tag 标签: pc

相关博文
  • 热度 6
    2021-9-19 18:03
    1940 次阅读|
    2 个评论
    鲲鹏计算体系整机生态分析
    2016 年到 2 018 年,美国对于中兴通讯的制裁,让身处同一行业对手华为嗅到了更强的风险和危机感,任正非领导下的华为肯定是不愿意做一个受制于人的棋子,做任人摆布的木偶。除了供应链做了芯片扫货,华为内部在海思的研发上做了更长远的布局,包括 2 016 年同 A RM 的永久授权,也包括加速 A RM 架构的芯片研发的进度。 2019年1月发布了基于ARM V8架构的鲲鹏920服务器芯片。另一方面,基于鲲鹏芯片,华为携手合作伙伴共同打造完善的鲲鹏计算产业生态,落地应用场景。 2019年5月15日. 美国假借“国家安全”之名对华为等中国企业实施出口管制。 2019年7月23日,首届鲲鹏计算产业峰会在北京召开,华为,携手合作伙伴,为各行各业提供行业应用解决方案。 回顾整个鲲鹏生态产生的过程,其实是一个被动加主动的过程,华为在主观意志上有预见,但是确实制裁在客观上推动了生态建设的加速。 在这里,我针对硬件整机合作建设做出分析。 目前,华为整机的十四个主要合作伙伴,分布如下: 1. 福建省海峡星云信息科技有限公司 1 .1 公司成立于 2 019/11/18 日, 总部是福建福州,主要股东是福建电子信息集团,福州地铁集团,福州高新区投资,从资本角度看福建是投入较大的国有资本从事鲲鹏生态建设。 1.2目前市面上对于海峡星云介绍并不多,只是其下线了第一台鲲鹏PC,后面的批量产出并不详细,规划指出一期主要生产国产整机,二期全面生产,规划产能50W台,同时作为中科曙光的部分产品制造基地,中科曙光还承建该项目的厂房规划和设计建造。 2. 百信信息技术有限公司 2019年11月19日,华为技术和 山西百信将共同建设年产 60万台台式机的大型生产基地。现在搭载华为鲲鹏920处理器的“太行220”台式机亮相 。山西百信是国内资深的服务器和信息产品制造商,其同华为合作 PC机,服务器和工控机,其产品内覆盖很多其他平台产出产品。 3 . 湖南湘江鲲鹏信息科技有限责任公司 3.1 成立时间 2019/12/3 日,总部是在湖南长沙,主要股东是从事系统集成的拓维信息;长沙市国有的湘江发展;从事网通设备的湖南恒茂高科股份有限公司。 3.2 湘江鲲鹏有两家子公司分别是甘肃的九霄鲲鹏和贵州的云上鲲鹏,分别覆盖了甘肃和贵州的政企需求市场。 3.3 湘江鲲鹏的产品目前主要有鲲鹏服务器常规服务器 2款,A I 服务器 1款,鲲鹏P C 机 3 款,飞腾 P C 机 1款,三年规划到5 0W 台产能,具备区域内基本的政企需求覆盖 ,;同时湘江鲲鹏成功获得2 020 中国联通的 P C 服务器集采,产品能力和工艺水平得到了华为的认同,从产品系列和投入上看,湘江鲲鹏对于华为的支持也非常大,双方合作互利共赢可以持续发展。 4. 黄河科技集团信息产业发展有限公司 4.1 河南省的信创除去信息发展公司,还有黄河科技集团,黄河网信息,硬件的主要承载主体是信息发展公司。公司成立于 2 019 / 12/6 日,总部在河南郑州,制造在许昌,主要股东是以发卡和假发为主业的多元集团许昌瑞东电子科技有限责任公司,国资背景的许昌投资总公司,河南国资背景的黄河科技集团。 4.2 黄河的研发主要是同深圳微步合资的黄河微步,目前产品线覆盖了鲲鹏的 P C ,服务器和基于华为的存储产品,产品线和产品目录覆盖非常广泛,同时也有兆芯,飞腾,龙芯几款 P C 和服务器 ,规划产能是服务器 35万台、PC机75万台、 平板电脑 20万台 ,不仅覆盖河南省需求,黄河有意图覆盖更多的区域的 信创需求。 4.3 黄河也中标了 2 020 的中国联通 P C 服务器集采,说明其产品也是得到华为内部认可,并最终推上了运营商集采的市场,双方对于硬件事业的支持都是很大的。 5. 神州鲲泰(厦门)信息技术有限公司 神州鲲泰是 2020/1/13成立于福建厦门,主要股东是合肥神州数码信创控股有限公司,主要是神码从事信创事业的载体,其在鲲鹏硬件整机生态里面属于产品研发能力强,产品线丰富的合作伙伴,规划产能100W台,目前覆盖pc,服务器,存储项目,未来同华为鲲鹏的合作会非常多。 6. 江西可控计算机系统有限公司 江西可控是 2020/3/30日成立江西南昌,主要投资人是江西省投资集团和同方计算机,规划产能30W台,同方中标中国电信服务器采购6000万鲲鹏整机,有可能是该公司产出,但是在全国的合作厂家不突出。 7. 广西数广宝德信息科技有限公司 7.1数广宝德成立于2020/3/4,主要投资人是宝德计算机系统股份有限公司和广西省国资的数字广西集团。 7.2数广宝德规划产能一期,预计年产15万台PC及2万台服务器; 二期年产能达到 45万台PC及10万台服务器,目前官网有4款产品,主要是鲲鹏PC机。 8.陕西长安计算科技有限公司 成立于 2020/4/22日,主要股东是陕西省电子信息研究院和宝德计算机,规划2020年产能达10万台,2025年后年产能达20万台,目前可以供应鲲鹏PC和服务器/X86服务器,产品线种类不多。 9 中国普天:南京普天通信股份有限公司和东方通信股份有限公司 2020/4/22日,东方通信携手华为在杭州滨江发布普天牌服务器、PC机、工控机等产品; 2020/4/29日南京普天在重庆发布鲲鹏产品,天天极服务器、普天天璇工控机和普天天权PC机; 中国普天旗下两家主要硬件子公司都表态合作,对于华为是个好消息,期待后续更多的好消息。 10.东华电子信息产业(宁波)有限公司 10.1东华软件作为软件供应商,对于硬件生态构建比较积极,其和华为在2020/4/29合作打造宁波硬件生产基地。东华软件是总部在北京的高新软件企业,在中国软件界地位比较高。 10.2宁波基地对于宁波信创具备历史性的突破意义,但是整体产能规划在5W台,东华软件在青岛和软件生态上同华为鲲鹏有更多合作。 11.武汉长江计算科技有限公司 11.1长江计算机成立2020/5/21,其主要投资人是以烽火通信为主要的投资者,其次是武汉光谷投资,股东对于高新科技具备较深的认识,投资合作顺利成章。 11.2规划产能是12W台服务器,主要是华为鲲鹏PC和服务器,同时也从事交换机产品生产制造。由于烽火通信在服务器上本身存在较好的基础,2020年中国联通PC服务器集采也中标,华为和联通信任其能力。 武汉和湖北是华为的研发重镇,相信华为鲲鹏会继续重点投入合作资源。 12. 四川华鲲振宇智能科技有限公司 成立于 2020/6/18,主要投资股东是四川长虹和成都国资,年度规划产能30W台,主要产品鲲鹏和昇腾PC,飞腾PC,未来主要是满足四川省信创和网信需求。 13. 广州广电运通金融电子股份有限公司 华为和广电运通在 2020/7/1发布合作鲲鹏生态产品声明,产品涵盖服务器,PC产品,未来应该覆盖广东省内信创产品需求。 14. 新华三技术有限公司 2020年,新华三采用鲲鹏平台的服务器分别中标中国移动和中国联通PC服务器集采,数量都是上万台:移动13475台,联通是国产包16%,具体数量不详,新华三继承华为3com的优良传统,在关键时机,摒弃在其他领域竞争关系,共同打造好鲲鹏硬件整机生态。 华为未来和新华三的合作方式还是可以更加多元化的,共同打造更为强大的鲲鹏整机生态。 以上是 2021年9月鲲鹏整机生态的大致简介,希望整个生态可以更加强大,更为具体分析参看芯语《鲲鹏整机生态趋势分析》。
  • 热度 4
    2021-7-11 21:29
    2493 次阅读|
    1 个评论
    这两年的笔记本PC,性能提升幅度相当的insane
    对 PC 处理器市场熟的同学其实应该知道,从 2019 年到现在,虽然半导体行业整天在说什么摩尔定律停滞,PC 处理器性能这三年算是飞跃式发展的,而且这个趋势预计还能再延续至少 2 年。 我在之前的文章里提过这一点,整体颇有“你方唱罢我登场”的这种鬼魅态势,尤其苹果还来掺了一脚——未来一段时间还要掺好几脚;万年老二的 AMD 则竟然雄起了;就是这么的奇特。 今天看 Hardware Canucks 的一则对比,链接在文末,大家可以去看看。比的是 2019 年和今年的两款游戏本,价格是顶配 3500 美元档的,对比结果还是比较惊人的。2019 款 ROG Zephyrus S17(i7-8750H,16GB RAM,RTX 2080 Max-Q),和 2021 款 ROG Zephyrus S17(i9-11900H,16GB RAM,RTX 3080)。 2021 款还比 2019 款轻一点,三围上 2021 款比 2019 款稍微在厚度上多出一点点,长宽都是变小的。而且 2019 款为了散热,有比较诡异的设计方案,就是键盘上面一大片是空白的(跟有双屏的那个设计类似),而 2021 款的就是个正常 17 寸笔记本。 这件事听起来颇有些诡异,就是摩尔定律停滞其实是个的的确确存在的事实。现在每年新推的 CPU、GPU 什么的,性能虽然在进步,但其实功耗的“进步”也非常惊人;效率提升是大前提,另一方面大家对性能的追求不会停,所以看看现在的游戏本配的电源都多少瓦的功率。 不过从系统设计的角度来看,据说这两年的散热解决方案有长足进步,就是散热扣具整体都比以前轻、小,噪音更低。