热度 18
2014-8-19 10:33
1686 次阅读|
0 个评论
概况 从波音747客机的导航操作、汽车驾驶每天都会使用的GPS导航系统,到寻宝者要找到深藏于森林某处的宝藏,GPS技术已经迅速融入于多种应用中。 正当创新技术不断提升GPS接收器效能的同时,相关的技术特性亦越来越完整。时至今日,软件甚至可建立GPS波形,以精确仿真实际的信号。除此之外,仪器总线技术亦不断提升,目前即可透过PXI仪控功能,以记录并播放实时的GPS信号。 介绍 由于GPS技术已于一般商用市场逐渐普及,因此多项设计均着眼于提升相关特性,如: 1)降低耗电量 2)可寻找微弱的卫星信号 3)较快的撷取次数 4)更精确的定位功能 透过此应用说明,将可了解进行多项GPS接收器测量的方法:灵敏度、噪声系数、定位精确度、首次定位时间,与位置误差。此篇技术文件是要能让工程师彻底了解GPS的测量技术。对刚开始接触GPS接收器测量作业的工程师来说,可对常见的测量作业略知一二。若工程师已具有GPS测量的相关经验,亦可透过此篇技术文件初步了解新的仪控技术。此篇应用说明将分为下列数个段落: 1.GPS 技术的基础 2.GPS 测量系统 3.常见测量概述 a. 灵敏度 b. 首次定位时间 (TTFF) c. 定位精确度与重复性 d. 追踪精确度与重复性 每个段落均将提供数项实作秘诀与技巧。更重要的是,读者可将自己的结果与GPS接收器获得的结果进行比较。透过自己的结果、接收器的结果,再搭配理论测量的结果,即可进一步检视自己的测量数据。 GPS导航系统介绍 全球定位系统(GPS)为空间架构的无线电导航系统,本由美国空军所研发。虽然GPS原是开发做为军事定位系统之用,却也对民间产生重要影响。事实上,您目前就可能在车辆、船舶,甚至移动电话中使用GPS接收器。GPS导航系统包含由24组卫星,均以L1与L2频带(Band)进行多重信号的传输。透过1.57542GHz的L1频带,各组卫星均产生1.023MchipsBPSK(二进制相位键移)的展频信号。展频序列则使用称为C/A(coarse acquisition)码的虚拟随机数(PN)序列。虽然展频序列为1.023Mchips,但实际的信号数据传输率为50Hz 。在系统的原始布署作业中,一般GPS接收器可达20~30公尺以上的精确度误差。此种误差肇因于美国军方依安全理由所附加的随机频率误差所致。然而,此称为选择性可靠度(Selective availability)误差信号源,已于2000年5月2日取消。在今天,接收器的最大误差不超过5公尺,而一般误差已降至1~2公尺。 不论是L1或L2(1.2276GHz)频带,GPS卫星均会产生所谓的“P码”附属信号。此信号为10.23MbpsBPSK的调变信号,亦使用PN序列做为展频码。军方即透过P码的传输,进行更精确的定位作业。在L1频带中,P码是透过C/A码进行反相位(Outofphase)的90度传输,以确保可于相同载波上测得此2种信号码 。P码于L1频带中可达-163dBW的信号功率;于L2频带中可达-166dBW。相对来说,若在地球表面的C/A码,则可于L1频带中达到最小-160dBW的广播功率。 GPS导航信号 针对C/A码来说,导航信号是由数据的25个框架(Frame)所构成,而每个框架则包含1500个位 。此外,每组框架均可分为5组300个位的子框架。当接收器撷取C/A码时,将耗费6秒钟撷取1个子框架,亦即1个框架必须耗费30秒钟。请注意,其实某些较为深入的测量作业,才有可能真正花费30秒钟以撷取完整框架;我们将于稍后讨论之。事实上,30秒钟仅为撷取完整框架的平均最短时间;系统的首次定位时间(TTFF)往往超过30秒钟。 为了进行定位作业,大多数的接收器均必须更新卫星星历(Almanac)与星历表(Ephemeris)的信息。该笔信息均包含于人造卫星所传输的信号数据中,,而每个子框架亦包含专属的信息集。一般来说,我们可透过子框架的类别,进而辨识出其中所包含的信息 : Sub-frame1:包含时序修正(Clock correction)、精确度,与人造卫星的运作情形 Sub-frame2-3:包含精确的轨道参数,可计算卫星的确实位置 Sub-frames4-5:包含粗略的卫星轨道数据、时序修正,与运作信息。 而接收器必须透过卫星星历与星历表的信息,才能够进行定位作业。一旦得到各组卫星的确实距离,则高阶GPS接收器将透过简单的三角表达式(Triangulation algorithm)回传位置信息。事实上,若能整合虚拟距离(Pseudorange)与卫星位置的信息,将可让接收器精确识别其位置。 不论是使用C/A码或P码,接收器均可追踪最多4组人造卫星,进行3D定位。追踪人造卫星的过程极为复杂,不过简单来说,即是接收器将透过每组卫星的距离,估算出自己的位置。由于信号是以光速(c),或为299,792,458m/s行进,因此接收器可透过下列等式计算出与人造卫星之间的距离,即称为“虚拟距离(Pseudorange)”: 等式1.“虚拟距离(Psedorange)”为时间间隔(Time interval)的函式 接收器必须将卫星所传送的信号数据进行译码,才能够获得定位信息。每个卫星均针对其位置进行广播(Broadcasting),接收器跟着透过每组卫星之间的虚拟距离差异,以决定自己的确实位置 。接收器所使用的三角测量法(Triangulation),可由3组卫星进行2D定位;4组卫星则可进行3D定位。 【分页导航】 第1页: GPS 技术的基础 第2页: 设定GPS测量系统:RF矢量信号发生器 第3页: 设定GPS测量系统:设定RF前端 第4页: GPS测量:灵敏度测量 第5页: GPS测量:首次定位时间与定位精确度 第6页: GPS测量:测量动态定位精确度 设定GPS测量系统 测试GPS接收器的主要产品,为1组可仿真GPS信号的RF矢量信号发生器。在此应用说明中,读者将可了解应如何使用NI PXI-5671与NI PXIe-5672RF矢量信号发生器,以达到测量目的。此产品并可搭配NI GPS工具组,以模拟1~12组GPS人造卫星。 完整的GPS测量系统亦应包含多种不同配件,以达最佳效能。举例来说,外接的固定式衰减器(Attenuator),可提升功率精确度与噪声层(Noise floor)的效能。此外,根据接收器是否支持其直接输入埠的DC偏压(Bias),某些接收器亦可能需要DC阻绝器(Blocker)。下图即为GPS信号产生的完整系统: 图1.GPS产生系统的程序图 如图1所示,当测试GPS接收器时,往往采用最高60dB的外接RF衰减(留白,Padding)。固定式衰减器至少可提供测量系统2项优点。首先,固定式衰减器可确保测试激发的噪声层低于-174dBm/Hz的热噪声层(Thermal noise floor)。其次,由于可透过高精确度RF功率计(Power meter)校准信号准位,因此固定式衰减器亦可提升功率精确度。