tag 标签: 特征阻抗

相关博文
  • 热度 22
    2016-4-6 10:28
    1557 次阅读|
    0 个评论
    1.2.5 射频电缆 除了一些特殊应用外,比如高频天线馈线可能使用平衡线,射频信号传输用电缆几乎总是同轴电缆。同轴电缆的突出属性是信号沿着电缆传播产生的磁场被限制在电缆内部(图1.21),与外部环境的交互因此保持在最小程度。 图1.21 同轴电缆 图中文字从左至右:护套,屏蔽或外层导体,电介质,内部导体,磁场被限制在外层导体之内。 另外一个有用的属性是同轴电缆的特征阻抗很容易定义和保持。对射频应用来说这点很重要,因为在这些应用中电缆长度一般都会超过传输信号波长。1.3小节将讨论传输线的一般属性——其中同轴是一种特殊类型。通常在同轴参数规格中见到的参数有: ● 特征阻抗(Zo):通用标准是50Ω,这个值可以在机械属性和电路易用性方面取得很好的平衡。75Ω和93Ω标准常见于视频和数据系统。任何其它阻抗必须被认为是特殊类型阻抗。 ● 电介质材料。电介质材料会影响到电缆的各种属性,包括Zo、衰减、电压处理、物理属性和温度范围。固体聚乙烯或聚乙烯是标准材料。蜂窝状聚乙烯的部分电介质绝缘性能由空气间隙提供,因此可以提供较轻的重量和较小的衰减损耗,但比固体材料更容易产生物理变形。这两种材料的额定工作温度是85℃。聚四氟乙烯(PTFE)材料适用于更高温度(200℃)和更低损耗的应用,但价格要贵得多。 ● 导体材料。普遍用的是铜。有时也用电镀银,它能通过趋肤效应增强高频传导性,或将铜电镀到钢绞线上以增强强度。内部导体可以是单股或多股线。当电缆有柔韧性要求时,最好使用多股线。外部导体一般是铜编带,同样也是为了柔韧性。编带覆盖程度影响高频衰减和屏蔽效果。对于不要求柔韧性的特殊应用来说,可以使用坚硬的外部导体。 ● 额定电压。较厚的电缆通常具有较高的额定电压和较小的衰减。你不能轻易地将额定电压与功率处理能力联系在一起,除非电缆与其特征阻抗相匹配。如果电缆不匹配,会产生电压驻波,进而在电缆沿线的一些特殊位置产生峰值电压,这个值比从功率/阻抗关系推导出的值要高。 ● 衰减。电介质和导体的损耗特性导致衰减随频率和距离增加而增加,因此衰减数据一般提供离散频率点每10米的值,你可以从中找到你的工作频率点的衰减值。电缆损耗很容易让你抓狂,尤其是当你使用长电缆传输宽带宽信号、又忘了在末端放出额外几个dB的损耗余量时。 目前市场上的同轴电缆分成两种标准:针对RG/U(无线电政府,通用型)的美国MIL-C-17标准和针对UR-M(Uniradio)系列的英国BS 2316标准。国际标准是IEC 60096。表1.8给出了一些普通50Ω电缆的比较数据。 一句话警告:永远不要混淆带屏蔽层的音频电缆和射频同轴电缆。它们的编带和电介质材料有很大的区别,音频电缆的Zo是不确定的,高频时的衰减非常大。如果你试图用它来馈送射频信号,那么你在电缆末端是接收不到多少信号的!另一方面,射频同轴电缆可以用来承载音频信号。 《电子技术设计》网站版权所有,谢绝转载 1.2.6 双绞线 应该对双绞线给予特殊关照,因为它在减小磁性和电容干扰耦合方面特别有效方便。将两根线绞合在一起可以确保电容的均匀分布。到地的电容和到外部源的电容是平衡的。这意味着共模电容耦合也是平衡的,因此可以实现很高的共模抑制。 图1.22对双绞线和非双绞线(直线对)进行了比较,但需要注意的是,如果你的问题已经是共模电容耦合,那么将线绞起来是没有什么帮助的。要解决这个问题,你需要采用屏蔽技术。 图1.22:双绞线的优点。 图中文字从上至下:连续的半绞合可以抵消磁场感应,平衡的到地电容,双绞线,磁场感应不能被抵消,不平衡的到地电容,直线 绞给方法在减少低频电磁耦合方面最有用,因为它能将磁环面积减小到几乎为零。