联,分六路进行驱动的。 这里只用了很简单的三极管驱动限流的方式,估计寿命不会久。主要是LED电流很小,相信也就设计个3年差不多了。 主板带了钢盔,挺有意思的。     整个设计里头,有四个磁环。3个在内,1个在外。 1.步进电机驱动线圆形磁环 2.按键线磁环 3.主板与CCD板连接线磁环(隐藏的很深) 4.电源线上的磁环 看来设计人员很好的贯彻了“过不了EMC就加环”的策略。 我曾经拆解过明基的扫描仪,整个电路相当臃肿。包括电源的设计,使用了7805和7812,用了很大个的散热壳体。这款扫描仪里头,用了很小巧的电源降压电路,很大的稳压部分都搬到了外置的AC/DC上。这可能是设计理念的不同。 主要的芯片有三块,正面有1,背后有2。都是定制的ASIC芯片,有一块很小的usb芯片。 (完)
相关资源