tag 标签: 陶瓷热沉

相关博文
  • 热度 1
    2023-9-12 11:33
    556 次阅读|
    0 个评论
    陶瓷电路板 因为其优异的导热性、高机械强度、介电稳定等优点,在电子行业中已经得到越来越多的关注。和传统 PCB制作流程比较,陶瓷线路板的加工过程有着类似的地方, 同时作为一种新型的材料 ,陶瓷电路板的制作工艺也有其独到之处。其中 最基本、最关键的工序之一是图形转移,即将照相底版图形转移到 陶瓷 基材上。图形转移是生产中的关键控制点,也是技术难点所在。其工艺方法有很多,如丝网印刷( Screen Printing)图形转移工艺、干膜(Dry Film)图形转移工艺、液态光致抗蚀剂(Liquid Photoresist)图形转移工艺、电沉积光致抗蚀剂(ED膜)制作工艺以及激光直接成像技术(Laser Drect Image)。 在 图形转移 工序中主要用到的 光致抗蚀剂形式 有: 1:干膜(Dry Film)图形转移工艺。 其主要构造可分为聚酯膜( PET FILM),聚乙烯膜(PE FILM)以及干的感光树脂膜组成的三明治结构。 2:液态光致抗蚀剂(Liquid Photoresist)图形转移工艺。 液态光致抗蚀剂有光分解型的正性膜和光聚合型的负性膜,其中以负性膜使用较广泛。 3:电沉积光致抗蚀剂(ED膜)制作工艺。将感光性物质做成胶体,再以电泳法析出在电路板上。胶体特性可以为正性或负性,有较好的均匀覆盖性,对不平整或弯曲的表面有良好的覆盖性,主要用于细线路制程和通孔封孔制程。 一、 干膜( Dry Film)图形转移工艺 光致抗蚀干膜是感光性聚合物,它在紫外灯的作用下发生聚合反应,未聚合的齐聚物含有羟基和酯基,能在碱性溶液中溶解。最大特点是分辨率较高,其分辨力约 0.1mm,甚至0.02mm,极限可做到0.0125mm,较IC的光刻胶的要低很多(约1um甚至0.5um)。随着组装密度要求越来越高,印制电路图形的导线更细和间距更窄,采用干膜工艺会变得越来越困难。干膜图形转移工艺中需要用的设备是压膜机: 二、 液态光致抗蚀剂( Liquid Photoresist)图形转移工艺 液态湿膜是光固化反应结膜,其膜的密贴性、结合性、抗蚀能力及其抗电镀能力比传统干膜和油墨要好,并且液态湿膜与基板密贴性好,能有效解决基材表面微小缺陷,诸如针孔、凹陷、划伤等造成的凹凸不平,从而提高贴膜良率。液态湿膜可薄可达 5-10um,分辨率一般在25um以下,可以提高线路的制作精细度,而且可以降低生产成本。湿膜涂覆的设备是滚涂机/沉涂机: 三、 电沉积光致抗蚀剂( ED膜)制作工艺 ED法的基本原理是将水溶性的有机酸化合物等溶于槽液内,形成带有正、负电荷的有机树脂团,而把基板铜箔作为一个极性进行电镀处理,在铜的表面形成可控制的5-30um的光致抗蚀膜层,其分辨率可达到0.05-0.03mm。主要用来解决孔径小、孔环窄的技术难题。 四、 激光直接成像技术( Laser Drect Image) LDI是利用激光直接将图形扫描到感光干膜上,由于不需要照相底片,避免了使用底片涨缩引起的尺寸偏差,曝光时光纤不平行带来的偏差,同时还能提供高度灵活性和高精确性满足于任何复杂图像。 五、在光致抗蚀剂贴覆到板面后,需要进行曝光。任何一种抗蚀剂都有其自身特有的光谱吸收曲线,而任何一种光源也都有自身的发射光谱曲线。