每个半绞合都会反转感应方向,因此假设外部磁场是均匀的,那么两个连续的半绞合会抵消线缆与磁场的交互作用。 有效的环路耦合现在被减小到线缆对两端的小块面积上,加上由于磁场的不均匀性和线缆绞合的不规则性引起的少量残余交互。假设终端面积包含在磁场中,那么单位长度内的绞合数量就不重要了:通常每英尺约8-16圈(每米26至50圈)。图1.23对22-AWG双绞线与间隔为0.032英寸的22-AWG并行线的磁场衰减与频率关系进行了比较。 图1.23 双绞线的磁场衰减。(数据来源:R.B.Cowdell在1979年IEEE EMC专题论文集第183页发表的文章“探索双绞线的秘密”) 将一对线绞合在一起的另外一个优势是支持完全可再现的特征阻抗。当与整体屏蔽结合在一起时可以减少共模电容耦合,这样的电缆非常适合高速数据通信,因为它既能减少辐射噪声,也能最大限度地减小感应干扰。 1.2.7 串扰 当同一条电缆束内有1个以上的信号要传输任何距离时,导线之间的互相耦合将使得一个信号的一部分馈送至另一个信号,反之亦然。这种现象被称为串扰。严格地讲,串扰不仅是一种电缆现象,而且是指名义上非耦合信道之间的任何有害的交互作用。这种耦合可能是电容主导,也可能是电感主导,或者是由于传输线现象造成的。 当电缆可以被看作是集总元件时(与之相反,高频时必须被看作是传输线),其低频至中频电容耦合的等效电路如图1.24所示。 图1.24: 串扰等效电路。 图中文字从上至下:电缆长度D,电缆电容Cc,针对电路1耦合进电路2的情况,串扰电压 在电容耦合阻抗远低于电路阻抗这种最坏情况下,串扰电压仅取决于电路阻抗的比值。 《电子技术设计》网站版权所有,谢绝转载 数字串扰 串扰在电信和音频领域是众所周知的,例如本来分开的语音通道在一起传送、一个通道串进另一个通道时,或者高频时分开的立体声通道又被组合在一起时。虽然数字化数据初看起来是不受串扰影响的,但事实上它对数据完整性也是一种严重的威胁。电容耦合对快速边沿几乎是透明的,结果是与时钟同步的数据特别容易受到破坏,如图1.25所示。如果逻辑噪声抗扰性能较差,可能导致严重的错误时钟。一些实际例子(见图1.25)展示了问题的实质。 图1.25:数字串扰效应。 图中文字从上至下:信号A,串扰耦合,时钟B,受破坏的时钟B (a) 源和负载阻抗都为10kΩ的两个音频电路使用2米长的多芯电缆传输信号,导体间的电容为150pF/m。此时在10kHz时的串扰比是多少呢? 耦合电容CC等于2m x 150pF/m=300pF。10kHz时的阻抗为53kΩ。 每种情况下串扰电路中的源和负载阻抗为10K//10K=5kΩ。 因此串扰等于: 5 K/(5 K + 5 K + 53 K) = 22 dB:这在任何情况下都是不可接受的!如果输出驱动阻抗从10kΩ减小到50Ω,那么串扰变为49/(49 + 49 + 53 K) = 60 dB:,这对许多应用来说都是可以接受的,虽然对Hi-Fi来说还是不可接受。 (b)两条EIA-232(RS-232)串行数据线采用了16米长的数据电缆(不是单独的双绞线),其芯/芯电容为108pF/m。发送器和接收器符合EIA-232规范,即具有300Ω输出阻抗、5kΩ输入阻抗、±10V摆幅和30 V/μs上升时间。那么由于某个电路引起而在另外一个电路上产生的干扰尖峰幅度有多大呢? 这里的耦合电容是16 × 108 pF = 1728 pF。 来自具有恒定dV/dt的斜坡电压、经t秒后在RC电路中流动的电流I = C × dV/dt (1 - exp )。在我们这个例子中,dV/dt=30 V/μs持续0.66 μs,电路电阻为567Ω,此时的电流为25mA。