看起来九曲十八弯,算是系统层面的升级精华。所以你真的用起来,就是温度更低、性能强一档,而且因为能配更大的电池(2021 款是 90Whr,2021 款是 76Whr),所以续航也更好——但整机重量却变轻了。 这事是不是六成功劳要归结给 OEM 厂商(或者中间层的解决方案厂商)。 处理器 2 年的性能和效率提升之惊人,在散热和其他系统设计的加持下,感觉跟做梦一样,包括 CPU 和 GPU。下面的曲线图和柱状图对比的,主要是 AutoDesk Maya 高负载下,2021 款和 2019 款的差别。其中黄色曲线是 2019 款跑在 Turbo 模式下,而其他几个颜色的曲线是 2021 款分别跑在 Turbo、Performance 和 Silent 不同的性能模式下。 这几张图对比的分别是 CPU 频率、功耗、核心温度,设备噪音、笔记本表面温度,还有续航。这种变化,感觉放在 2015 年前后是不敢想象的。你想想,这还叫摩尔定律停滞,是不是疯了?(虽然我感觉主要是系统设计带来全方位的大幅提升) 不过这两代产品,尤其今年笔记本模具在系统设计上的变化,大概率也是 CPU、GPU 厂商逼出来的,就是那么高的功耗和温度,用老的设计是真的不行了,所以带来了整机的提升。所谓的“更薄、更轻、更强”,是完全没在打折扣的。 但这是否也意味着,以前 OEM 厂商基本上没在干活儿?还不赶紧开除一波硬件工程师??? 很多媒体整天喜欢说,这对用户来说是好事啊!以我们这些很短视的人类的角度来看,真的不是什么好事,就好像今年你买个笔记本,明年就要被淘汰了一样,真的特么糟心。以前笔记本用个五年没问题吧,现在呢???估计就软件厂商会可怜我们。 有兴趣的去看原视频吧,还有更多对比,包括 GPU、游戏性能之类的: I WASN'T Expecting This! 2019 vs 2021 Gaming Laptops
  • 热度 8
    2020-5-2 15:39
    5623 次阅读|
    1 个评论
    MacBook要采用Arm处理器,难度有多大?
    实际上,有关 Mac 系列计算机要开始采用 Arm 处理器的传言似乎是从 2010 年就开始的,那会儿苹果也才刚刚开始做 iPhone 的 SoC。这一传言就 10 年过去了,起码今年前不久才更新的 MacBook Air 都还在用 Intel 的处理器。 想起来以苹果的尿性,对自家生态的管控,恨不得从硬件到软件由内到外全部一手包办。这么有洁癖的一家公司,如今有能力自己设计处理器,为何还要受制于 Intel?况且 Mac 设备本身的开发周期,还面临与 Intel 处理器迭代撞期的尴尬,导致 Mac 经常无法用上 Intel 最新的处理器。如果用自家的 A 系列 SoC,岂不是很美的一件事情吗? 这次的传言看起来格外靠谱,彭博社报道称,2021 年采用 Arm 处理器的 Mac 电脑就要问世了。彭博社线人消息称,Mac 要搭载的处理器将比 iPhone 和 iPad 之上的都更快(好像是废话)。“苹果准备在明年,至少推出一款采用自家芯片的 Mac.”“台积电将会负责制造新款的 Mac 芯片,基于 5nm 制造技术。” “首批 Mac 处理器将有 8 个核心,核心代号 Firestorm,其中有 4 个是节能核心——内部代号 Icestorm。苹果针对未来的 Mac 处理器,还计划探索超过 12 个核心的设计。”值得一提的是,传言中的 Mac 处理器也是以 SoC 的形态出现,其上至少包含了 CPU、GPU。 当年的 iBook,采用 PowerPC G3 处理器 这件事情的可行性当然是有的,只是在具体实施上会遇到不少问题。如果说 macOS 转往 Arm 平台真的那么容易,苹果估计早就干这事儿了。而且事实上,微软这两年正在做这件事情,但在具体的方向上有些小差异。在这篇文章里,我们做一些简单的分享,虽然无法得出结论,也可与各位做探讨。 多插一句,一般来说,我首发在面包板的文章筹备周期比较短,而且相对来说内容更加个人化、娱乐化。与电子工程专辑或者其他平台发布的文章相较,会显得没有那么正式和考究。另外,这篇文章主要参照的是维基百科,我不想去翻以前苹果的开发者文档了——基于维基百科的不可靠性,以下内容可能有部分是存在事实错误的;另外,我也不搞软件和系统工程,所以贻笑大方之处还请海涵。 苹果曾有的两次迁徙经历 苹果的 Mac 产品线与 Intel 的合作是从 2005 年开始的。那一年,Intel 的 CEO 还为苹果站了台,与乔布斯一起。次年的 Mac Pro 就开始正式采用 Intel 处理器(Mac OS X 10.4.4 Tiger)。在此之前,Mac 并不是 x86 平台的拥趸,我记得看电子科技相关杂志,包括当年像台灯一样的 iMac,苹果在宣传词中都提到处理器比同时代的 Intel 奔腾快多少倍之类。 在此之前,苹果就有过两次在指令集平台上转舵的经历,看起来已经是个老手了。至于为什么要换用其他平台,这可能和软硬件更具体的技术问题相关,不过从社会上广为流传的资讯来看,都是因为老平台的效率越来越不济(就好像如今主流观点认为 x86 处理器的效率不如 Arm,虽然我不这么看;很多人认定,Mac 转向 Arm 也算是合情合理)。 从这两次转舵,其实可以大致来看一看,这回若从 x86 转往 Arm,可行性几何?或者苹果从前的转舵经验,是否有足够的参考价值。一般来说,从一个硬件平台转往另一个硬件平台,经常意味着抛弃以前的开发者,以及抛弃以前的用户。因为转往新的硬件平台,总是意味着旧有软件将停止更新,且旧的开发生态彻底终结,未来的新软件也无法安装在旧平台上。当然系统制造商总是会采用一些折中的兼容性方案来实现过渡。而“过渡”的平滑与否,真的就要看厂商的水平。 1994-1996 年前后,苹果的 Mac 电脑从更早摩托罗拉的 68k 系列芯片转往 PowerPC 处理器(参与 PowerPC 联合开发的应该有摩托罗拉、苹果和 IBM)。这个转换过程持续了几年,当时苹果的过渡方案是所谓的 Mac OS Classic(Mac OS Classic 也就是经典 Mac OS,指代了 Mac OS X 之前的 Mac 操作系统),可以同时跑在 68k 和 PowerPC 平台下。有个词叫 fat binary,形容某一种应用,占用更多的存储空间(所以才 fat 吧...),但混合了多种指令集的原生代码支持——也就能够在多种类型的处理器上跑。苹果当时搞的这种 fat binary,就是令开发者将 68k 编译版本和 PowerPC 编译版本打包到同一个执行程序中。 另一方面,当时苹果引入了一种较低层级的模拟方案。系统中有一个 Mac OS nanokernal 内核,这个内核建立在 Macintosh ROM 里面(Macintosh ROM 是最早 Macintosh 电脑中的一个固化在主板上的芯片,用于电脑启动时的初始化)。而这个 ROM 内部有个叫做 Macintosh Toolbox 的东西,类似于 BIOS 这种角色。而 Mac OS nanokernal 为 Toolbox 提供 68k 处理器的模拟环境。 Mac OS nanokernal 在电脑启动时加载,内存里开辟一个 PowerPC 内核空间加载模拟器。随后模拟器继续加载 Toolbox 对系统硬件初始化,随后的操作和 68k 时代基本上一样。这时期 PowerPC 设备的内核,实际上就是运行在 68k 模拟器里的 Toolbox。 nanokernal 的主要工作就是让现有 68k 版本的操作系统跑在新的 PowerPC 硬件下,如此系统普通状态就能跑 68k 代码。在必要的情况下可以转回到 PowerPC 模式下,基于中断处理程序(interrupt handler)实现,并将虚拟内存系统映射到 PowerPC 硬件上。不过维基百科说,这个过程,也可能只是由跑在用户态的模拟器去处理的。 iMac G4,采用 PowerPC G4 处理器 无论如何,这都是个看起来十分简单,而且还非常低效的方案(原生的 PowerPC 性能似乎很难发挥) ;不过好像也很有效,Mac OS nanokernal 的 68k 模拟器也就为旧软件提供了这种低层级的兼容性。当时的模拟器提供的运行环境,和 Macintosh Centris 610(处理器具体型号为摩托罗拉 68LC040)最为接近。 早期版本的 68k 模拟器会解码每一条指令,并立即执行一系列对应的 PowerPC 指令,实现这种模拟。后续的 PCI PowerMac(PCI 总线的 PowerPC)中的动态重编译模拟器(dynamic recompilation)则对性能做了提升:将代码常见的部分,“重编译”为更快的、PowerPC 原生序列——且在本地做了缓存(locally cached)。也就是说这种模拟器能够识别一些 680x0 代码序列,并且直接跑已经缓存过的 PowerPC 代码,也就避免了重新转译。对于一般的开发者来说,这种转换也就显得比较无痛,因为模拟器是自动开始和结束的。 最初的 Mac OS nanokernal 是相当简单的,这就是个单任务系统,把大部分工作交给操作系统 68k 版本的模拟器去跑。