如果抗蚀剂的光谱吸收主峰与光源的光谱发射主峰相重叠或者大部分重叠,则两者匹配良好,曝光效果最佳。曝光的示意图和原理如下: 严格来讲,以时间来计量曝光是不科学的,因为光源的强度往往随着外界电压的波动及灯的老化而改变。光能量定义的公式为 E=IT。E为总曝光量(MJ/CM2),I为光强度(MW/CM2),T为曝光时间。通常根据不同的曝光机,即光源、灯的功率及灯距来选择最优的曝光时间。不同的光源类型显影出来的效果图如下: 如今 陶瓷PCB 运用到越来越多的领域,每个行业的特点和要求也不一样。斯利通在充分了解客户的需求后,针对不同的产品采用不同的工艺,为客户提供量身定制的解决方案。
  • 热度 10
    2023-8-10 11:52
    810 次阅读|
    0 个评论
    随着电子技术的快速发展, 斯利通 陶瓷 热沉 基板 在高温、高绝缘、高导热等领域的应用越来越广泛。在生产过程中,脉冲电镀填孔是一项关键技术,它直接影响着陶瓷线路板的导电性能和稳定性。本文旨在介绍陶瓷线路板之脉冲电镀填孔的技术性原理、工艺 验证 及 特点等 。 一、什么是脉冲电镀填孔 脉冲电镀填孔技术是利用脉冲电流在电极和电解液之间产生电化学反应,使电解液中的金属离子在电场作用下还原并沉积在陶瓷线路板的孔内,从而实现填孔。与传统的直流电镀相比,脉冲电镀填孔具有填孔速度快、填孔质量好、能耗低等优点。 传统的电镀工艺,一般都是采用直流电流。由于直流电流阴极表面附近的液层中金属离子不断被沉积,不可避免地会引起浓差极化和析氢等副反应,这将直接影响镀层的质量。 二 、原理分析 脉冲电镀是通过槽外控制方法改善镀层质量的一种强有力的手段。相比于普通的直流电镀电源,脉冲电镀电源提供的是一种具有一定通断比例的变化电流。在电流导通时,阴极表面附近液层中金属离子被充分沉积;当电流关断时,阴极周围的放电离子又恢复到初始浓度。这样,不断重复的周期脉冲电流主要用于金属离子的还原,同时,脉冲电源还可以选择相当大的瞬间电流,以实现极高过电位下的电沉积,这样得到的沉积层晶粒细化,还能降低析氢等副反应。 常见的脉冲电流波形有方波、三角波、锯齿波、阶梯波等。根据确定脉冲波形的几点原则 (如实镀效果、便于分析和研究、易于获得和调控、便于推广等),方波是最符合要求的脉冲波形。典型的方波脉冲波形,如图所示,可见脉冲电流实质上是一种通断的直流电。 三、脉冲封孔电镀实验 1.设备 整流器:脉冲整流器 电镀线:自动龙门线 铜球:不溶性阳极铜球 2.脉冲参数,共分为四段 电镀总时长4小时10分钟 ( 1 )段为直流电流密度: 1.5ASD 电流大小:24.2A 电镀时长20分钟 ( 2) 段脉冲 TOP面: 80T/MS , BOT面 4T/MS 1.5ASD电镀时长2小时15分钟 ( 3 )段脉冲 TOP面:60 T/MS BOT面,3 T/MS 1.6ASD电镀时长45分钟 ( 4 )段直流电流密度: 1.5ASD电流24A 电镀时长50分钟 3.脉冲电镀后切片效果图 四 、脉冲电镀的主要特点是什么? 脉冲电镀与间隙电镀相似,其主要特点是脉冲波的幅度大,频率高,脉冲宽度与脉冲间隙的比值一般小于 1。因此,脉冲电镀所允许的峰值电流密度比起直流电镀、周期换向电镀或间隙电镀都要大许多倍。又因脉冲持续时间和脉冲间隙时间一般以毫秒计算,所以脉冲电镀可以克服周期换向电镀方法中反向时间太长的缺点。 五、脉冲电镀 填孔的 优点 :   (1)有利于设计叠孔和盘上孔;   (2)改善电气性能,有助于高频设计;   (3)有助于散热;   (4)塞孔和电气互连一步完成;   (5)盲孔内用电镀铜填满,可靠性更高,导电性能比导电胶更好 。 随着电子技术的不断发展,陶瓷 热沉基板 之脉冲电镀填孔技术的应用前景广阔。随着技术的进步,脉冲电镀填孔技术将更加成熟,效率更高,质量更稳定。同时,随着 技术要求更高 ,脉冲 电镀填孔技术 的生产方式将得到更广泛的应用。