转换成阻值为(300//5 K//5 K)的负载电阻上的峰值电压为:25 × 10–3 × 267 = 6.8 V。这正是EIA-232不适合长距离和高数据速率的一个原因! 串扰可以有许多解决策略,从上述例子中可知一二。这些策略是: ● 减小电路的源和/或负载阻抗。理想情况下,侵害电路的源阻抗应该高,受害电路的源阻抗应该低。在耦合大小一定的情况下,低阻抗要求更高的电容。 ● 减小交互耦合电容。使用更短的电缆,或选择单位长度具有更低芯到芯电容的电缆。需要注意的是,对于快速或高频信号来说,这样解决不了任何问题,因为耦合电容的阻抗小于电路阻抗。如果你使用带状电缆,牺牲一些空间,将每根信号线之间的导线连到地;另外一种方法是采用具有完整地层的带状电缆。最好的方法是每个电路使用单独的屏蔽层。屏蔽层必须接地,否则这种方法不会给你带来任何好处。 ● 将信号电路带宽减小到系统的数据速率或频率响应要求的最小值。从上面的(b)可以看出,耦合效应直接取决于侵害信号的上升时间。较慢的上升时间意味着较小的串扰。如果增加一个与输入负载电阻(图1.24中的RL2)并联的电容,与芯到芯电容形成分压器,同样可以减小高频噪声的输入阻抗。 ● 使用差分传输。串扰的可怕是高数据速率时差分数据标准(如EIA-422(RS-422))和其它更新标准流行的主要原因。使用对线时没有必要减小耦合电容,但此时的串扰是以共模方式注入的,因此可以受益于输入缓冲器的共模抑制功能。抑制程度的限制因素是每半对线耦合电容的不平衡。这正是建议差分数据传输使用双绞线电缆的原因。 《电子技术设计》网站版权所有,谢绝转载
  • 热度 26
    2014-11-19 12:29
    1483 次阅读|
    0 个评论
    电源分配网络(PDN)的基本设计规则告诉我们,最好的性能源自一致的、与频率无关的(或平坦)的阻抗曲线。这是电源稳定性非常重要的一个理由,因为稳定性差的电源会导致阻抗峰值,进而劣化平坦的阻抗曲线,以及受电电路的性能。 由于没有阻抗路径是完全平坦的,所以我们需要做一些设计调整。本文旨在帮助你做出一些对系统性能影响最小的折衷。 源阻抗应该匹配传输线阻抗。 一般来说,这是S参数测量和所有射频设备的基本前提。源阻抗(最常见的是50Ω)连接到阻抗与源匹配的同轴电缆,负载也端接到相同的阻抗。这种做法实现了完美的平坦阻抗,不管是从源看到负载还是从负载看到源都是一致的。 稳压器的输出阻抗可以被认为是一个源,而PCB层可以看作是一根传输线。后端去耦电容就是负载。 传输线基本原理 当频率低于传输线谐振频率时,传输线特征阻抗可以用电感和电容项定义。电容可以在传输线远端没有端接时测量。电感可以在传输线远端短路时测量。传输线的特征阻抗取决于这两个测量结果,即: (1) 电感和电容交叉点的频率就是特征阻抗,等于: (2) 正确匹配的传输线呈现完全平坦的阻抗曲线,其幅度等于特征阻抗。不正确端接的传输线呈现为电容或电感性质,在传输线谐振频率的倍数处会产生许多谐振和抗谐振频率。如果传输线是电容性质,那么抗谐振首先发生。如果传输线是电感性质,那么谐振先发生。在两种情况下,首次谐振或抗谐振的频率为: (3) 图1用50Ω同轴电缆仿真显示了这些关系。未端接终端阻抗是在电缆末端开路、短路和匹配端接的情况下测量的。 图1:传输线近端阻抗开路(蓝色)、短路(红色)和正确匹配(绿色),另外一种有趣的关系。 在传输线和源不匹配的情况下,有两种可能的解决方案,具体取决于端接电阻是大于还是小于特征阻抗。如果端接电阻小于传输线的特性阻抗,那么抗谐振峰值会超过端接电阻。这些阻抗峰值被定义为: (4) 谐振最小值等于端接电阻。 如果端接电阻大于传输线的特征阻抗,那么谐振峰值等于端接电阻。抗谐振最小值被定义为: (5) 利用前面端接电阻分别是24.9Ω和210Ω的仿真模型可以显示这些关系,图2中端接电阻是匹配的。 