虽然仅需20dB的衰减即可符合噪声层的要求,但若使用60~70dB的衰减,则可达到更高的功率精确度与噪声层效能。稍后将接着讨论RF功率校准,而图2抢先说明衰减对噪声层效能所造成的影响。 图2.不同衰减所需的仪器功率比较 如图2所示,衰减可用于减弱噪声,而不仅限于-174dBm/Hz的热噪声层。 RF矢量信号发生器 当选择RF矢量信号发生器时,NI abVIEW GPS工具组可同时支持NI PXI-5671与NI PXIe-5672RF矢量信号发生器。虽然此2款适配卡可产生GPS信号,但由于PCI Express总线速度较快,并可立刻进行IF等化(Equalization),因此NI PXIe-5672矢量信号发生器较受到青睐。此2款适配卡均具有6MB/s总数据传输率与1.5MS/s(IQ)取样率,可从磁盘串流GPS波形。 虽然PXI控制器硬盘可轻松维持此数据传输率,NI仍建议使用外接磁盘进行额外的储存容量。下图为包含NI PXIe-5672的常见PXI系统: 图3.包含NIPXIe5672VSG与NIPXI-5661VSA的PXI系统 GPS工具组可于完整导航信号期间,建立最长12.5分钟(25个框架)的波形。依6MB/s的取样率,则最大档案约为7.5GB。由于上述的波形档案尺寸,所有的波形均可储存于多款硬盘选项之一。这些波形储存资源选项包含: o PXI控制器的硬盘(推荐使用120GB硬盘升级) o 如HDD8263与HDD8264的外接RAID装置 o 外接USB2.0硬盘(已透过Western Digital Passport硬盘进行测试) 上述各种硬盘设定,均可支持超过20MB/s的连续数据串流作业。因此,任何储存选项均可仿真GPS信号,并进行记录与播放。在稍后的段落中,将说明仿真与记录GPS波形的整合作业,并进行GPS接收器效能的特性参数描述(Characterization)作业。 建立仿真的GPS信号 由于GPS接收器是透过天线传输数据,并取得卫星星历与星历信息;当然,仿真的GPS信号亦需要该项信息。卫星星历与星历信息,均透过文本文件表示,可提供卫星位置、卫星高度、机器状态,与绕行轨道的相关信息。此外,在建立波形的过程中M,亦必须选择客制参数,如星期时间(TOW)、位置(经度、纬度、高度),与仿真的接收器速率。以此信息为基础,工具组将自动选择最多12组人造卫星、计算所有的都卜勒位移(Doppler shift)与虚拟距离(Pseudorange)信息,并接着产生所需的基带波形。为了可尽快入门,工具组安装程序亦包含范例的卫星星历与星历档案。此外,更可由下列网站直接下载: ·Almanac information (The Navigation Center of Excellence) http://navcen.uscg.gov/gps/almanacs.htm ·Ephemeris information (NASA Goddard Space Flight Center) http://cddis.gsfc.nasa.gov/gnss_datasum.html#brdc 透过客制的卫星星历与星历档案,即可建立特定日期与时间的GPS信号,甚至可回溯数年以前。请注意,当选择这些档案时,必须选择与日期相对应的档案。一般来说,卫星星历与星历信息为每日更新,因此当选择特定时间与日期时,亦应选择同1天的档案。下载的星历档案往往为压缩的“*.Z”格式。因此,在搭配使用GPS工具组之前,档案必须先行解压缩。 只要使用工具组中的“自动模式(Automatic mode)”,即可囊括大多数的GPS模块作业,并可透过程序设计的方式,计算都卜勒与随机距离信息;当然,此功能亦提供手动模式。在手动模式(Manual mode)中,使用者可个别指定每组人造卫星的信息。图4即显示此2种作业模式所提供的输入参数。 1LLA(longitude,latitude,altitude) 图4.GPS工具组自动与手动模式的默认值 请注意,工具组将根据所指定的星历档案,于可能的数值范围中强制设定GPS的TOW。因此,若选择的数值超出该星历档案的范围,工具组将自动设定为最接近的数值并提醒使用者。“niGPS Write Waveform To File”范例程序即可建立GPS基带波形(自动模式),而其人机接口即如下图所示。 图5.简单的范例程序即可建立GPS测试波形。 请注意,某些特定测量作业,将决定用户所建立GPS测试的文件类型。举例来说,当测量接收器灵敏度时,将仿真单一人造卫星。另一方面来说,需要定位作业的测量(如TTFF与位置精确度),所使用的GPS信号将仿真多组人造卫星。基于上述需求,NIGPS工具组所搭配的范例程序,将同时包含单位星与多重卫星仿真功能。 记录空气中的GPS信号 建立GPS波形时,其独特又日趋普遍的方式,即是直接从空气中撷取之。在此测试中,我们使用矢量信号分析器(如NI PXI 5661)记录信号,再透过矢量信号发生器(如NI PXIe-5672)产生已记录的信号。由于在记录GPS信号时,亦可撷取实际的信号减损(Impairments),因此在播放信号时,可进一步了解接收器于布署环境中的作业情形。 只要透过极为直接的方式,即可撷取空气中的GPS信号。在RF记录系统中,我们将适合的天线与放大器,搭配使用PXI矢量信号分析器与硬盘,以撷取最多可达数个小时的连续数据。举例来说,1组2TB的RAID磁盘阵列,即可记录最多25个小时的GPS波形。由于此篇技术文件将不会讨论串流的特殊技术,因此若需要相关范例程序代码,请至:http://www.ni.com/streaming/rf。透过下列段落,即可了解应如何针对RF记录与播放系统,设定合适的RF前端。 不同类型的无线通信信号,均需要不同的带宽、中央频率,与增益。以GPS信号来说,基本系统需求是以1.57542GHz的中央频率,记录2.046MHz的RF带宽。依此带宽需求,至少必须达到2.5MS/s(1.25x2MHz)取样率。注意:此处的1.25乘数,是根据PXI-5661数字降转换器(DDC)于降频(Decimation)阶段的下降(Roll-off)滤波器所得出。 在下方说明的测试作业中,我们使用5MS/s(20MB/s)取样率以撷取完整的带宽。由于标准PXI控制器硬盘即可达到20MB/s或更高的数据流量,因此不需使用外接的RAID亦可将GPS信号串流至磁盘。然而,基于2个理由,我们仍建议使用外接硬盘。首先,外接硬盘可提升整体的数据储存量,并记录多组波形。其次,外接硬盘不会对PXI控制器的硬盘造成额外负担。在下方说明的测试作业中,我们采用1组USB2.0的外接硬盘。此硬盘为320GB的Western Digital Passport,具有5400RPM的硬盘转速。在我们的测试作业中,一般读取速度约落在25~28MB/s。因此该款硬盘可同时用于GPS波形数据串流的仿真(6MB/s)与记录(20MB/s)作业。 GPS信号记录作业最为特殊之处,即是选择并设定合适的天线与低噪声放大器(LNA)。