有兴趣的同学,可以去了解一下当年的 Mac OS Classic,它似乎还称不上一个现代化的操作系统,连内存保护都没有;上层的应用程序直接跑在 Toolbox 上,除了获取系统提供的功能和资源,还能直接操作硬件和内存。这个版本的 nanokernal 似乎是到 Mac OS 8.5 终结的。 第二版 Mac OS nanokernal 也算是越来越像样了,开始支持多任务多处理器、消息传递,可以算是微内核了;内核存在于受保护的内存空间中,并在用户态下执行设备驱动。这是题外话了。 Mac OS Classic 时代的操作系统和个人电脑还是相当的粗放和不讲究,而且层级结构也比今天要简单得多。而另一方面,其实也不难发现,即便是当年苹果电脑用户基数不多的时代,生态搬迁都需要付出这般代价;每一次平台搬迁,实际上都需要付出代价,由上至下。 还有一点值得一提,后来 Mac OS X(PowerPC 版)内部有个名为 Classic 的环境,这是一个抽象层——绝大部分 Mac OS 9 应用都依托于 Classic 环境跑在 Mac OS X 上。从 10.5 美洲豹系统开始,就已经去掉了 Classic 环境(即更晚的 x86 平台也就不再对 Classic 做出支持)。具体来说,Classic 环境包含了一个 Mac OS 9 系统文件夹,以及一个 New World ROM 文件(前文提到的早期 Macintosh ROM 算是 Old World ROM;而 New World ROM 时期,早期 Macintosh ROM 不复存在,原本的 Toolbox 成为一个文件存在硬盘上)。这里的 Classic 可以认为是 Mac OS X 之下的一个模拟子系统。 从 PowerPC 转往 Intel x86 2005 年,乔布斯表示苹果对于 IBM 的 PowerPC 开发进度非常失望(这集我看过!去年的 Intel 基带事件似乎也是这么演的) ,而 Intel 显然可以满足苹果的需求。当年乔布斯大谈每瓦性能,实际上也就是能效比,这似乎也是如今在舆论上,x86 处理器陷入不利的原因。乔布斯在 WWDC 大会上宣称,Mac OS X 的每个版本都“秘密地”针对 Intel 处理器做了开发和编译。所以现在的 macOS 有没有“秘密地”针对 Arm 做开发和编译? 当年 Intel 为苹果站台的名场面 这次的兼容性解决方案,是一种名为 Rosetta 的指令解释器,这是一个动态二进制转译器(dynamic binary translator)。苹果在宣传中,把 Rosetta 称作是“the most amazing software you'll never see”。苹果说对于旧版 PowerPC 应用来说,那些重交互、但算力需求比较低的应用,非常适用于 Rosetta(比如文字处理);而算力要求比较高的(比如 AutoCAD、Photoshop)可能就会悲剧(很像 Windows on Arm???);一些“专业级”的媒体应用,比如 Final Cut Pro、Logic Pro,则完全不支持。 Rosetta 所处的层级比 68k 模拟器要高,是个“用户级”的程序,只能监听和模拟用户级代码。这可能和苹果担心安全问题有关,而且毕竟 Rosetta 推出的时间,操作系统也比 68k 模拟器年代要成熟很多了。所以 Rosetta 不支持的环境和状况有很多,也包括了不支持转译 PowerPC G5 指令。 苹果后来发布的 Xcode,有针对 Intel 与 PowerPC 的 Universal Binary,就跟前文提到的 fat binary 类似——这样一来,当时面对平台迁徙的开发者,在面对 Mac 应用开发时,针对基数也算多的 PowerPC 用户,不会不知该选 PowerPC 还是 x86,因为两个都可以要(微软 WinRT 借鉴对象?)。 不过 Resotta 的确在过渡平滑性上要差一些。针对 Mac OS 平台下不同类型的应用,开发者使用 Rosetta 还是需要做一些基本工作的,比如 Cocoa 应用需要重新编译、检查字节顺序问题;Carbon 应用则要求做小幅调整;而使用 Metrowerks Codewarrior 套装开发的应用则需要做较大程度的修改(Codewarrior 是一个 IDE,这个 IDE 的早期版本就针对 68k 和 PowerPC Macintosh,当年苹果转往 PowerPC 时,CodeWarrior 成为 Mac 实际上的标准开发系统,快速取代了苹果自己的 Macintosh Programmer's Workshop)。 就最终的成果来看,Mac 的这第二次转舵还是很成功的。实际上即便到 2009 年,Mac OS X 10.6 雪豹时期,苹果已经完全不再支持 PowerPC,依然有不少开发者通过 Universal Binary 对这一平台做出后续数年的支持——这还是能够从侧标反映苹果在兼容性方案上的不错表现。 但我觉得,这次的成功主要并不来源于苹果在兼容性工作上的成功,而在于 Mac 转向 x86 本身就是一次从冷门到热门,以及低效向高效的转变,因为 x86 平台原本就相当成功。Intel 这些年起码在桌面 CPU 的效率提升上是独占鳌头的。另外要知道 PC 市场的绝对大头:Windows 就一直在用 x86。 而 Mac 转往 x86,则很大程度上意味着 Mac 设备从此以后就可以名正言顺地安装 Windows 系统了。苹果自 2006 年起引入的 Boot Camp 还对 Windows 的安装做出了原生支持。 也是从这个时候开始,大批量的人在星巴克用 MacBook 装逼(以及运行的却是 Windows 系统)才变得可行。或者说至少买一台 Mac,就不用放弃 Windows——而且同一时间还有大量效率较高的虚拟程序可以跑 Windows 及对应的应用。我觉得无论如何,这都是 x86 平台的 Mac 得以大获成功的原因。 PowerPC 的转变相比,这次的转变有着天然的生态优势。当然,在 x86 成为 Mac 的选择以后,Mac 设备自身的设计变迁,为行业树立标杆也是重要原因,如 2008 年推出的 MacBook Air;另外,现在基于 web 的应用越来越多,很多人对浏览器的依赖已经大过操作系统本身,这让平台选择进一步脱耦。 所以, 我觉得 Mac 在转向 x86 平台时的成功,更多的是时势造就,甚至别家生态使然;亦是苹果在电子科技发展史上的一次识时务之举;且以当年 Mac 的体量,更不存在尾大不掉的问题。 从 x86 转向 Arm?Arm 效率真的高于 x86 吗? 我们近两年听到最多有关 Mac 要从 x86 转向 Arm 的原因,好像并不是苹果要加大生态掌控力(这是我觉得苹果可能决策转向的最主要原因),而是 x86 处理器的效率比 Arm 差很多——这方面的报道也还不少。就相对直观的消费用户体验来看,这一点似乎还是有足够的论据的。这些年智能手机、平板产品的性能提升速度如此之快,感觉跟 PC 是不是已经差不多了? 苹果前些年发布 iPad Pro,并将其定位于生产力工具的时候,就不忘在发布会上黑现在的 PC,声称 iPad Pro 所用的 Ax 处理器比市面上 90% 的 PC 还要快。虽然也不知道这种对比是如何产生此等量化数据的。加上还有 GeekBench 这种苹果专用跑分工具(误)助阵,像 A13 这种芯片的跑分成绩比 AMD Ryzen 3850X 还要高;单核平均功耗才 7、8W 的 A12X,单核跑分和 TDP 95W 的 Intel Core i7-8700K 差不多,多核成绩则比 8600K 还要高。 这么说来,Arm 和苹果掌握的黑科技,已经达成体积小如此之多、功耗少如此之多的情况下,性能达成与 x86 平台几乎齐头并进的水准啦? 我前俩月就听有人在社区大谈 RISC 相比 CISC 有多大优势,并以此得出 iPad 性能为何比如今 PC 强那么多的结论,言下之意是你们根本就不懂指令、现代半导体技术的神速发展。Intel 估计应该被钉在历史的耻辱柱上。 有关 GeekBench 娱乐工具跑分相近的问题,其实 我们必须承认一个大前提 :当代处理器微架构优化,能用上的技术基本上都用上了,前十几年的发展,什么流水线、分支预测、乱序执行、多级缓存、超线程、时间空间并发之类乱七八糟的,及这些技术本身的反复优化,外加制程工艺进化,CPU 性能总能有“质”的飞跃。但如今, CPU 单核性能提升已经十分缓慢,不仅是制程工艺步进缓慢甚而停滞,还在于能用的优化技术都已经用上了。 当然我们不能排除未来还有什么黑科技出现,但至少就这两年的情况来看,新货已经鲜见了,不似当年某种新技术一出立刻造成轰动。 所以虽然 Zen 2 如此神奇,而且还被我们吹得神乎其神,但实际上其单核性能也就那么回事,拼死了也就比同代 Intel 10nm 的十代酷睿强一丢丢——当然其 CCX 架构让 Zen 2 堆核更容易了,台积电的 7nm 也的确给力。 扯远了,上面这两段是为了表明,Arm 即便作为低功耗领域的主力架构,这些年的发展致其单核心性能可与 x86 比肩也并不稀罕。不过那么大的功耗差距,却可达成相似 GeekBench 跑分又是怎么回事呢?这个问题,我在之前探讨 Surface Pro 时就提到过:不考虑散热系统的跑分成绩都是在耍流氓,尤其是 GeekBench 这种短时跑分测试。 