图2:传输线未端接终端阻抗24.9Ω(蓝色)、210Ω(红色)和正确匹配(绿色)。 这些关系在图3的对端接24.9Ω和210Ω的50Ω同轴电缆测量中得到了确认。 图3:对端接210Ω(红色)和24.9Ω(蓝色)的50Ω同轴电缆的测量结果。 《电子技术设计》网站版权所有,谢绝转载 这些概念被扩展到实际的一块双面印刷电路板,在这块PCB上面积为4.5” x 6.3”的裸铜箔中心焊接有一个SMA连接器,如图4所示。 图4:利用一块面积为4.5”x6.3” 、一个边有个SMA连接器的双面铜箔板测量PCB的开路(绿色)和短路(橙色)阻抗。该阻抗还用SMA连接器正对面的2.7Ω(蓝色)和10Ω(红色)端接电阻进行了测量。电阻用非常短的编带连接到PCB,以便尽量减小互连电感。 我们可以使用图4中的示波器测量结果近似计算PCB的特征阻抗。电容是用标记M3估计的。 电容用70MHz、10dBΩ的那个点估计。 利用(1)可以计算出特征阻抗为: 另外,特征阻抗可以看作是开路阻抗和短路阻抗的交叉点,发生在近似11.5dBΩ或3.76Ω点。 也可以使用(4)和带2.7Ω端接电阻的近似峰值阻抗(14.5dBΩ)计算PCB的特征阻抗。 重新变换计算Zo, 可以用(3)计算第一个谐振频率或抗谐振频率,即: 用3.6Ω的端接电阻重复进行测量,如图5所示。 图5:用3.6Ω代替2.7Ω端接电阻对同一块PCB进行测量(红色)。注意,在采用3.6Ω的端接电阻后,只有少量峰值指示其特征阻抗稍大于3.6Ω。 对PCB进行仿真并与图5进行比较,结果如图6所示。 图6:PCB仿真结果与图5所示的测量结果进行比较。 最后,使用电源端的0.6Ω和3.6Ω源阻抗并在PCB谐振频率点仿真动态瞬时响应。仿真模型见图7,仿真结果见图8. 图7:用0.6Ω和3.6Ω源阻抗代表稳压器输出阻抗,在谐振频率点进行动态负载瞬时ADS仿真。 图8:瞬时响应仿真结果表明,0.6Ω较低源电阻(红色) 的瞬时响应比匹配的3.6Ω源电阻(蓝色)具有大得多的电压偏移。 该视频演示端接电阻在PCB板上频域和时域的影响 小结 本文讨论了几种确定电路板特征阻抗的方法,并用仿真模型定义了PCB特征与PDN性能之间的重要关系。在经过实际测量后,关系得到了确认。 可以通过观察第一个缺陷是谐振点还是抗谐振点来判断PCB阻抗是否大于或小于端接阻抗,端接阻抗是否大于PCB阻抗。 这些结果清晰地表明,为了优化PDN性能,必须使PCB层阻抗与稳压器的输出阻抗相匹配。最好是使PCB层阻抗等于稳压器的输出阻抗,如果不可能实现的话,PCB阻抗应该低于稳压器输出阻抗,以便更好地包含与峰值阻抗最大值相关的峰值偏移。 《电子技术设计》网站版权所有,谢绝转载
  • 热度 23
    2014-10-8 22:59
    3967 次阅读|
    1 个评论
    近年来,IC集成度的提高和应用,其信号传输频率和速度越来越高,因而在印制板导线中,信号传输(发射)高到某一定值后,便会受到印制板导线本身的影响,从而导致传 输信号的严重失真或完全丧失。这表明,PCB导线所“流通”的“东西”并不是电流,而是方波讯号或脉冲在能量上的传输。 上述此种“讯号”传输时所受到的阻力,另称为“特性阻 抗”,代表符号为Z0。 所以,PCB导线上单解决“通”、“断”和“短路”的问题还不够,还要控制导线的特性阻抗问题。就是说,高速传输、高频讯号传输的传输线,在质量上要比传输导线严格得多。不再是“开路/短路”测试过关,或者缺口、毛刺未超过线宽的20%,就能接受。必须要求测定特性阻抗值,这个阻抗也要控制在公差以内,否则,只有报废、返工。 