透过一般被动式平面天线(Passive patch antenna),即可于L1GPS频带中发现介于-120~-110dBm的常见峰值功率(此处为-116dBm)。由于GPS信号的功率强度极小,因此必须进行放大作业,以使矢量信号分析器可撷取卫星信号的完整动态范围。虽然有多个方法可将合适的增益强度套用至信号,不过我们发现:若使用主动式GPS天线搭配NIPXI-5690前置放大器(Pre-amplifier)时,即可达到最佳效果。若串联2组各可达30dB增益的LNA,则总增益则可达到60dB(30+30)。因此,矢量信号分析器可测得的峰值功率,将从-116dBm提升至-56dBm。下图即为该项设定的范例系统: 图6.GPS接收器与串联的LNA。 请注意,记录操作系统的必备组件之一,即为主动式GPS天线。主动式(Active)GPS天线,包含1组平面天线与1组LNA。此款天线一般均需要2.5V~5V的DC偏压电压,并仅需约$20美金即可购买现成产品。为了简单起见,我们使用1组天线搭配1组SMA接头。我们将于下列段落中看到,在RF前端的第一组LNA噪声图形极为重要;该图形将可确认进行记录作业的仪控,是否对无线信号构成最低噪声。亦请注意,图6中的矢量信号分析器为简化图标。实际的PXI-5661为3阶段式超外差(Super-heterodyne)矢量信号分析器,较复杂于图中所示。 若将60dB套用至无线信号中,则可于L1中得到约-60~-50dBm的峰值功率。若以扫频(Swept spectrum)模式设定VSA并分析整体频谱,则亦将发现L1频带(FM与移动电话)之外的带功率(Power in band),其强度将高于GPS信号。然而,带外(Out-of-band)信号的峰值功率一般均不会超过-20dBm,且将透过VSA的多组带通(Band pass)滤波器之一进行滤波作业。若要检视记录装置的RF前端是否达到应有效率,最简单的方法之一即为开启RFSA示范面板的范例程序。透过此程序,即可于L1GPS频带中呈现RF频谱。图7即为常见的频谱。请注意,此频谱截图是透过GPS中心频率于室外所得。主动式GPS天线与PXI-5690前置放大器,可达到60dB的总增益。 中心频率:1.57542GHz 展频(Span):4MHz RBW:10Hz 平均:RMS、20Averages 图7.仅透过极小的分辨率带宽(RBW),才可于频谱中呈现GPS 此处使用前面所提到的RF记录与播放LabVIEW范例程序;设定-50dBm的参考准位、1.57542GHz中央频率,与5MS/s的IQ取样率。下图即显示设置范例的人机接口: 图8.RF记录与播放范例的人机接口。 GPS信号的最长记录时间,将根据取样率与最大储存容量而定。若使用2TB容量的Raid磁盘阵列(Windows XP所支持的最大磁盘),将可透过5MS/s取样率记录最多25个小时的信号。 【分页导航】 第1页: GPS 技术的基础 第2页: 设定GPS测量系统:RF矢量信号发生器 第3页: 设定GPS测量系统:设定RF前端 第4页: GPS测量:灵敏度测量 第5页: GPS测量:首次定位时间与定位精确度 第6页: GPS测量:测量动态定位精确度 设定RF前端 由于串联的LNA可提供60dB的增益,因此使用者可大幅提升矢量信号分析器前端的功率。在我们的测量作业中,60dB的增益即足以将峰值功率从-116dBm提升至-56dBm。而透过60dB的增益(与1.5dB的噪声系数),信号的噪声功率将为–112dBm/Hz(-174+增益+F)。因此,所能撷取到的讯噪比(SNR)最高可达56.5dB(-56dBm+112.5dBm),亦低于实际的仪器动态范围。由此可知,若有80dB的动态范围,则VSA将可记录最大的SNR,且不会有无线信号的噪声影响。 当要记录任何无线信号时,可将参考准位设定高出一般峰值功率至少5dB,以因应任何信号强度的异常现象。在某些情况下,虽然上述此步骤将降低VSA的有效动态范围,但GPS信号却不会受到影响。由于GPS信号于天线输入的最大理想SNR即为58dB(-116+174),因此若于VSA记录超过58dB的动态范围将无任何意义。因此,我们甚至可以“抛弃”仪器的动态范围达10dB以上,亦不会影响记录信号的质量(在此带宽中,PXI-5661将提供优于75dB的动态范围)。 由于必须设定合适的参考准位,适当设定记录装置的RF前端亦显得同样重要。如先前所提,若要获得最佳的RF记录数据,则建议使用主动式GPS天线。由于主动式天线内建LNA,以低噪声系数提供最高30dB的增益,因此亦可供应DC偏压。下方将接着说明多种偏压方式。 方法1:以GPS接收器进行供电的主动式天线 第一个方法,是以DC偏压“T”供电至主动式天线。在此范例中,我们将DC信号(此为3.3V)套用至偏压“T”的DC埠,且“T”又将合适的DC偏移套用至主动式天线。请注意,此处将根据主动式天线的DC功率需求,进而决定是否套用精确的DC电压。下图即说明相关连结情形。 图9.使用DC偏压“T”供电至主动式GPS天线 在图9中可发现,PXI-4110可程序化DC电源供应器,即可供应DC偏压信号。虽然多款现成的电源供应器(其中亦包含价位较低的电源供应器)均可用于此应用中,我们还是使用PXI-4110以简化作业。同样的,现有常见的偏压器(Bias tee)可进行最高1.58GHz的作业,而此处所使用的偏压器购自于www.minicircuits.com。 方法2:以接收器供电至主动式天线 供电至主动式GPS天线的第二个方法,即是透过天线本身的接收器。大多数的现成GPS接收器,均使用单一端口供电至主动式GPS天线,且此端口亦透过合适的DC信号达到偏压。若将主动式GPS接收器整合分裂器(Splitter)与DC阻绝器(Blocker),即可供电至主动式LNA,并仅记录GPS接收器所获得的信号。下图即为正确的连结方式: 图10.透过DC阻绝器(Blocker),将可记录并分析GPS信号 如图10所示,GPS接收器的DC偏压即用以供电至LNA。请注意,由于当进行记录时,即可观察接收器的相关特性,如速度与精确度衰减(Dilution)情形,因此方法2特别适用于驱动程序测试。 串联式(Noise figure)噪声系数计算 若要计算已记录GPS信号的总噪声量,只要找出整体RF前端的噪声系数即可。就一般情况来说,整组系统的噪声系数,往往受到系统的第一组放大器所影响。在所有RF组件或系统中,噪声系数均可视为SNRin与SNRout(参阅:测量技术的噪声系数)的比例。当记录GPS信号时,必须先找出整体RF前端的噪声系数。 当执行串联式噪声系数计算时,必须先行针对每笔噪声系数与增益,将之转换为线性等式;即所谓的“噪声因子(Noise factor)”。当以串联的RF组件计算系统的噪声系数时,即可先找出系统的噪声因子,并接着转换为噪声系数。因此系统的噪声系数必须使用下列等式计算之: 等式2.串联式RF放大器的噪声系数计算作业 请注意,由于噪声因子(nf)与增益(g)属于线性关系而非对数(Logarithmic)关系,因此以小写表示之。