我们知道苹果 Ax 系列 SoC 瞬时突发性能还是比较强的,包括 GPU,但一旦考察持续性能,则会有一个较大幅度的折扣,因为毕竟手机这么小的体积,而且就靠那点被动散热面积,很难做到长时间的性能发挥。有关这个问题可参考我之前写的两篇文章 。我们常戏谑说 GeekBench 是 AppleBench,一方面原因在于其中的某些测试项,在 Ax 系列 CPU 中有专门硬件单元做计算,而 x86 很多时候只能依靠通用计算单元来解决,解题效率会略低(这部分内容各位可以去自行研究,早年比较典型的是 AES 加密单元——A 系列处理器就有专用单元,所以这类项目的跑分成绩可以很高,现在可能有差别);另一方面就在 GeekBench 整个测试周期很短,那么系统真正的综合性能其实是难以体现的。 知乎上有高人给出了 Arm 是否真的比 x86 更省电的理论分析,有兴趣的可以去看一看 。很多人对 x86 留下高功耗印象的原因,其实是平台(以及使用场景)差异造成的,PC 的处理器 TDP 在设定上就很高,而这种相比移动设备高得多的参考功耗,很大程度上就源于前面我说到的 PC 要求在一个较长时间内持续高性能,而不只是简单的瞬时突发性能。另一方面还在于,Arm 指令集的处理器普遍采用大小核设计,小核心是专用于低功耗场景的(而且这种小核心现在看来似乎也越来越有必要)——而直到前一阵,Intel 才表示准备要搞这种大小核设计。 当然这也是因为 PC 的具体使用场景,以往并没有多少需要像手机那样超低功耗状态的应用,或者这种必要性并不大(虽然现在也逐渐开始有这种需求);而 Arm 平台的移动设备多用电池做电源,本身也需要对功耗做限制。 所以 x86 能效比低于 Arm 的这种印象,大抵上是两者使用场景的常年差别造成的 。能效比怎么样,要对比的应该是同性能下的功耗情况。恰好 AMD 开始使用台积电的 7nm 工艺,这也给这种对比有了一个基于类似制造工艺下,同性能(而不单纯是同频)下的功耗情况对比的依据。不过这种对比需要考虑的问题还有很多,比如 x86 平台的很多 CPU 还有“睿频”的概念,而 Arm 手机和移动平台 CPU 则没有;两者的流水线长度不同等等;而且前面提到,两者使用场景目前还是有差别,这也是芯片内部专用单元有差异的关键。 苹果 A12 的频率功耗曲线,来源:AnandTech 从相对直观的角度来说,随性能的提升,功耗也在提升,但这两者的关系并不呈线性;意即 如今 Arm 低功耗与性能的关系看起来还挺美好,但如果进一步提升性能,所需付出的功耗代价在达到一个拐点以后,就会出现指数级蹿升的状况 ——在高性能领域,Arm 现有的移动处理器也未必会有什么出色的表现:这其中,苹果并未掌握什么黑科技,Intel 也并不存在多大的过错。(服务器领域和 PC 领域在应用场景上又是不一样的,这里不讨论。) 上面这张图来自 AnandTech ,好像被人援引了无数次。这是苹果 A12 的频率功耗相关曲线。AnandTech 认为苹果做得还是比较出色的,而且在后续几百 MHz 区间内也相对保守。如果说苹果期望再把频率抬高,则按照 A12 的现状来看,很快就可以在 3GHz 附近让功耗彻底达到标压笔记本的水平。 这次的转舵可能有所不同,看看微软 上面这个大段落好像说了不少废话,与本文的主旨关系并不算太大。不过我想表达的是,其实 x86 并不像人们想的那样不堪,Arm 也不像人们想的那么美好。在不考虑散热、功耗的情况下,这两者的性能水平可能正在趋同——这也是 AnandTech 之前评价 A12 接近桌面处理器水平的原因。但就系统和具体应用场景的角度,即便 A12 有这种能力,也不可能发挥到桌面处理器的水准,因为它被功耗与散热限制了。 就性能来看,苹果应该是有能力造出 Intel 同等性能的 PC 处理器的,而且 Intel 如今在半导体制程工艺上有落伍的迹象(Intel 前不久才承认到 2021 年之前,工艺技术都将落后于竞争对手 )。但在 macOS 的软件生态和兼容性层面,就又要多花一番心思了。这个过程可能仍然需要数年,而且这次的转舵还不同于以往。只不过在过去苹果积累的经验,这会儿似乎还是可以派上用场。 彭博社的报道提到,可能会有部分 Mac 产品将采用 Arm 处理器。 就前期来看,合理的推测是,低性能、低功耗产品线的 MacBook(比如说早前 12 寸的 MacBook)可能会率先采用苹果自己的 Arm 处理器。但如果真的是这样,那么也就意味着,Mac 产品系列将有两种架构、两种平台并存,这对开发者来说应该是个灾难。 苹果大概需要重启过去两次转平台时 fat binary 和 Universal Binary 方案——一人开发,俩平台共享... 实际上在早年 fat binary 时期,把两种编译版本封装到一起,造成的文件尺寸大,在当时是比较敏感的——因为那会儿 PC 的硬盘容量真的很可怜,所以那一时期还涌现出了为了节省硬盘空间,可剥离不需要编译版本的工具。现在这已经不算什么大事儿了。 而就当代来看,苹果实际上有一个更好的参照对象,就是微软。不过微软在计划上看,并不是“转舵”,而是“扩展”,这里我们可以稍微提一提:即 Windows 不仅要在 x86 平台上发展,而且要在 Arm 平台上发展。这个计划从 Windows RT 操作系统时期就出现了,那时微软就搞了一个 Windows Runtime,这个运行时之上搭的应用可以同时支持 x86 和 Arm。当时的 Windows Phone 8.1 其实也用上了 Windows Runtime,所以那会儿微软应用商店的很多 app 都同时支持手机、PC、平板,虽然商店里的应用数量也是少的可怜。 这算是实现微软“伟大”生态 Universal Windows Platform(UWP)的重要组成部分。UWP 本质上就是为所有 Windows 设备,包括 PC、IoT、平板设备之类,或者说所有 Arm、x86 平台的 Windows 设备,提供一个通用的 API。UWP 就是一种建立在 Windows Runtime 之上的应用模型。 Windows Runtime 提供的 API 以类库的形式,为开发者提供 Windows 8 的功能。跑在 Windows Runtime 上的应用实际上是跑在一个沙盒里,需要用户批准才能访问一些关键系统特性及下层的硬件。这个东西当时就可以打通 Windows RT、Windows 8,绝大部分应用部署在微软的应用商店里。早期 Windows Runtime 之上跑的应用被称作 Metro app(好像是因为当时微软还热衷于推 Metro UI,后来叫 modern-style app,应该还会改)。 只不过这东西到现在为止都还不能算是成功,微软的营销话术也堪称灾难,没人知道 Windows RT、on Arm、10S、10X 之类究竟是什么鬼。一般人真的很难搞懂微软这两年究竟在做什么——可见当年乔布斯在给 Mac 转平台,在告诉用户和开发者现在正在发生什么的时候,是多么科学(所以比尔盖茨说乔布斯是超级销售员)。不过在实际的决策上,我觉得微软的摇摆不定、瞻前顾后,才真正令 Windows RT 以及后来的 Windows 10S 都很失败。 微软接下来的一个“伟(zuo)大(si)”计划是 Windows 10X。从外显上来看,Windows 10X 是为双屏设备准备的一个操作系统(比如 Surface Neo 之类还没发布的设备),预计今年下半年才会看到实物。不过我觉得 Windows 10X 的意义远不止此, Windows 10X 支持 Windows Runtime API(这个是肯定的),并且“通过一个原生 container 跑 Win32 应用” 。我没怎么研究过如今 Windows 系统架构状况,但就对旧有 Windows 生态来看,Windows 10X 如果是微软接下来意欲统一 PC 市场的操作系统,则这个决心下的还是比较大的;而且貌似双屏 Windows 设备都是基于 Arm 平台。 谁不想要 Surface Pro X 这么性感的笔记本呢? 听起来 Windows 10X 在这一点上,和 Windows on Arm 很像(Surface Pro X 用的就是 Windows on Arm),所以我在想 Surface Pro X 将来是不是可以升级到 Windows 10X——反正微软改名部门创下那么多的“丰功伟绩”。 在针对开发者的兼容性问题上,Windows on Arm 平台下的 x86 应用是跑在模拟器上的,一个叫 WOW64 的 x86 模拟器。和前文提到苹果的 Rosetta 有点像,模拟过程就是把 x86 指令块编译成 ARM64 指令,加一些优化。会有服务对转译代码块做缓存,减少指令转译开销。貌似到目前为止,x86-64 应用(也就是传统的 Windows 64 位应用)还无法在 Arm 版 Windows 上面跑,而且某些大型应用的模拟运行比较灾难级,比如 Photoshop。WOW64 也跑在用户态 。 其实突然又有点搞不懂微软将来计划怎么发展,从如今微软的动作来看,好像十分偏向 Arm(和高通),只不过大业未成,生态也暂未见起色,x86 也不想抛弃。不知 Intel 看此情此景是什么心情。