对于有阻抗控制要求的板,目前,PCB工厂比较常见的做法就是在PCB的生产拼版板边适当位置设计一些阻抗试样,这些阻抗试样具有与PCB相同的分层和阻抗线构造。在设计阻抗试样前会预先采用一些阻抗计算软件对阻抗进行模拟计算,以便对阻抗进行预测。其中英国POLAR公司开发的CITS测试系统及计算软件自1991年起已经为许多PCB制造商所使用,而且操作简单、具有强大的功能计算能力。 接下来介绍一下Polar SI9000 软件的安装及**流程 1. 下载Polar SI9000 软件 地址:SI9000百度网盘下载 2. 解压并运行setup.exe启动安装进程 3. 会弹出一个系统找不到路径的对话框,点击OK,然后重新指定一个磁盘上合法的路径即可(避免包含中文及空格) 4. 接着一路”NEXT” 5. ** 首次运行SI9000,会弹出提示“指定License文件”对话框,选择“Specify the License File” 将Crack下的Licese文件si9000_2038.lic 拷贝到SI9000的安装目录下,并指定路径 大功告成 啥? 不会用?  …… 请深挖本站或进行订阅,详细Polar SI 9000 教程稍后送上。^_^ 原创文章,转载请注明:  转载自 http://www.mr-wu.cn/ 吴川斌的博客 本文链接地址:  PCB特征阻抗计算神器Polar SI9000安装及**指南 http://www.mr-wu.cn/polar-si9000-install-and-crack/
  • 热度 20
    2013-3-19 14:28
    1054 次阅读|
    0 个评论
              高速设计领域一个越来越重要也是越来越为设计工程师所关注议题就是受控阻抗的电路板设计以及电路板上互联线的特征阻抗。然而,对于非电子的设计工程师来说,这也是一个最容易混淆也最不直观的问题。甚至很多的电子设计工程师对此也同样感到困惑。这篇资料将对特征阻抗作一个简要而直观的介绍,希望帮助大家了解传输线最基本的品质。          什么是传输线? 两个具有一定长度的导体就构成传输线。其中的一个导体成为信号传播的通道,而另外的一个导体则构成信号的返回通路(在这里我们提到信号的返回通路,实际上就是大家通常理解的地,但是为了叙述的方便,暂且忘掉地这一概念。)。在一个多层的电路板设计中,每一个PCB互联线都构成传输线中的一个导体,该传输线都将临近的参考平面作为传输线的的第二个导体或者叫做信号的返回通路。什么样的PCB互联线是一个好的传输线呢?通常如果在同一个PCB互联线上特征阻抗处处保持一致,这样的传输线就成为高质量的传输线。什么样的电路板叫做受控阻抗的电路板?受控阻抗的电路板是指PCB板上所有传输线的特征阻抗符合统一的目标规范,通常是指所有传输线的特征阻抗的值在25Ω到70Ω之间。 从信号的角度来考察 考虑特征阻抗最行之有效的办法是考察信号沿着传输线传播时信号本身看到了什么。为简化问题的讨论起见,假定传输线为微波传输带(microstrip)类型,并且信号沿传输线传播时传输线各处的横断面保持一致。 给该传输线加入幅度为1V的阶跃信号。阶跃信号是一个1V的电池,由前端接入,分别连接在信号线和返回通路之间。在接通电池的瞬间,信号电压波形将以光速在电介质中行进,速度通常约为6英寸/ns(信号为什么行进如此快速,而不是接近电子传播的速度大约1cm/s,这是另外一个话题,这里不做进一步介绍)。当然在这里信号仍然具有常规的定义,信号定义为信号线与返回通路上的电压差,总是通过测量传输线上任何一点与之临近的信号返回通路之间的电压差值来获得。 信号沿传输线方向以6英寸/ns的速度向前传输。在传输的过程中信号会遇到什么样的情况呢?在最开始的10ps时间间隔内,信号沿传输线方向行进了0.06英寸的距离。