下列即为增益与噪声系数,从线性转换为对数(反之亦然)的等式: 等式3到等式6.增益与噪声系数的线性/对数转换 内建低噪声放大器(LNA)的主动式GPS天线,一般均提供30dB的增益,且其噪声系数约为1.5dB。在仪控记录作业的第二阶段,则由NIPXI-5690提供30dB的附加增益。由于其噪声系数较高(5dB),因此第二组放大器仅将产生极小的噪声至系统中。在教学实作中,可针对记录仪控作业的完整RF前端,使用等式2计算其噪声因子。增益与噪声系数值即如下图所示: 图11.RF前端的首2组组件噪声系数与因子。 根据上列计算,即可找出接收器的整体噪声因子: 等式7.RF记录系统的串联噪声系数 若要将噪声因子转换为噪声系数(单位为dB),则可套用等式3以获得下列结果: 等式8.第一组LNA的噪声系数将影响接收器的噪声系数 如等式8所示,第一组LNA(1.5dB)的噪声系数,将影响整组测量系统的噪声系数。透过VSA的相关设定,可让仪器的噪声水平(Noise floor)低于输入激发的噪声水平,因此用户所进行的记录作业,将仅对无线信号造成1.507dB的噪声。 对GPS接收器发出信号 由于多款接收器可使用合适的软件,让用户呈现如经度与纬度的信息,因此需要更标准化的方式进行自动测量作业。还好,目前有多款接收器均可透过众所周知的NMEA-183协议,以设定对PXI控制器发出信号。如此一来,接收器将可透过序列或USB连接线,连续传送相关指令。在NILabVIEW中,所有的指令均可转换语法,以回传卫星与定位信息。NMEA-183协议可支持6种基本指令,并各自代表专属的信息。这些指令即如下表所示: 图12.基本NMEA-183指令概述 以实际测试需要而言,GGA、GSA,与GSV指令应最为实用。更值得一提的是,GSA指令的信息可用于了解接收器是否可达到定位作业需要,或可用于首次定位时间(Time To First Fix,TTFF)测量。当执行高敏感性的测量时,实际可针对所追踪的卫星,使用GSV指令回传C/N(Carrier-to-noise)比。 虽然无法于此详细说明MNEA-183协议,但可至其他网站寻找所有的指令信息,如:http://www.gpsinformation.org/dale/nmea.htm#RMC.在LabVIEW中,这些指令可透过NI-VISA驱动程序转换其语法。 图13.使用NMEA-183协议的LabVIEW范例 【分页导航】 第1页: GPS 技术的基础 第2页: 设定GPS测量系统:RF矢量信号发生器 第3页: 设定GPS测量系统:设定RF前端 第4页: GPS测量:灵敏度测量 第5页: GPS测量:首次定位时间与定位精确度 第6页: GPS测量:测量动态定位精确度 GPS测量技术 目前有多种测量作业可为GPS接收器的效能进行特性描述(Characterization),其中亦有数种常见测量可套用至所有的GPS接收器中。此章节将说明执行测量的理论与实作,如:灵敏度、首次定位时间(TTFF)、定位精确度/可重复性,与定位追踪不定性(Uncertainty)。应注意的是,还有许多不同的方式可检验定位精确度,并执行接收器追踪功能的测试。虽然接着将说明多种基本方式,但仍无法概括所有。 灵敏度(Sensitivity)测量作业介绍 灵敏度为GPS接收器功能的最重要测量作业之一。事实上,对多款已量产的GPS接收器来说,仅限为最后生产测试所执行的RF测量而已。若深入来说,灵敏度测量即为“接收器可追踪并接收上方卫星定位信息的最低卫星功率强度”。一般人均认为,GPS接收器必须串联多组LNA以达极高的增益,才能将信号放大到合适的功率强度。事实上,虽然LNA可提升信号功率,亦可能降低SNR。因此,当GPS信号的RF功率强度降低时,SNR也将跟着降低,最后让接收器无法追踪卫星。 多款GPS接收器可指定2组敏感值:撷取灵敏度(Acquisition sensitivity)与信号追踪灵敏度(Signal tracking sensitivity) 。如字面上的意思,撷取灵敏度为“接收器可进行定位的最低功率强度”。相反而言,信号追踪灵敏度为“接收器可追踪各个卫星的最低功率强度”。 以基本概念而言,我们可将灵敏度定义为“无线接收器产生所需最低位错误率(BER)的最低功率强度”。由于BER与载波噪声(Carrier-to-noise,C/N)比息息相关,因此灵敏度一般均是透过已知的接收器输入功率强度,得出所需的C/N值而定。 请注意,各组卫星的C/N值,均可直接透过GPS接收器的芯片组而得。目前有多种方式可计算出此项数值,而某几款接收器却是计算发讯日期(Messagedate)而得出约略值。当透过高功率测试激发进行模拟时,新款GPS接收器一般均可得到54~56dB-Hz的C/N峰值。由于即便是万里无云的晴空,GPS接收器亦可能得出30~50dB-Hz的C/N值;因此该C/N限值尚属于正常范围之内。一般GPS接收器均必须达到最小C/N比值,才能符合28~32dB-Hz的定位(撷取灵敏度)范围。因此,某些特殊接收器的灵敏度可定义为“接收器产生最低定位C/N比值所需的最低功率强度”。 理论上来说,单一卫星或多组卫星测试激发均可测量灵敏度。而实务上来看,由于已可轻松且稳定发出所需的RF功率,因此往往是以单一卫星模式进行测量作业。依定义而言,灵敏度为接收器回传最小C/N比值的最低功率强度。在接下来的讨论中,则可发现接收器的灵敏度甚为依赖RF前端的噪声指数(Noisefigure。就数学表达式来看,我们可根据下列等式发现灵敏度与接收器噪声指数之间的关联性: 等式9.灵敏度为C/N与噪声指数所构成的函式。 在等式9中,灵敏度可表达为C/N比值与噪声指数的函式。举例来说,定位追踪所需的最低C/N为32dB-Hz,则噪声指数为2dB的接收器将具有-140dBm(-174+32+2)的灵敏度。然而,当单独测试基带(Baseband)收发器时,往往忽略了第一组LNA。一般接收器为下图所示: 图14.GPS接收器往往串联多组LNA 如图14所示,一般GPS接收器均是串联了多组LNA,为GPS信号提供高效率的增益。如先前所说,第一组LNA将决定整组系统的噪声指数。图14中,我们先假设LNA1具有30dB的增益与1.5dB的NF。此外,我们假设整个RF前端具有40dB的增益与5dB的NF。接着请注意,由于LNA2之后的噪声功率将超过-174dBm/Hz的热噪声(Thermal noise),因此带通(Bandpass)滤波器将同时减弱信号与噪声。如此将几乎不会对SNR造成任何影响。最后,我们假设GPS芯片组可产生40dB的增益与5dB的噪声指数。即可计算出整组系统的噪声指数为: 图15.线性与对数模式的增益与NF 根据上列计算,即可找出接收器的整体噪声因子: 等式10与11.第一组LNA的噪声系数将影响接收器的噪声系数 透过等式10与11来看,若GPS接收器连接已启动的天线,则其噪声指数约可达1.5dB。