热度 18
2015-2-6 13:51
1341 次阅读|
0 个评论
作者:陈德恒 一博科技高速先生团队成员 在前文中有不少公式与计算,但其实个人觉得应用工程师要做的是知道趋势,知道影响范围,并不需要精确计算,那是软件干的事情。 最近听到一个理论,说大数据时代,人们只需要知其然,不需要知其所以然。想象一下,当我们要做一个项目时,我们可以轻而易举的知道一些其他类似项目哪些结构成功了哪些结构失败了,我们还需要理论分析干嘛呢? 这句话到底有没有道理大家仁者见仁智者见智,下面我们继续来解决我们的反射问题:Breakout区域有一次阻抗不连续,但走出该区域之后,走线从细变宽,会增加一次反射,那是不是全程按照breakout区域走线会比较好? 首先将问题进行简化,由于本身反射系数不大,第四次反射很小,假设传到RX的信号是最初的信号加上第二次反射的信号。 一段长为X的阻抗不连续,对哪个频率的影响最大呢?当相位差为(2n+1)π/2时,也就是相差二分之一波长的时候(反射一来一回,对应的X为四分之一波长)。 也就是说,当X为100mil时,第一次最大衰减的频点为15GHz,我们从S参数中可以很明显的看出: 当X为300mil时,第一次谐振频率为5GHz: 假设总线长为2000mil,而全部按照breakout区域走线的阻抗去走的话,第一次谐振频率则变成了750MHz,谐振周期为1.5GHz: 回头呼应反射系列文章的第一节,从那几张图中可以知道: 四分之一波长差的损耗为二分之一波长差损耗的30%,二分之一波长差时完全没有了,四分之一波长差时还有70%。 全反射(反射系数为1)时,在谐振频率损耗为100%,谐振频率的损耗跟反射强度有关。 看到这里估计各位看官也明白了,阻抗不连续越长,影响的频率越低。的的确确是因为阻抗不连续较短,反射淹没在上升沿当中了。 根据这套理论,我们很容易去判断设计中的一些细节对整个系统的影响到底有多大,举个例子: 信号速率越来越高是一种趋势,于是各种优化方案也被人们提了出来,这两个可能是近年来开始被大家熟悉的优化方案,加粗反焊盘上的走线或者填补走线附近的参考层,以防止反焊盘上扇出的走线阻抗偏高。可是这到底有多大的影响或者优化呢? 排除一些特殊情况(连接器,板厚较厚需要使用较大过孔等等),这一段在antipad上的走线长度大约为20mil(亲,不要把过孔pad算上哦)。 20mil的第一次谐振频率大约是多少呢?75GHz(四分之一波长)。如果我们按照二十分之一波长(影响不到1%)来算的话,对应的频率也是15GHz。您的信号需要做这样的优化吗? 看完这些之后,相信能帮助大家在工(he)程(ge)师(wan)精(sui)神和工(qiang)匠(po)精(zheng)神中间找到一个平衡点了。 这一节高速先生有给大家准备问题。问:减小反射影响的方法有哪些?