毕竟 Windows 作为历史用户基数庞大的操作系统,兼容性的历史包袱远大于苹果的 Mac OS:我没法从技术细节上来探讨谁做得更好,但微软一定比苹果更有难度;何况苹果还有 iOS 这颗大棋子。 如果说苹果要在同一时间针对 Mac 系列产品,既保有 x86 平台(典型如 Mac Pro 这种更新没多久的高性能工作站),又开发 Arm 平台(很可能就是 MacBook),那么对两个平台的同时支持,以及对开发者的友好度,不知能否做到比微软如今的方案更好——因为这次似乎并不是彻底抛弃上一个平台这么简单(毕竟彭博社是说部分 Mac 产品采用 Arm 处理器),也就不能以斩断过往、说抛弃就抛弃这种苹果式的任性方法来做决策(但好似当年 PowerPC 与 x86 在 Mac OS 系统上也共存了起码 5 年)。 Mac 转舵可能会遭遇的问题 一气写下来,感觉篇幅有点过长了,本来还想聊聊苹果自己在 Mac 设备里面搞的 T2 芯片,以及可将 iPad app 轻松移植给 macOS 的 Catalyst 项目——毕竟这俩看起来都很像本次转舵的重要缓冲或预备手段。但再写的话,这文章字数就要破万了,实在是太废纸了。在转换平台的问题上,即便有那么多的困难,自主掌握芯片迭代节奏,以及牢固生态发展,采用自研芯片还是有好处。 其实上面这些算是一个资料汇总,也算是我近期的学习过程吧,以简短的形式汇报给各位。这里最后谈一谈 Mac 如果真的要从 x86 转往 Arm(而不是两者并行发展,毕竟苹果很少做这么二的事情),除了兼容性和技术层面,如上述文字中提到的难度,在实际实施中还会有一些非常现实的问题。 第一就是,可能面临抛弃 Windows 用户的问题,Mac 如果彻底抛弃 x86,则未来的 Mac 设备很可能就不能再安装 Windows 系统了:这个问题我觉得十分严重,或许很多 Mac 用户对于在 Mac 设备上使用 Windows 是非常嗤之以鼻的,但这个选择对很多人来说仍然十分重要。毕竟 Windows 的生产力生态仍然十分完备,某些很偏的应用都只支持 Windows。(现在 Windows 也支持 Arm 了,只是两者的平台还是有差异) 第二是,如果低端 MacBook 产品线开始用 Arm 处理器,那么目前的 iPad Pro 产品定位会显得很尴尬。因为后者就是定位于轻度生产力工具,如果要说生产力,iOS 和 macOS 似乎并非同台竞争的对象。 第三,有个比较实际的问题:Intel 毕竟是个造芯片的公司,可以搞出一大堆不同定位的 SKU,比如什么酷睿 i3、i5、i7;超低压、低压、标压、桌面等等,并且应用到不同售价的 Mac 设备上。苹果即便有能力造芯片,是否能在短时间内,按照体质划分不同 SKU,并且应用到将来更多的 Mac 设备上?如果不能的话,难道真的要 x86 和 Arm 并行发展吗? x86 那样,是转向一个在桌面市场十分受欢迎和健全的平台;而且如今苹果公司的体量远非 2005 年可比,所以这次转舵的困难程度大约不小。另外,前面花了那么多篇幅谈兼容性问题,针对某些十分细节的点,比如小到 Final Cut Pro X 中的一个插件,即便容易想见 Final Cut Pro X 会第一批支持 Arm 版 macOS,但插件未更新就可以彻底埋葬一部分用户。 具体是什么状况,等到今年的 WWDC 或可一见分晓。最后的最后,Intel 哭泣的时间应该会更长:为什么全世界都针对我? 参考来源: Apple Aims to Sell Macs With Its Own Chips Starting in 2021 - Bloomberg https://www.bloomberg.com/news/articles/2020-04-23/apple-aims-to-sell-macs-with-its-own-chips-starting-in-2021 小议Mac OS Classic的底层架构与Mac的固件沿革 - 老Mac与MacOS收藏 https://zhuanlan.zhihu.com/p/44934452 Mac OS nanokernel - Wikipedia https://en.wikipedia.org/wiki/Mac_OS_nanokernel Mac 68k emulator - Wikipedia https://en.wikipedia.org/wiki/Mac_68k_emulator Fat binary - Wikipedia https://en.wikipedia.org/wiki/Fat_binary List of macOS components - Wikipedia https://en.wikipedia.org/wiki/List_of_macOS_components#Classic Rosetta (software) - Wikipedia https://en.wikipedia.org/wiki/Rosetta_(software) CodeWarrior - Wikipedia https://en.wikipedia.org/wiki/CodeWarrior 聊聊无风扇的Surface Pro:性能比一般笔记本差多少? - 面包板 https://mbb.eet-china.com/blog/3893689-413612.html 一场硬仗:华为和高通的GPU差距还有多大? - EE Times China https://www.eet-china.com/news/202001061219.html 为啥 Arm 架构比 x86 x64 省电? - 木头龙的回答 https://www.zhihu.com/question/387240856/answer/1186307900 The Apple iPhone 11, 11 Pro & 11 Pro Max Review: Performance, Battery, & Camera Elevated - AnandTech https://www.anandtech.com/show/14892/the-apple-iphone-11-pro-and-max-review/4 Intel Says Process Tech to Lag Competitors Until Late 2021, Will Regain Lead with 5nm - Intel https://www.tomshardware.com/news/intel-process-tech-lag-competitors-late-2021-leadership-5nm Windows Runtime - Wikipedia https://en.wikipedia.org/wiki/Windows_Runtime How the Universal Windows Platform relates to Windows Runtime APIs - Microsoft https://docs.microsoft.com/en-us/windows/uwp/get-started/universal-application-platform-guide#how-the-universal-windows-platform-relates-to-windows-runtime-apis Windows 10X Developer FAQ - Microsoft https://docs.microsoft.com/en-us/windows/apps/10x/faq WOW64 Implementation Details - Microsoft https://docs.microsoft.com/zh-cn/windows/win32/winprog64/wow64-implementation-details
  • 热度 5
    2020-2-6 17:05
    5158 次阅读|
    5 个评论
    CPU市场正在发生变化,Intel的逆天优势悄然消失