请注意,我们已经先忽略了相关噪声指数等式中的第三项条件。由于此数值极小,基本上可将之忽略。 在某些案例中,GPS接收器的作业天线会搭配使用内建LNA。因此测试点将忽略接收器的第一组LNA。如此一来将透过第二组LNA得出噪声指数,且其往往又大于第一组LNA的噪声指数。若将LNA1移除,则可透过下列等式得出LNA2的噪声指数。 等式12与13.移除第一组LNA所得到的接收器噪声指数 如等式12与13所示,若将具备最佳噪声指数的LNA移除,则将大幅影响整组接收器的噪声指数。请注意,虽然此“常见”GPS接收器噪声指数的计算范例纯为理论叙述,但仍具有其重要性。由于接收器所呈现的C/N比值,实在与系统的噪声系数密不可分,因此系统的噪声系数可协助我们设定合适的C/N测试限制。 单一卫星灵敏度测量 在了解灵敏度测量的基本理论之后,接着将进行实际测量的各个程序。一般测试系统均是透过直接联机,将模拟的L1单一卫星载波送入至DUT的RF通讯端口中。为了获得C/N比值,我们将接收器设定透过NMEA-183协议进行通讯。在LabVIEW中,则仅需串联3笔GSV指令,即可读取最大的卫星C/N值。 根据GPS规格说明,单一L1卫星若位于地球表面,则其功率应不低于-130dBm 。然而,消费者对室内与户外的GPS接收器使用需求,已进一步压低了测试限制。事实上,多款GPS接收器可达最低-142dBm定位追踪灵敏度,与最低-160dBm信号追踪。在一般作业点(Operatingpoint)时,大多数的GPS接收器均可迅速持续锁定低于6dB的信号,因此我们的测试激发则使用-136dBm的平均RF功率强度。 若要达到最佳的功率精确度与噪声水平(Noise floor)效能,则建议针对RF矢量信号发生器的输出,使用外接衰减。在大多数的案例中,40dB~60dB的外接衰减,可让我们更接近线性范围(功率≥-80dBm),妥善操作产生器。由于各组接收器的定位衰减(Fix attenuation)均不甚固定,因此必须先行校准系统,以决定测试激发的正确功率。 在校准程序中,我们可考虑:1)信号的峰值平均比(Peak-to-average ratio)、衰减器各个部分的差异,还有任何接线作业可能的插入损耗(Insertionl oss)。为了校准系统,应先从DUT切断联机,再将该联机接至RF矢量信号分析器(如PXI-5661)。 PartA:单一卫星校准 当执行灵敏度测量时,RF功率强度的精确性,实为信号发生器最重要的特性之一。由于接收器可获得0数字精确度的C/N值(如34dB-Hz),因此生产测试中的灵敏度测量可达±0.5dB的功率精确度。因此,必须确保我们的仪控功能至少要达到相等或以上的效能。由于一般RF仪控作业是专为大范围功率强度、频率范围,与温度条件所设计,因此在执行基本系统校准时,测量的可重复性(Repeatability)应远高于特定仪器效能。下列章节将进一步说明可确保RF功率精确度的2种方法。 方法1:单一被动式RF衰减器: 虽然使用外接衰减,是为了确保GPS信号产生作业可达最佳噪声密度,但实际仅需20dB的衰减,即可确保噪声密度低于-174dBm/Hz。当使用20dB的固定板(Pad)时,仅需将仪器设定为超过20dB的RF功率强度即可。为了达到-136dBm的目标,仪器应程序设计为-115dBm(假设1dB的连接线插入损耗),且将20dB衰减器直接连至产生器的输出。则所达到的RF功率将为-136dBm,但仍具有额外的不确定性。假设20dB的固定板具有±0.25dB的不确定性,且RF产生器亦于-116dBm具有±1.0dB的不确定性,则整体的不确定性将为±1.25dB。因此,虽然方法1最为简单且不需进行校准,但由于系统中的多项组件均未经过校准,因此可能接着发生不确定性。请注意,造成仪器不确定性最主要的原因之一,即为电压驻波比(Voltage standing wave ratio,VSWR)。因为被动式衰减器是直接连至仪器的输出,所以反射回仪器的驻波即为实际衰减。由于降低了功率的不确定性,因此可提升整体功率的精确性。 请注意,此处亦使用高效能VNA确实测量被动衰减器。透过此测量装置,即可于±0.1dB的不确定性之内,决定所要套用的衰减。 方法2:经过校准的多组被动衰减器 校准RF功率的第二种方法,即是使用高精确度的RF功率计(高于±0.2dB的精确度,并最低可达-70dBm)搭配多款固定式衰减器。因为我们是以固定频率,与相对较小的功率范围操作RF产生器,所以可有效修正由产生器造成的任何错误。此外,由于被动衰减器是以固定频率进行线性动作,因此亦可校准其不确定性。在方法2中,主要即必须确保产生系统可达到最佳效能,且将不确定性降至最低。此高精确度功率计可达优于80dB的动态范围(往往为双头式仪器),进而确保最低的测量不确定性。 透过高精确度的功率计,即可使用3种测量作业进行系统校准:1种用于矢量信号发生器的RF功率,另外2种测量作业可校准衰减器。为了达到最佳的不确定性,则应设定系统所需的最少测量次数。若要达到-136dBm的RF功率强度,则可将RF仪器程序设计为-65dBm的功率强度,并使用70dB固定衰减(假设1dB插入损耗)。为了确实进行RF功率强度的程序设计作业,则可透过固定的Padding校准实际衰减。校准程序如下: 1)将VSG程序设计为+15dBm功率强度 可开启MeasurementandAutomationExplorer(MAX)并使用测试面板。透过测试面板以+15dBm产生1.58GHz连续波(CW)信号。 2)以高精确度的功率计测量RF功率 使用RF功率计,让功率达到仪器功率精确度规格的+14.78dBm(或近似值)之内。 3)附加70dB固定式衰减器(30dB+20dB+20dB)与任何必要的连接线 4)以高精确度的功率计测量RF功率 将功率计设定为最大平均值(512),以测量RF功率强度。此处的读数为-56.63dBm。 5)计算RF总耗损 若以+14.78dBm减去-56.63dBm,即可在整合了衰减器与连接线之后,确保产生71.41dB的功率耗损。请注意,多款衰减器往往具备最高±1.0dB的不确定性。因此测量所得的衰减可能最高达±3.0dB的变化。所以校准衰减器更显重要,确保已知衰减可达较低的不确定性。 根据衰减器与连接线的校准例程,即可确定所需的RF功率强度必须达到-136dBM。基于前述的71.41dB衰减,必须将RF矢量信号发生器设定为-58.59dBm的功率强度。若要确认程序设计过后的功率无误,则可依下列步骤进行: 6)直接将功率计附加至RF矢量信号发生器 并移除所有的衰减器与连接线。 7)将RF产生器设定必要数值,使其最后功率达到-136dBm。 而程序设计的数值应为-58.59dBm,即由-136dBm+71.41dB而得。 8)以功率计测量最后功率。 请注意,所测得的RF功率,将因仪器的功率精确度而有所不同。即使测得-58.59,则实际结果亦将因仪器的不确定性而产生些许变化。 