假定锁定时间在这一时刻,来考虑传输线发生的情况。在行进的这一段距离上,信号的传输为这一段传输线和相应临近的信号返回通道之间建立起了稳定的幅度为1V的常量信号。这意味着在行进的这一段传输线和对应的返回路径上已经积聚起了额外的正电荷和额外的负电荷来建立这一稳定的电压。也正是这些电荷的差异在这两个导体之间建立并维持了一个稳定的1 V 电压信号,而导体之间稳定的电压信号就为两个导体之间建立了一个电容。 传输线上位于这一时刻信号波前后面的传输线段并不清楚会有信号要传播过来,因而仍然维持信号线同返回通路之间的电压为零。在接下来的10ps时间间隔内,信号又会沿传输线行进一定的距离,信号继续传播的结果是又会在另一段长度为0.06英寸的传输线段同对应的信号返回通路之间的建立起 1V的信号电压。而为了做到这一点,必须为信号线注入一定量的正电荷,同时为信号的返回通路注入同等数量的负电荷。信号沿传输线每传播0.06英寸的长度,都会有更多的正电荷注入该信号线,也会有更多的负电荷注入信号返回通路。每隔10ps时间间隔,就会有另外一段传输线被充电到1 V,同时信号也会沿传输线方向继续向前传播。 这些电荷从何而来?答案是来自信号源,也就是我们用来提供阶跃信号、连接在传输线前端的电池。随着信号在传输线上的传播,信号不断地为传播经过的传输线段充电,确保信号传输过程中所到之处信号线与返回路径之间建立并维持起1 V的电压。 每隔10ps时间间隔,信号会在传输线上传播一定的距离,并且从电源系统中汲取一定数量的电荷δQ。电池在一段时间间隔δt内的向外提供一定数量的电荷δQ,就形成了恒定的信号电流。 正的电流会从电池流入信号线,而与此同时同样大小的负电流会流经信号的返回路径。 流经信号返回通路的负电流同流入信号线的正电流大小完全一致。而且,就在信号波前的位置,AC电流流经由信号线和信号返回通路构成的电容,完成了信号环路。 传输线的特征阻抗 从电池的角度来看,一旦设计工程师将电池的引线连入传输线的前端,就总有一个常量值的电流从电池中流出,并且保持电压信号的稳定不变。也许有人会问,是什么样的电子元器件具有这样的行为?加入恒定不变的电压信号时会维持恒定不变的电流值,当然是电阻。 而对电池来说,信号沿传输线向前传播时,每隔10ps时间间隔,会新增加0.06英寸的传输线段被充电至1V,从电池中获得的新增加的电荷确保从电池中维持一个稳定的电流,从电池吸收恒定的电流,传输线就等同于一个电阻,并且阻值恒定。我们称之为传输线的浪涌阻抗。 同样,当信号沿传输线向前传播时,每传播一定的距离,信号会不断地探查信号线的电环境,并且试图确定信号进一步向前传播时的阻抗。一旦信号已经加入到传输线上并且沿传输线向前传播,信号本身就一直在考查到底需要多大的电流来充电10ps 时间间隔内所传播的传输线长度,并保持将这一部分的传输线段充电到1V。这正是我们要分析的瞬间阻抗值。 从电池本身的角度来看,如果信号以恒定的速度沿传输线方向传播,而且假定传输线具有一致的横断面,那么信号每传播一个固定的长度(比如10ps时间间隔内信号传播的距离),那么需要从电池中获取同等数量的电荷来确保将这一段传输线充电到同样的信号电压。信号每传播一个固定的距离,都会从电池获取同样的电流,并且保持信号电压一致,在信号传播过程中,传输线上各处的瞬间阻抗都是一致的。 信号沿传输线传播过程当中,如果传输线上各处具有一致的信号传播速度,并且单位长度上的电容也一样,那么信号在传播过程中总是看到完全一致的瞬间阻抗。由于在整个传输线上阻抗维持恒定不变,我们给出一个特定的名称,来表示特定的传输线的这种特征或者是特性,称之为该传输线的特征阻抗。特征阻抗是指信号沿传输线传播时,信号看到的瞬间阻抗的值。