    其实近两年,桌面与笔记本 CPU 市场正在变天。AMD 在 2017 年发布 Zen 架构以后,这种变化就开始了。一方面是从 AMD 的财报,其中的营业利润和毛利率变化非常显著,另一方面是看 CPU 市场份额。 市面上大部分统计机构的市场份额数据实际上都不准确,包括福布斯(Forbes)去年年底宣称 2019Q3 在 PC 处理器市场上,AMD 的份额已经达到 32%——32% 是个什么概念各位知道吗? 从 2007 年往后,AMD 的市场份额一路下跌。直到 2011 年,AMD 还点错技能树,选择 CMT 路线以后,处理器性能开始与 Intel 产生银河系级别的差距。AMD 从那个时候开始就被认为是无力回天的,不同机构的数据显示,AMD 的 PC 处理器市场份额始终徘徊在不到 10%(也有认为是 18% 的)。 可想见 32% 意味着什么呢?至少我觉得,32% 这个数字是靠不住的。另外去年年末,德国最大零售商的数据显示,当季 CPU 销量中,86% 是来自 AMD 的。这个数字就十分恐怖了,但讲真的,零售商渠道的 CPU 主要给的都是 DIY 市场——这部分市场和 PC OEM 市场比起来还是很小一部分。 我最近在写 Intel 和 AMD 的市场分析文章,查数据的时候发现很多媒体提到,AMD 的市场份额如今接近 40%。这个数据的出处应该是一个跑分工具,PassMark。2020Q1 提交给 PassMark 跑分成绩的用户中,接近 40% 的用户用的是 AMD 处理器。但 40% 这个数据仍然有不小的幸存者偏差,就是会去提交跑分成绩的,很大程度上也都是技术爱好者。普通用户谁没事去跑分提交成绩呢? 但这些成绩仍然有不小的参考价值,各位看看 PassMark 给的用户占比的趋势走向(图 1)。它虽然和全局状况仍然有区别,但在趋势上是和全局走势一致的。至少就目前看来,AMD 的 PC 处理器市场正从低迷中彻底走出来。 图 1,来源:PassMark 另外我们观察几个现象: 1. Surface 这类设备开始有 AMD 版,虽然今年的 Surface Laptop 3 的 AMD Zen+ 其实相比 Intel 的 Ice Lake 还是很水的,但 Zen+ 和 Ice Lake 本来就有代差。很多 OEM 厂商跟进了一个型号,有 Intel、AMD 两个版本的操作。 2. Intel 十代酷睿的 Ice Lake 10nm 挺不争气的,主要源于 Intel 的 10nm 还很不成熟;而 AMD 用的是台积电的 7nm 工艺。Intel 10nm 和 TSMC 7nm 可以认为是同代工艺,但后者已经走向成熟了。 3. Intel 这两年来陆陆续续地降价,尤其 AMD Ryzen 3000 发布的时候,Intel 高端产品线立减 50%。这种操作放在以前,可是 Intel 非常不屑的。 4. AMD 在发布 Zen 架构以后,真正抛弃了 CMT,处理器的单线程性能第一次站到了和 Intel 同等高度。以前 Intel 从来不在乎 AMD 处理器无脑堆核心的问题,因为自己太稳了,真正的“i3 秒全家”,要堆你自己去堆吧。但今时不同往日了,这迫使 Intel 不得不也开始堆核心,从八代酷睿开始就已经这样了。 5. Intel 已经两次抢在 AMD 前头开发布会了,而且都是在知道 AMD 的发布会召开时间后抢发。因为 Intel 的计划表太慢了,看看今年 CES 上,AMD 发的 Ryzen Mobile 4000,用在笔记本上的处理器——秒 Intel 的 Ice Lake 根本不是问题;再看看高端产品线,Ryzen 9 3950X,对战 Intel 的十代酷睿 i9,用“白嫖王”的话来说,“Intel Could Take YEARS to Catch Up”,十分的悲伤。所以 Intel 必须抢在 AMD 前面开发布会。 图 2,Intel 与 AMD 历年收益对比 Intel 今年在 PC 处理器市场的日子(甚至服务器处理器市场)不会好过,这真的是十几年难得一见的。不过讲真的,从这两家公司的财报来看,AMD 在 Intel 面前真的就是个小公司(图 2,我整理的两家公司的年度收益对比)。Intel 光是服务器业务的年度收益,就可以买两个 AMD。 对于一个财力雄厚,以及以往市场策略具有教科书级别水准的公司来说,像从前那样再灭一次 AMD,应该也不会是什么问题。但至少现在,Intel 要重视这件事情了。 有关偏市场层面的具体内容可以参见《国际电子商请》3 月刊我写的文章。 偏技术层面的内容则可以参见: PC处理器市场在变天:Intel的王者宝座还能坐多久?
  • 热度 5
    2020-1-22 17:37
    11155 次阅读|
    2 个评论
    聊聊无风扇的Surface Pro:性能比一般笔记本差多少?
    我有一台低配版的 Surface Pro 6,128GB + Intel 酷睿 i5 第八代。对 Intel 低压版酷睿产品线熟的同学应该知道,Intel 第一次在酷睿第八代低压处理器(也就是型号末尾都带 U 字母的)上将核心数目升级到了四核,以前都是双核。而酷睿八代 CPU 的问世,很大程度上似乎是为了应对 AMD Zen 的来袭。 在市场宣传上,酷睿八代还是相当成功的。基本上酷睿八代超级本(本文只讨论低压版酷睿八代)都获得了不错的名声,也包括 Surface Pro 6。网上的绝大部分基准测试成绩,八代酷睿都比七代有着质的飞跃,毕竟核心数目都翻番了——也算是“一屁股坐在牙膏管上”的操作了,这好像还是要感谢 AMD 的。 不想看这么多文字的同学,可以直接转到本文最末看结论。 图片来源:我的 instagram :) 不过讲真的,Surface Pro 6 酷睿 i5 版的使用体验并不算好——一般在低压超级本上,我以前始终觉得酷睿 i5/i7 在性能表现上差不到哪儿去,尤其在低压 i5、i7 超级本的价格差别还那么大的情况下。如果我们不算 binning process 导致 i5/i7 有着体质上的差异,以及一些看起来对一般人并没有什么用的“高级”特性,针对超级本的低压版 i7 似乎也就比 i5 略高点儿频率(cache 差别什么的也并不大)。现在看来,我这个观念是错误的,至少在微软这里是完全错误的。 实际情况是,Surface Pro 5、6、7 这三代产品的酷睿 i5 版(分别对应 Intel 酷睿七代、八代、十代),都采用被动散热,也就是无风扇的设计(i7 版是有风扇的)。我觉得在行业内也就微软有这种“魄力”了。不过至少通过对它们的了解和研究,可发现无风扇酷睿低压本(非超低压)的实际性能情况,大致是什么样。因为温控、散热设计对性能有着很直接、显著的影响。 主观体验 聊主观体验的话,其实就不光是处理器的问题了,理论上我应该谈“系统性能”。比如说 Surface Pro 6 低配版选择的闪存比较寒碜,加上 LPDDR3,其存储性能本身就不会很好看,这些实际上都对系统性能成绩造成了比较大的影响。就 NoteBookCheck 的 PCMark 系统性能来看,低配版 Surface Pro 6 的系统性能得分和 Pro 5 差不多 ,主要源于其存储性能实在太烂。不过我不想聊系统性能,我们就单纯说说 CPU。所以主观体验这部分其实不靠谱,各位权当看看。 如果只说体验的话,我日常用 Photoshop 和 Lightroom 作图调色比较频繁,Surface Pro 6 酷睿 i5 版在应付这两个软件时已经十分力不从心。起初我一直觉得这件事很不可思议,八代酷睿怎么应付不了 PS 和 LR?所以我怀疑是软件版本问题(或 GPU 加速什么的不生效),后来我发现不管我换用哪个版本,在这台超极本上用 PS 和 LR,就是感觉会慢半拍。LR 的使用体验尤其糟糕,就是调某一种色彩的饱和度、色相、亮度都会感觉到迟滞。以前那些七代酷睿本上都没发生过这种事。 这是我用 Surface Pro 6 在中秋节那天做的图,这张图做到 20 分钟时,屏幕已经比较烫手 我手上主要在用的是两台本子,一台是 Surface Pro 6,还有一台是公司发的 ThinkPad X390(酷睿 i7-8565U)。这两台设备看起来都是八代超级本,而且就这两款设备发售同期,Surface Pro 6 价格也比较感人:于情于理,Surface 也应该和同期八代超级本性能相近,或者至少差别不大吧。但就实际体验部分来看,ThinkPad X390 的 PS 和 LR 使用体验真的甩 Surface Pro 6 九条街,前者在这些软件内的常规操作基本没什么卡顿的情况发生。 这就真的让我很不爽了,因为这种体验差距是能确确实实感受到的。大家同样是八代本,凭什么 ThinkPad X390 就出色那么多? 如果我们单从处理器来看,它们的主要区别在我看来就是有没有风扇的问题,Surface Pro 6 的酷睿 i5 版是没风扇的,ThinkPad X390 有风扇——而且风扇还经常转。在酷睿 i 系列本子上不用风扇的,在行业内估计也是屈指可数的。我这两台设备实际的处理器型号为: - Surface Pro 6: 酷睿 i5-8350U(Kaby Lake Refresh),1.7GHz 主频,3.6GHz 睿频,6MB L3 Cache;LPDDR3 8GB 双通道;UHD Graphics 620(300-1100MHz) - ThinkPad X390: 酷睿 i7-8565U(Whiskey Lake),1.8GHz 主频,4.6GHz 睿频,8MB L3 Cache;DDR4-2400 8GB;UHD Graphics 620(300-1150MHz) 貌似看这个配置表,我这“主观体验”对比未免也太不客观了。的确,这两个超级本的处理器架构代号都不一样。不过 Whiskey Lake 相比 Kaby Lake Refresh 的主要差别在于,Whiskey Lake 采用改良版的 14nm++ 制造工艺,提供了更高的频率,其余各部分其实是差不多的,貌似还有外围支持的一些小差异。 似乎就存储性能表现,以及处理器频率、L3 Cache 来看,ThinkPad X390 更优的软件使用体验也算必然。只是我没想到两者的差距会这么大,毕竟也算是同期的八代超级本。就我自己看来,这种差异可以认为是散热机制造成的,Surface Pro 6 的无风扇设计导致其性能孱弱,并影响到了用户体验(实际情况或许还要复杂一些)。散热机制差异对性能的影响,超过了上述配置参数差异的影响。