9)调整产生器功率直到功率计读出-58.59dBm 虽然RF产生器可于一定的容错范围内进行作业,但此数值不仅具有可重复性,亦可调整RF功率计进行校准,直到得出合适的数值为止。 透过上述方法,仅需3项RF功率测量作业,即可决定所需的RF功率。因此,假设测量装置具有±0.2dB的不确定性,则可得出–136dBm的功率不确定性将为±0.6dBm(3x0.2)。 PartB:灵敏度测量 现在校准RF测量系统的功率之后,接着仅需进行RF产生器的程序设计,将功率强度设定足以让接收器回传最小的C/N。虽然用于测量灵敏度的RF功率将因接收器而有所不同,但是接收器C/N与RF功率的比值,将呈现完美的线性关系。在我们的测试中,可假设所需的C/N为28dB-Hz以进行定位。透过等式12,即可得出接收器C/N比值与噪声指数之间的关系。 等式14.C/N做为噪声指数与卫星功率的函式 假设卫星功率稳定,则可发现由接收器回报的C/N比,几乎就等于接收器的噪声指数函式。下表显示可达到的多样C/N比值。 图16.C/N为噪声指数的函式 一般来说,接收器上的GPS译码芯片组,将得出定位作业所需的最小C/N比值。然而,又必须透过整组接收器的噪声指数,才能决定目前功率强度所能达到的C/N比值。因此,当测量灵敏度时,必须先了解定位作业所需的最小C/N比值。 其实有多种方法可测量灵敏度。如上表所示,RF功率与灵敏度具有直接相关性。因此,可根据现有的灵敏度功率强度,测量接收器的C/N比值;亦可根据不同的RF功率强度,得出系统灵敏度。 为了说明这点,则可注意RF信号功率与GPS接收器C/N比值,在不同功率强度之下的关系。下方测量作业所套用的激发,即忽略了第一组LNA而进行,且接收器的整体噪声指数约为8dB。而图17显示相关结果。 图17.接收器的C/N比值为RF功率的函式 如图17所示,此测量范例的RF功率与C/N比值,几乎是呈现完整的线性关系。而若使用高输入功率模拟C/N比值,将产生例外情况;接收器报表将出现可能的最大C/N值。然而,因为在任何条件下,进行实验的芯片组均不会产生超过54dB-Hz的C/N值,所以这些结果均属预期范围之中。 根据图7中所示RF功率与灵敏度之间的线性关系,其实仅需针对接收器模拟不同的功率强度,即可进行GPS接收器的生产测试作业。若接收器在-142dBm得出28dB-Hz的C/N值,则亦可于-136dBm得到34dB-Hz的C/N值。若特别注重测量速度,则可使用较高的C/N值,再从结果中推断出灵敏度的信息。 找出噪声指数 又根据等式13与14,搭配相关载噪比(Carrier-to-noiseratio),则可得出接收器或芯片组的噪声指数。亦如下方等式15所示。 等式15.接收器噪声指数为功率与C/N比值所构成的函式。 而由图17所示,接收器的噪声指数将直接与RF功率强度与载噪比互成比例。根据此关系,我们仅需针对RF功率强度与C/N进行关联性,即可测量芯片组的噪声指数。而此项测量中请注意,应以0.1dB为单位增加产生器的功率。由于NMEA-183协议所得到的卫星C/N值,是以最接近的小数字为准,因此在测量接收器C/N比值时,应估算噪声指数达1位数的精确度。范例结果如图18所示。 图18.DUT功率与接收器C/N的关联。 如图18所示,若RF功率强度处于-136.6dBm~-135.7dBm之间,则其C/N比值将维持于30dB-Hz。若以舍入法计算NMEA-183的数据时,则几乎可确定-136.1dBm功率强度将产生30.0dB-Hz的C/N比值无误。透过等式14,芯片组的噪声指数则为-174.0dBm+-136.1dBm+30.0dB-Hz=7.9dB。请注意,此计算是根据2组不确定性系数而进行:矢量信号发生器的功率不确定性,还有接收器所产生的C/N不确定性。 【分页导航】 第1页: GPS 技术的基础 第2页: 设定GPS测量系统:RF矢量信号发生器 第3页: 设定GPS测量系统:设定RF前端 第4页: GPS测量:灵敏度测量 第5页: GPS测量:首次定位时间与定位精确度 第6页: GPS测量:测量动态定位精确度 多组卫星的GPS接收器测量 灵敏度测量需要单一卫星激发,而有多项接收器测量需要可仿真多组卫星的单一测试激发。更进一步来说,如首次定位时间(TTFF)、定位精确度,与精确度降低(Dilution of precision)的测量作业,均需要接收器进行定位。由于接收器需要至少4组卫星进行3D定位作业,因此这些测量将较灵敏度测量来得耗时。也因此,多项定位测量作业均于检验与校准作业中进行,而非生产测试时才执行。 此章节将说明可为接收器提供多组卫星信号的方法。在讨论GPS仿真作业时,亦将让使用者了解TTFF与定位精确度测量的执行方法。若是讨论RF记录与播放作业,将一并说明应如何在多项环境条件下,校准接收器的效能。 测量首次定位时间(TTFF)与定位精确度 首次定位时间(TTFF)与定位精确度测量,为设计GPS接收器的首要检验作业。若您已将多种消费性的GPS应用了然于胸,即应知道接收器回传其实际位置所需的时间,将大幅影响接收器的用途。此外,接收器回报其位置的精确度亦甚为重要。 为了让接收器可进行定位,则应透过导航讯息(Navigation message)下载星历与年历信息。由于接收器下载完整GPS框架必须耗费30秒,因此“冷启动(Cold start)”的TTFF状态则需要30~60秒。事实上,多款接收器可指定数种TTFF状态。最常见的为: 冷启动(Cold Start):接收器必须下载年历与星历信息,才能进行定位。由于必须从各组卫星下载至少1组GPS框架(Frame),因此大多数的接收器在冷启动状态下,将于30~60秒时进行定位。 热启动(Warm Start):接收器的年历信息尚未超过1个星期,且不需要其他星历信息。一般来说,此接收器可于20秒内得知目前时间,并可进行100公里内的定位 。大多数热启动状态的GPS接收器,可于60秒内进行定位,有时甚至仅需更短的时间。 热开机(Hot Start):接收器具备最新的年历与星历信息时,即为热开机状态。接收器仅需取得各组卫星的时序信息,即可开始回传定位位置。大多数热开机状态的GPS接收器,仅需0.5~20秒即可开始定位作业。 在大部分的情况下,TTFF与定位精确度均与特定功率强度相关。值得注意的是,若能于多种情况下检验此2种规格的精确度,其实极具有其信息价值。因为GPS卫星每12个小时即绕行地球1圈,所以可用范围内的卫星信号随时都在变化,也让接收器可在不同的状态下回传正确结果。 下列章节将说明应如何使用2笔数据源,以执行TTFF与定位精确度的测量,包含: 1)接收器在其布署环境中,透过天线所获得的实时数据 2)透过空中传递所记录的RF信号,并将之用以测试接收器所记录的数据 3)当记录实时数据后,RF产生器用于模拟星期时间(Time-of-week,TOW)所得的仿真数据用此3笔不同的数据源测试接收器,可让各个数据源的测量作业均具备可重复特性,且均相互具备相关性。 测量设定 若要获得最佳结果,则所选择的记录位置,应让卫星不致受到周遭建筑物的阻碍。