如果信号沿传输线在传播的过程当中,任何时候信号看到的特征阻抗都保持一致的话,那么这样的传输线就称为受控阻抗的传输线。         传输线特征阻抗是设计中最重要的因素 传输线的瞬间阻抗或者是特征阻抗是影响信号品质的最重要的因素。如果信号传播过程中,相邻的信号传播间隔之间阻抗保持一致,那么信号就可以十分平稳地向前传播,因而情况变得十分简单。如果相邻的信号传播间隔之间存在差异,或者说阻抗发生了改变,信号中能量的一部分就会往回反射,信号传输的连续性也会被破坏。 为了确保最佳的信号质量,信号互联设计的目标就是要确保信号在传输过程中看到的阻抗尽可能地保持恒定不变。这里主要是指要保持传输线的特征阻抗为常量。所以设计生产制造受控阻抗的PCB板就变得越来越重要。而至于任何其它的设计诀窍诸如最小化金手指长度、终端匹配、菊花链连接或者是分支连接等等都是为了确保信号能够看到一致的瞬间阻抗。 特征阻抗的计算 从上述简单的模型中我们可以推算出特征阻抗的值,即信号在传输过程中看到的瞬间阻抗的值。信号在每一个传播间隔里看到的阻抗Z有同基本的关于阻抗的定义一致 Z=V/I 这里的电压V是指加入到传输线上的信号电压,而电流I是指在每一个时间间隔δt内从电池中得到的电荷总量δQ,所以 I=δQ/δt 流入传输线中的电荷(这些电荷最终来自信号源),用于将信号在传播过程中新增的信号线与返回通路之间构成的电容δC充电至电压V,所以 δQ=VδC 我们可以将信号在传播过程中每行进一定的距离而导致的电容同传输线单位长度上的电容值CL以及信号在传输线上传播的速度U联系起来。同时信号传播的距离是速度U乘以时间间隔δt。所以 δC= CL U δt 将以上所有的等式结合起来,我们可以推导出来瞬间阻抗为: Z=V/I=V/(δQ/δt)=V/(VδC/δt)=V/(V CL U δt /δt)=1/(CL U) 可以看到瞬间阻抗同单位传输线长度上的电容值以及信号传输的速度有关。同样也可以人为这就是传输线特征阻抗的定义。为了将特征阻抗从实际阻抗Z中区分开来,特意为特征阻抗加入一个下标0,从上面的推导中已经得到了信号传输线的特征阻抗: Z0=1/(CL U) 如果传输线上单位长度的电容值以及信号在传输线上传播的速度保持为常量,那么该传输线就在其长度范围内具有恒定不变的特征阻抗,这样的传输线就称之为受控阻抗的传输线。 从以上简要的说明中看出,关于电容的一些直观的认识可以同新发现的特征阻抗的直观的认识联系起来。换句话说,如果把PCB中的信号连线拓宽,那么传输线单位长度上的电容值就会增大,而传输线的特征阻抗就可以降低。 耐人寻味的话题 经常可以听到有关传输线特征阻抗的一些混淆的说法。通过上面的分析知道,将信号源连接到传输线上之后,应该可以看到某一个值的传输线特征阻抗,举例来说50Ω,然而如果将一个欧姆表同一段3英尺长的RG58线缆连接时,测量到的阻抗却是无穷大。 问题的答案在于从任何传输线前端看过去的阻抗值是随时间变化的。如果测量线缆阻抗的时间短到可以和信号在线缆中来回往返一次的时间可以比拟时,你就可以测量到该线缆的浪涌阻抗或者又称为线缆的特征阻抗。然而如果等待足够的时间的话,就会有一部分能量反射回来并且为测量仪器检测到,这时就可以检测到阻抗的变化,通常情况下,在这一过程中,阻抗会来回变化,直到阻抗值达到一个稳定的状态:如果线缆的末端是开路,最终的阻抗值为无穷大,如果线缆的末端是短路,最终的阻抗值为零。 对于3英尺长的RG58线缆来说,必须在小于3ns的时间间隔内完成阻抗的测量过程。这就是时域反射计(TDR)要完成的工作。TDR可以测量传输线的动态阻抗。如果需要花1s的时间间隔来测量3英尺长的RG58线缆的阻抗,那么在这一段时间间隔内信号已经来回反射了几百万次,那么你可能从阻抗的巨大的变动中得到完全不同的阻抗的值,最终得到的结果是无穷大,因为线缆的终端是开路 转自:http://wenku.baidu.com/view/56517f47336c1eb91a375d22.html