下面我们来“片面”地看看,无风扇设计究竟造成了多大的影响。 这三代无风扇设计的 Surface 前文就提到了,Surface Pro 5、6、7 这三代的酷睿 i5 版都采用无风扇设计。就我的理解来看,这应该并非是微软对自己系统设计有多自信,而是在理念上期望打造一款安静的无风扇平板电脑(而且温度控制需要比一般笔电更低,毕竟它身兼“平板”属性,需要经常与手亲密接触)。它在定位上更偏向便携、轻薄、移动、安静。只不过 Surface Pro 就平板定位来看,真的不轻,我自己觉得就现阶段来看,它完全没有追求“便携、轻薄”的资格。 而且主观体验可补充的是,Surface Pro 6 的温控机制虽然在笔记本中算是比较保守的,但如果你有用 Surface Pen 作图的习惯,在 Photoshop 里面作图,手指和屏幕亲密接触,依然能十分明确地感受到这设备“温暖”得可以:时刻提醒你,这根本就不是一台平板,哪有这么“温暖”的平板啊?所以我觉得,在这一点追求上,Surface 是失败的。或者说,我觉得 Surface Pro 没必要追求这个。 我们来看下,如果只对比这三代产品,其 CPU 性能表现的差异。这里援引 NoteBookCheck 的 CineBench R15 多轮跑分,如下图所示。我将 Surface Pro 5、6、7 的酷睿 i5 版跑分标识出来了。 来源:NoteBookCheck 首先简单谈一谈 CineBench R15 是个什么测试:这个测试基于动画软件 CINEMA 4D 3D 内容创作,可用于衡量 CPU 和 GPU 性能。CPU 测试场景包含 28 万个多边形,GPU 测试基于 OpenGL ——渲染大约 100 万多边形、高分辨率纹理和各种特效。测试中,CineBench 会动用全部系统处理能力,来渲染一个 3D 场景,该场景由各种算法构成,对所有可用处理器核心构成压力测试。CPU 测试场景包含大约 2000 个对象,采用形状、模糊反射、面积光源、阴影、反锯齿等效果。GPU 测试部分就不说了,也不是本文要探讨的重点。 Intel 似乎一直认为 CineBench 是一个“unrepresentative”的测试 ,其实我也这么觉得。不过 NoteBookCheck 的这项对比最为直观,我就拿过来用了。 如果我们只用 Surface Pro 自家产品对比,这三代的性能提升还是显著的。而且同样是无风扇,Surface Pro 的性能还是比 Surface Go 高出一大截的——这里没有给出 Surface Go 的成绩,这款设备的 CineBench R15(多线程)跑分稳定在 160 分左右。Surface Pro 6 的酷睿 i5 CPU(酷睿 i5-8250U)性能提升相比 5 还是相当显著的,就 CineBench 来看,其成绩在长时间跑分后的稳定状态位于 440 分上下;而 Surface Pro 5 (酷睿 i5-7300U)是不到 230 分——持续性能提升超过 90%(相比 Surface Pro 5 有风扇的 i7 版提升约 27%)。Surface Pro 7 的酷睿 i5 版(酷睿 i5-1035G4)持续性能跑在 500 分上下,这个提升幅度算是尚可,不过比我想象得要差。 实际上,从这个曲线也反映了这三代设备的一个共性,最初几轮跑分成绩明显比较高,尤其是第一轮跑分成绩,完全不输给那些带风扇同配的超级本,但在跑到大约第五、第六轮的时候,性能开始直线下滑。主要是因为功耗与温控限制,致设备可持续的频率比峰值状态下的频率低很多。Surface Pro 6、7 这两台四核设备的性能损失尤为显著。 在 NoteBookCheck 的测试中,CineBench R15 测试项,Surface Pro 6 在最初的几秒到几十秒时间里,处理器(酷睿 i5-8250U)频率可以跑到 3.4GHz,很快会降至 2.8GHz;到第四轮测试时,频率降到 2.6GHz;后续则维持在 2GHz。TDP 功耗从最初的 22W 降到 16.5W,并在第六轮测试时降到大约 10W。温控机制会在 CPU 达到 70℃ 时做出限制,最终稳定在 62-64℃(有风扇的酷睿 i7 版则可以让温度推升到明显更高)。 这里值得一说的是 Surface Pro 7 的这颗酷睿 i5,乃是十代酷睿中的 Ice Lake(Ice Lake-U)——而不是 14nm 的 Comet Lake,即采用 Intel 最新的 10nm 制程,而且是新架构,是 Intel 目前最先进的 CPU 产品了。Intel 的十代酷睿有两个系列,分别是持续改良版 14nm 的 Comet Lake 和 10nm 的 Ice Lake;前者是老架构、改良版工艺,后者是新架构、新工艺。当然我们不能认为 10nm 的 Ice Lake 就一定更好,这一点还会在后文中提及。但十代酷睿实际上相较八代酷睿,仍可以认为是一次较大幅度的跨越,因为八代酷睿实则并不像很多媒体渲染得那么好,这一点还将在后文中提及。 Surface Pro 7 的 CineBench R15 成绩最初可以达到 685 分这样的高分,但在后续循环测试中,性能致持续稳定状态则损失了大约 27%。当然我们不能说峰值性能是没有意义的,因为应用运行的很多情况需要的就是短时间内的性能,所以睿频性能的短时突发量还是有价值的。但面对一些高负荷的长时间持续负载时(比如解压大文件、视频 encode 等),Surface Pro 7 也显然没有那么香——毕竟它的 i5 版也没有风扇。 单 CineBench 一项测试其实很难说明问题,不过 AnandTech、NoteBookCheck 这些媒体针对的测试项目不多,而且少有像上面这样的长时间持续性能测试——像 GeekBench 这种短时间内做大量项目测试的基准测试工具,其参考价值有多少是值得多加思索的。AnandTech 测试了更多系统性能项目,如果我们只看较短测试周期的结果,八代酷睿的多核、多线程测试成绩显著领先于七代,比如 x264 转换这种任务;而 web 测试成绩则比较一般。AnandTech 有在评论中提到,Surface Pro 6 无风扇版的 PL2 值被限制在大约 23W,而更多八代酷睿低压本的短时间睿频功耗可以达到 30W——这个说辞应该不狗准确,这还会在后文中提到。 另外 Surface Pro 7 的十代酷睿 i5,表现比我预想的要糟糕,即便它相较同样没风扇的 Surface Pro 6 八代酷睿 i5 已经有不错的提升了。 当对比其他有风扇的设备时 那么这些没风扇的低压超级本,在和有风扇的设备比较时,性能大致是个什么水平呢?这本身就比较考验 OEM 厂商的系统设计水平,比如散热、温控机制等;笔记本的内部设计需要考虑与权衡的因素还很多,不只是性能和效率。实际可参照的设备很多,我们主要来看看不带风扇的 Surface Pro 与微软自家有风扇的 Surface Pro 酷睿 i7 版,以及 Surface Laptop,还有 ThinkPad 的差异。 在展开以前,就只说 Surface Pro 7 的酷睿 i5 版,具体型号 i5-1035G4。这里简单介绍一下这颗 CPU,我原本真的十分看好这次的 i5 版 Surface Pro。Ice Lake 架构(Sunny Cove 架构),10nm 制程,四核八线程,1.1-3.7GHz。Intel 宣称 Ice Lake 有 18% 的 IPC 提升(应该是相比 Comet Lake)。不过大概是因为 Intel 的 10nm 工艺还不成熟,所以 Ice Lake-U 具体到 CPU 的频率普遍都不及 14nm 的 Comet Lake 和 Whiskey Lake。 其他参数包括 6MB L3 Cache;集成核显 Iris Plus——48 EU,300-1050MHz。另外 Surface Pro 7 采用的内存是 LPDDR4x,1866.7MHz,双通道——存储性能理论上也应该是显著优于 Surface Pro 6 的。 可惜它没有风扇,如果和有风扇的超级本比起来,用 NoteBookCheck 的话来说 ,Surface Pro 7 无法维持住睿频太长时间,其多线程性能在最糟糕的时候和酷睿 i5-8350U 类似(参考对象应该是惠普 Elite x2 这种带风扇的超级本),最好时与酷睿 i7-8650U 差不多(对比对象是 Surface Pro 6 带风扇的酷睿 i7 版)。其实总结一下,可理解为 无风扇的 Surface Pro 7 与有风扇的八代低压超级本,持续性能差不多。 但也不能就此给所有无风扇的 Surface Pro 定性。比如 Surface Pro 5 的酷睿 i7 版,也就是有风扇的版本,CineBench R15 无论跑多少轮,成绩都比不上 Pro 6 的无风扇版。这还是要归功于酷睿八代核心数量翻番。处理器本身的提升也是十分重要的。 下面的对比可能不够科学,因为实际的持续性能表现还受制于设备尺寸、外部 ID 设计——这是本文没有考虑进去的;但我向来就是这么的随性。来看一个比较杂的 CineBench R15 性能对比。 这张图加入了 Surface Laptop 2、Dell XPS 13、ThinkPad X390、ThinkPad T490s 这些相对传统的八代酷睿超级本。