我们选择6层楼停车场的顶楼进行测试,以无建物覆盖的屋顶尽可能接触多组卫星信号。透过GPS芯片组的多个开机模式,均可执行TTFF测量作业。以SIRFstarIII芯片组为例,即可重设接收器的出厂、冷启动、热启动,与热开机模式。下方所示即为接收器执行相关测试的结果。 若要测量水平定位的精确度,则必须根据经、纬度信息进而了解相关错误。由于这些指数均以“度”表示,因此可透过下列等式转换之: 等式16.计算GPS的定位错误 请注意该等式中的111,325公尺(111.325公里),即等于地球圆周的1度(共360度)。此指数是根据地球圆周360x111.325km=40.077km而来。 Off-The-Air GPS 以“Off-the-air”方式测量接收器的TTFF时,即是将接收器直接连至天线达到最不精确的方式。由于此测量作业可针对已记录与仿真的GPS信号,进而校准自动化测量作业,因此亦具有一定的重要性。除此之外,亦可针对SIRFstarIII芯片组进行程序设计,让接收器进入冷启动模式,且以接收器所得到的TTFF值进行所有测量作业。请注意,GPS接收器一般指定为32.6秒的冷启动TTFF时间。在我们的测量作业中,则得到下列结果: 图19.“Off-the-air”GPS信号的TTFF与最大C/N比值 根据初始的“Off-the-air”结果,则可发现GPS接收器在标准的3秒误差内,可达到33.2秒的TTFF。这些测量结果均位于TTFF规格的容错范围内。而更重要的,即是可透过仿真与记录的GPS数据,进而比较测量结果与实际结果。 根据上列线性误差等式,即可计算各次测量的线性标准误差。 图20.由“Off-the-air”GPS信号所得的LLA 请注意,若要将“Off-the-air”GPS信号、仿真信号,与播放信号进行相关,则必须先进行“Off-the-air”信号功率的相关性。当进行TTFF与定位精确度测量时,RF功率强度基本上不太会影响到结果。因此,必须比对“Off-the-air”、仿真,与记录GPS信号的C/N比值,即可进行RF功率的相关性作业。 已记录的GPS信号 虽然可透过实时信号测量TTFF与定位误差,但是这些测量作业往往不可重复;如同卫星均持续环绕地球运行,而非固定不动。进行可重复TTFF与定位精确度的测量方式之一,即是使用已记录的GPS信号。此章节将接着说明应如何透过已记录的GPS信号,以进行实时GPS信号的相关作业。 已记录的GPS信号,可透过RF矢量信号发生器再次产生。由于必须播放信号,则校准RF功率强度最简单的方法,即是比对实时与记录的C/N值。当获得“Off-the-air”信号时,则可发现所有实时信号的C/N峰值均约为47~49dB-Hz之间。 而播放信号的功率强度,亦可达到与实时信号相同的C/N值,进而确定其所得的TTFF与位置精确度,将可与实时信号产生相关。在下图21中,我们使用的星期时间(TOW)值与实时“Off-the-air”信号的TOW相近,而在4次不同的实验下得到TTFF结果。 图21.由“Off-the-air”GPS信号所得的TTFF 除了测量首次定位时间之外,亦可测量GPS接收器所取得的经度、纬度,与高度信息。下图显示相关结果。 图22.由“Off-the-air”GPS信号所得的LLA 从图21与22中可注意到,其实透过已记录的GPS信号,即可得到合理的可重复TTFF与LLA(Latitude、Longitude、Altitude)结果。然而,由于这些测量作业的错误与标准误差,仅稍微高于“Off-the-air”测量的误差,因此几乎可将之忽略。因为绝对精确度(Absolute accuracy)较高,所以可重复性亦较优于“Off-the-air”测量作业。 仿真的GPS信号 最后1种可进行TTFF与定位精确度测量的GPS测试信号来源,即为仿真的多组卫星GPS信号。透过NILabVIEWGPS工具组,即可透过由使用者定义的TOW、星期数,与接收器位置,仿真最多12组卫星。此GPS信号仿真方式的主要优点,即是透过可能的最佳讯噪比(SNR)构成GPS信号。与实时/记录的GPS信号不同,依此种方法所建立的可重复信号,其噪声功率甚小。图23即呈现了仿真多组卫星信号的频域。 VSA设定 Center:1.57542GHZz Span:4MHz RBW:100Hz Averaging:RMS,20Average 图23.仿真多组卫星GPS信号的带内功率(Power-in-band)测量作业 当透过仿真的多组卫星波形测试接收器时,则可针对接收器所提供的C/N比值进行关联,以再次评估所需的RF功率。 一旦能为RF功率强度进行关联,则可接着测量TTFF。当测量TTFF时,应先启动RF矢量信号发生器。过了5秒钟之后,可手动将接收器转为“冷”开机模式。一旦接收器取得定位信息,则将回报TTFF信息。下图则呈现仿真GPS信号的相关结果: 图24.TTFF数值的4项专属模拟 请注意图24中的所有仿真作业均使用相同的LLA(Latitudes、Longitude,与Altitude)。 此外,若要测量TTFF,我们亦可依不同的TOW建立仿真作业,以计算LLA的精确度与可重复性。请注意,由于在数个小时之内,可用的卫星信号将持续变化,因此必须设定多种TOW以测试精确度(如图24)。而图25则表示其LLA信息。 图25.多项TOW仿真作业的水平精确度 在图25中,可根据模拟的定位,计算出公尺为单位的水平错误。又如图20所示,可透过下列等式找出错误: 等式17.仿真GPS信号的定位错误 而针对我们所使用的接收器而言,其水平定位最大误差为5.2公尺,水平定位平均误差为1.5公尺。而透过图18所示,我们所使用的接收器均可达指定的限制之内。 如先前所述,接收器的精确度,与可用的卫星信号密不可分。也就是说,接收器的精确度可能在数个小时内大幅变化(卫星信号改变),但是其可重复性却极小。为了确认我们的GPS接收器亦为如此,则可针对特定的模拟GPS波形执行多项测试。此项作业主要是必须确认,RF仪控并不会对仿真的GPS信号产生额外的不确定性。如下方图26所示,当重复使用相同的二进制档案时,我们所使用的GPS接收器将得到极高可重复性的测量。 图26.相同波形的各次测试,其误差亦具有极高的可重复性 回头再看图20,使用仿真GPS信号的最大优点之一,即是可达到可重复的定位结果。由于此特性可让我们确认:所回报的定位信息,并不会因为设计迭代(Iteration)而发生变化,因此在开发的设计检验阶段中,此特性格外重要。 【分页导航】 第1页: GPS 技术的基础 第2页: 设定GPS测量系统:RF矢量信号发生器 第3页: 设定GPS测量系统:设定RF前端 第4页: GPS测量:灵敏度测量 第5页: GPS测量:首次定位时间与定位精确度 第6页: GPS测量:测量动态定位精确度 测量动态定位精确度 GPS接收器测试的最后1种方法,即是测量接收器的追踪功能,使其在大范围的功率强度与速度中维持定位。