  • 热度 13
    2023-4-20 14:49
    881 次阅读|
    0 个评论
    浅谈陶瓷线路板中金层厚度对抗腐蚀性的影响
    陶瓷线路板是一种非常常见的电子元件,它广泛应用于高频、高温、高压等特殊环境下。在制造陶瓷线路板时常常使用沉镍金/镍钯金技术作为焊盘的保护层,来防止其不良氧化、锈蚀以及提升焊接接触可靠性。在制造陶瓷线路板的过程中,盐雾试验也是必不可少的一个环节,因为它对产品的抗腐蚀能力进行检测,是电子元件可靠性测试的一项重要指标。于是,本篇文章研究了沉金厚度对陶瓷线路板在盐雾试验中的影响。 一、沉金技术在陶瓷线路板制造中的应用 沉金技术是把一层极薄的金属沉积在基材表面上的一种表面处理技术,它可以增加焊盘的硬度、抗腐蚀能力以及接触可靠性。沉镍金/镍钯金技术主要是是化学沉积:置换反应和氧化还原反应。在陶瓷线路板制造中,常采用置换法将极薄的金属沉积到焊盘上,使其表面能够与电子元件焊接,和键合,同时可以起到保护作用。 二、盐雾试验的原理 盐雾试验指的是将试品悬挂或放置在盐雾试验箱内,在一定温度下喷洒盐水产生模拟海洋或工业大气环境的试验方法。在试验箱内,盐水能够形成均匀的风雨露,对试品进行冲刷、浸润和腐蚀,再加上高温高湿的环境,从而对试品的抗腐蚀能力进行检测。 盐雾试验就像是一个大自然的模拟器,对电子元件进行长期的腐蚀试验。 三、沉金厚度对陶瓷线路板盐雾试验的影响 沉金层的厚度是影响焊盘抗腐蚀能力的一个重要因素。根据经验,沉金的厚度越大,陶瓷线路板的耐腐蚀性越好,盐雾试验时间越长。但是沉金厚度过大,则会影响焊接接触的可靠性,导致产量的下降。 焊盘的耐腐蚀性是衡量陶瓷线路板质量的一个重要指标,一般情况下会将焊盘分为三个等级:优良、一般和差。优良和一般都可用于在普通和相对较恶劣的环境下使用,而差则只能使用在一般或相对温和的环境中。而焊盘等级的判定则通过观察焊盘表面的腐蚀情况进行判断,那么如何能够使焊盘的等级达到更高的标准呢? 我们来看下面一个盐雾对比实验: 测试方法: 测试样品:沉镍钯金工艺 盐雾腐蚀测试参数及过程 测试结果 经试验对比发现,当沉金厚度在0.05-0.1um时,在经过盐雾48H和96H后外观会有严重腐蚀、镀层脱落等现象,且金面有氧化现象严重。 当金厚达到0.1um以上时在经过盐雾48H和96H后外观无龟裂、分层、腐蚀、镀层脱落等现象,但金面有氧化现象,此时焊盘的腐蚀等级最高,能够达到优良级别,并能在符合标准的盐雾试验中取得更好的抗腐蚀效果。 通过本次研究,可以得出结论:在制造陶瓷线路板时,沉金技术可以有效提升焊盘的硬度和抗腐蚀性能,从而提高电子元件的可靠性。同时通过盐雾试验,我们可以检测焊盘的抗腐蚀能力,进一步提高产品的质量。沉金层的厚度则是影响焊盘抗腐蚀性能的重要因素,经过试验分析,当沉金层厚度达到0.1 ~ 0.15 微米时,在盐雾试验中取得最佳抗腐蚀效果。这一结论有望为制造陶瓷线路板的厂家提供一种更加高效的制造方法,以提高产品的可靠性和质量。