  • 热度 20
    2012-10-19 15:09
    5804 次阅读|
    0 个评论
    差分线的特征阻抗是指两条差分线之间的阻抗,由电感、电容、电阻决定。 在PCB制板时可以指定差分线的特征阻抗。 在接收端为了保证信号的完整性要有匹配电阻,一般为100欧姆(和差分线的特征阻抗相近)。  如果在 在接收端如果没有匹配电阻的话,很容易导致信号的反射和震荡,破坏信号的完整性。
相关资源
  • 所需E币: 5
    时间: 2019-12-24 23:28
    大小: 355.43KB
    上传者: 978461154_qq
    摘要:本文介绍了一种基于微控制器的1-Wire®主机接口,适用于小规模、中等规模以及大规模的1-Wire网络。采用精细的阻抗匹配和"智能"(软件控制)强上拉、摆率控制等方法保证网络的可靠工作。本文给出了软件流程图,有助于用户利用任何适当的微控制器产生正确的复位脉冲、在线检测、写“1”、写“0”以及读时隙的1-Wire时序。示波器测试曲线说明了驱动器的时间特性以及远距离通信时传输线的影响。……
  • 所需E币: 3
    时间: 2019-12-24 22:54
    大小: 309.07KB
    上传者: 978461154_qq
    摘要:本文介绍了一种基于微控制器的1-Wire®主机接口,适用于小规模、中等规模以及大规模的1-Wire网络。采用精细的阻抗匹配和"智能"(软件控制)强上拉、摆率控制等方法保证网络的可靠工作。本文给出了软件流程图,有助于用户利用任何适当的微控制器产生正确的复位脉冲、在线检测、写“1”、写“0”以及读时隙的1-Wire时序。示波器测试曲线说明了驱动器的时间特性以及远距离通信时传输线的影响。性能优异的1-Wire网络驱动器BernhardLinke,首席技术专家Aug25,2004摘要:本文介绍了一种基于微控制器的1-Wire主机接口,适用于小规模、中等规模以及大规模的1-Wire网络。采用精细的阻抗匹配和"智能"(软件控制)强上拉、摆率控制等方法保证网络的可靠工作。本文给出了软件流程图,有助于用户利用任何适当的微控制器产生正确的复位脉冲、在线检测、写“1”、写“0”以及读时隙的1-Wire时序。示波器测试曲线说明了驱动器的时间特性以及远距离通信时传输线的影响。简介1-Wire网络的可靠性在很大程度上取决于主机与1-Wire从机器件之间所采用的通信驱动电路的性能。本文介绍了一种1-Wire主机端接口,采用精细的阻抗匹配和"智能"(软件控制)强上拉等方法,保证网络在轻载到重载范围内均能可靠工作,且通信距离可达500m。关于创建可靠的1-Wire网络指南,请参见应用笔记148。电路描述网络驱动器(图1)由下拉部分(Q1,R1,C1,R5)和上拉部分(Q2,R2,C2,R6)组成。晶体管Q3与周围的元件(C4、R7)组成强上拉电路,可为诸如EEPROM、温度传感器等器件提供额外电源。本文没有讨论"强上拉"的功能。任何时候,三个晶体管中最多只有一个处于导通状态;当1-Wire不进行通信("空闲"状态)时,这三个晶体管都不导通。图1.驱动器原理图R4、R1和R3的串联电路提供标准的1-Wire到VCC上拉。在这种电路情况下,总的上拉电阻近似为1kΩ。当1-Wire线空闲时,则线上呈现此阻抗。由于R4与Q1的漏极相连,因此Q1导通时电流会流过该电阻,但不会影响1-Wire总线的低电平电压。1-Wire总线电压升至5V的速度是由R4+R1+R3的电阻值和1-……