在过去,此种测试(往往亦为功能测试)的常见方法之一,即是整合驱动测试与多路径衰减(Multi-path fading)模拟。在驱动测试(Drive test)中,我们使用可导入大量信号减损(Impairment)的已知路径,驱动原型接收器。由于驱动测试是将自然减损套用至GPS卫星信号的简单方法,因此这些测量往往亦不可重复。事实上,如GPS卫星移动、天气条件的变化,甚至年度时间(Time of year)的因素,均可影响接收器的效能。 因此,目前有1种逐渐普及的方法,即是于驱动测试上记录GPS信号,以大量信号减损检验接收器效能。若要进一步了解设定GPS记录系统的方法,请参阅前述章节。而在驱动测试方案中,有多款PXI机箱可供选择。最简单的方式,即是使用DC机箱并以汽车电池进行供电。其次可使用标准的AC机箱,搭配转换器即可使用汽车电池供电。在此2种选项中,DC机箱的耗电量较低,但亦较难以于实验室中供电。如下列所示的标准AC机箱使用结果,其所供电的系统则包含1组外接的车用电池,与1组DCtoAC转换器。 一旦我们完成GPS信号的记录作业,即可透过相同的测试数据重复测试接收器。在下方的说明中,我们追踪接收器的经度、纬度,与速度。透过串行端口与每秒1次的NMEA-183指令读取速率,从接收器读取所需的数据。在下方测量中,我们所呈现的接收器特性参数,仅有定位与卫星C/N值。请注意,在执行这些测量作业的同时,亦可分析其他信息。虽然下列结果中并未测量水平精确度衰减(Horizontal dilution of precision,HDOP),但此特性参数亦可提供大量的接收器定位精确度信息。 若要获得最佳结果,则应确实同步化接收器与RF产生作业的指令接口。下方所示结果中,我们将COM埠(pin2)的数据信道做为开始触发器,以针对RF矢量信号发生器与GPS模块进行同步化。此同步化方式仅需任意波形产生器的1个频率循环(100MS/s),即可进行矢量信号发生器与GPS接收器的同步化。因此最大的歪曲(Skew)应为10μS。并请注意,因为我们将取得接收器的经纬度,所以由同步化作业所造成的精确度错误,将为10μs乘以MaxVelocity(m/s),或为0.15mm。 使用上述的设定,我们即可按时取得接收器的经纬度。结果即如下图所示: 图27与28.每4分钟所得到的接收器经纬度 在图27与28所呈现的数据中,即使用已记录的驱动测试信号,取得统计、定位,与速度的相关信息。此外我们可观察到,在每次的测试之间,此项信息具有相对的可重复性;即为每个独立轨迹所呈现的差异。事实上,这就是我们最需要的接收器可重复性(Repeatability)。由于可重复性信息将可预估GPS接收器精确度的变化情形,因此我们亦可计算波形各个样本之间的标准误差。在图29中,我们在各次同步化取样作业之间,绘出标准的定位误差(相对于平均位置)。 图29.依时间取得的经度与纬度标准误差 当看到水平标准误差时,可注意到标准误差在120秒时快速增加。为了进一步了解此现象,我们亦根据接收器的速度(m/s)与C/N值的Proxy,绘出总水平标准误差。而我们预先假设:在没有高功率卫星的条件下,卫星的C/N比值仅将影响接收器。因此,我们针对接收器所回传4组最高高度的卫星,平均其C/N比值而绘出另1组C/N的Proxy。结果即如下列图30所示。 图30.定位精确度与C/N值的相关性 如图30所示,在120秒时所发生的峰值水平错误(标准误差中),即与卫星的C/N值产生直接关联,而与接收器的速度无关。此次取样的标准误差约为2公尺,且已低于其他取样约10公尺的误差。同时,我们可发现前4名的C/N平均值,由将近45dB-Hz骤降至41dB-Hz。 上述的测试不仅说明C/N比值对定位精确度的影响,亦说明了已记录GPS数据所能进行的分析作业种类。在此测试中的GPS信号驱动记录作业,是在中国深圳(Shenzhen)北方的惠州市(Huizhou)所进行。并接着于德州奥斯汀(Austin Texas)测试实际的接收器。 结论 如整篇文件所看到的,目前已有多项技术可测试GPS接收器。虽然如灵敏度的基本测量,最常用于生产测试中,但是此测量技术亦可用于检验接收器的效能。这些测试技术虽然各有变化,但是均可于单一PXI系统中全数完成。事实上,GPS接收器均可透过仿真或记录的基带(Baseband)波形进行测试。透过整合的方式,工程师可执行完整的GPS接收器功能测试:从灵敏度到追踪其可重复性。 参考数据 Pratt, Bostonian, and Allnutt. Satellite Communications Navstar GPS User Equipment Introduction, September 1996 Gu, Quzheng, RF System Design of Transceivers for Wireless Communications, Springer, 2005. Fundamentals Ward, Phillp W., Betz, John W., and Hegarty, Christopher J. Chapter 5: Satellite Signal Acquisition, Tracking and Data Demodulation, excerpt from: Understanding GPS: Principles and Applications by Elliot D. Kaplan, Artech House, 2005. Global Positioning System: Theory and Applications, Edited by Bradford W. Parkingson and James J. Spilker Braasch, Michael S. and Van Dierendonck, A. J. GPS Receiver Architectures and Measurements, Proceedings of the IEEE, 1999. Global Positioning System Standard Positioning Service Signal Specification, 1995. Global Positioning System Standard Positioning Service Signal Specification. Annex A, Standard Positing Service Performance Specification, 1995. Goldberg, Hans-Joachim. Atmel Whitepaper: Measuring GPS Sensitivity, 2007. 【分页导航】 第1页: GPS 技术的基础 第2页: 设定GPS测量系统:RF矢量信号发生器 第3页: 设定GPS测量系统:设定RF前端 第4页: GPS测量:灵敏度测量 第5页: GPS测量:首次定位时间与定位精确度 第6页: GPS测量:测量动态定位精确度