不难发现,即便是相同的 CPU(这组对比中以酷睿 i5-8265U、8250U 为主),不同的设计可达成的性能表现也是不一样的。这里表现比较好的 ThinkPad T490s(黄色) 能够与 Surface Pro 6(品红色)、Surface Pro 7(深红色)产生很好的对比。要知道 Surface Pro 7 已经搭载了十代酷睿,但持续性能表现却落后于绝大部分八代酷睿超级本。而 Surface Pro 6 则实至名归地在八代超级本中 CineBench R15 测试成绩垫底。 不夸张地说,无风扇设计的 Surface Pro,相比同代有风扇设计同配超级本,平均的持续性能差距可以达到 20-35%,相较一些系统设计十分出色的 14 寸超级本,持续性能差距可达 40%。 留意到 NoteBookCheck 在评测中也提到,"A laptop with ideal cooling is way out of the Surface Pro 6 (2018) i5’s league as the latter was only around 65% as fast." 比如说,ThinkPad T480s(14 寸超级本,酷睿 i5-8250U)在持续负载中就比无风扇的 Surface Pro 快了 35%;即便是更小 12 寸的 ThinkPad X280(酷睿 i5-8250U)在持续性能上也高出约 20%。 没风扇果然是不行的。不过这里还是再次提醒一下,我没有研究过 CineBench R15 内部的具体测试流程,及其测试数据规模,虽然网上说它是个偏 CPU 的测试,但既然作为软件跑在最上层,它一定和整个系统相关;所以还是需要考虑 CPU 以外的其他配置。这样一来,整个系统的对比会比较复杂。 参照下更多酷睿十代(以酷睿 i5-1065G7 为主)低压本的性能表现,如下图。仅供参考——因为这里不同的笔记本在定位、设计上差异甚大,最顶部的 Surface Laptop 3 之所以能有这么好的表现,与其 15 寸的尺寸也有关。NoteBookCheck 目前数据库的十代酷睿测试数据似乎还不够多,所以横向对比的参考价值可能并不大;毕竟 Surface Pro 7 的 i5-1035G4 在规格上还是比表中的 1065G7 要弱一些的。 “真男人时间”短 针对本文开头部分所说,我用的这两台笔记本(ThinkPad X390 i7版/Surface Pro 6 i5版),用 AIDA64 看下这两台设备的 CPU 相关信息。这里我比较关注的是 CPU PL1、PL2 参数(下图中的 CPU Power Limit 1/2)。这两个值表示的是长时睿频功耗上限、短时睿频功耗上限,及其相应的持续时间。这个值与 OEM 厂商自己的设计相关。 ThinkPad X390 ThinkPad X390 这台设备(接 AC 电源、高性能模式下)的 PL2 短时睿频 TDP 设定在 51W,睿频可持续时间 28 秒;长时也有 25W。好像很多酷睿 i7-8565U 都采用类似的设定。这在低压本中仍是十分激进的值,虽然前文也把 X390 归类在超级本中,但实际上这台设备在厚度等 ID 设计上都算不上轻薄。可类比小米 Pro 这种八代本长时睿频 TDP 设定在 44W。 这种本子在一个较短时间内允许 CPU 不受性能约束,尔后便会做限制;44W、51W 这种值都是短时间内当标压设备在用了。这个“短时间”在很多场景下,仍对体验十分有帮助。 不过这几个参数只具有参考价值,因为实际能否达到设定的这些值及最高频率,还与设备的温控机制相关。从我自己的测试来看,ThinkPad X390 实则远远达不到这个程度(不过我做测试十分随意,可能某些变量没有控制到位),默认情况下可在一小段时间内坚挺在 29W 上下(一轮跑差不多在这个功耗下坚持半分钟),频率 3.10 GHz 左右,但 X390 似乎很容易撞温度墙,轻轻松松达到 100℃ 时便会立刻回退至后续长时间的 25W,且温度似乎始终都比较高——只不过在设计上并不影响体验。很多时候,往往 PL2 功耗冲高后,由于温度也会快速上升,最高性能状态也根本就坚持不了 厂商设定的值,有时或许连 10 秒都撑不到——睿频、TDP 极限可坚持的时间,就是所谓的“真男人时间”了。 Surface Pro 6 低配版,需要注意的是,我运气比较好,我买到的 SP6 用的是酷睿 i5-8350U,略好于市面上流通的 8250U Surface Pro 6 在 AIDA64 中查看的这个值 PL2 是 35W,持续时间 2.00 秒?Max Turbo 全核 36x。我自己尝试跑 CineBench R20,并用 XTU 观察数值变化,只跑一轮,Package TDP 坚持在 25W 的时间还算是比较久的,后续功耗限制(DPTF?)后终维持在 17-18W 的水平。这对于一台被动散热设备而言已经相当不错了。尝试用 XTU 把 PL1 设为 35W,则在一轮 CineBench R20 全程,TDP 维持在 25W,温度在 73 ℃上下浮动(室温 15℃ 左右);长时间的 17-18W,温度在 65℃ 附近浮动。(不过貌似旧版的 Intel XTU 有点小问题,这组数据可能不准确) NoteBookCheck 反复跑 CineBench R15 测试十几二十轮是很有价值的。尤其在 Surface Pro 酷睿 i5 版这类被动散热设备上,前面几轮可以表现出比较好的成绩;但在温度和功耗达到一定值以后,被动散热的效率不高,真男人时间也不再。所以其持续性能会有一个较大幅度的损失。 实际从市面上绝大部分八代超级本的表现来看,在实现时,大部分超级本的“真男人时间”都比较短。而且更悲惨的是,PL1 标定的长时睿频功耗(我手上的 ThinkPad X390 是 25W,Surface Pro 6 也是 25 W)也未必能达到。能够坚守 15W 的八代超级本似乎就不多。Surface Pro 6 在多轮 CineBench R15 测试下最后降到 10W 及以下。 很多拥有主动散热的八代超级本,最终也都达不到 15W 长时睿频,主要原因是其散热设计不过关: Intel 首次在八代酷睿低压 CPU 中将核心数量翻番,对散热设计原本就提出了新的挑战。从笔吧评测室更早的测试来看 ,全力跑 CineBench R11.5/R15 的单线程测试时,酷睿八代 CPU 整体功耗就可能达到或超过 15W——一个核心满载就已经撞功耗墙了;多核心同时跑的频率情况即可想而知。 所以在一大批同系列八代超级本上,酷睿 i5 与 i7 版的持续性能几乎没什么差距,尤其很多 OEM 厂商还在沿用七代本的散热设计方案,则睿频真男人时间极短,过后就是持续降频,甚至在绝大部分情况下都达不到标称最高频率。于是持续高负载时,由于散热设计不过关,导致 i7 的高频能力根本无处发挥。可以想见,即便微软有着十分强大的系统设计能力,Surface Pro 6 的酷睿 i5 板去掉风扇以后,还怎么能撑得起场面。 不过在 i7 版配置上采用风扇,实则的的确确拉开了 i5 与 i7 配置的性能差距,这一点从前面 Surface Pro 的 CineBench R15 持续跑分就能看得出来。让 i5 与 i7 拉开性能差距的方式还果然是与众不同啊,说笑… 另外还说明,不同 OEM 厂商对待八代超级本做设计的认真程度,是可以反映到最终产品的性能表现上来的,ThinkPad (T 系列与 X 系列)属于八代低压本中的佼佼者,即便我也没有测试手头这台 ThinkPad X390 i7 版的真男人时间,以及睿频 TDP 是否如标称这般(以及续航测试在此也显得很要紧)。 十代酷睿,用被动散热会怎样? 我手上没有 Surface Pro 7,所以并不了解这台设备的情况。从 NoteBookCheck 的测试来看,Surface Pro 7 无风扇的酷睿 i5 版最初跑 CineBench R15 可以飙到 685 分(多核),这个成绩事实上比 Surface Pro 6 的有风扇酷睿 i7 版都还要好;比 Surface Pro 6 无风扇的酷睿 i5 版有 17% 的领先优势。但后续测试由于没有风扇,持续降频,成绩下滑幅度大约有 30%,最终如果就 CineBench R15 测试来看,Surface Pro 7 酷睿 i5 版在持续性能上相比 Surface Pro 6 酷睿 i5 版领先优势不到 15%。而且比 Surface Pro 6 的有风扇酷睿 i7 版弱了将近 13%。 目前网上似乎还没有针对 Surface Pro 7 酷睿 i7 版相对系统的测试数据,所以有无风扇对十代酷睿(Ice Lake-U)造成的影响似乎没有十分直观的比较对象。若以联想 Yoga C940(酷睿 i7-1065G7)这款设计相对比较平庸的十代超级本来对比,则 C940 相比 Surface Pro 7 无风扇 i5 版,有大约 24% 的持续性能优势(但这个对比并不科学,因为 CPU 并非同款),市面上某些 Comet Lake 十代本在绝对性能上差不多也是这样的领先幅度。 PCMark 10 测试,来源:NoteBookCheck PCMark 8 测试,来源:NoteBookCheck 不知该说 Surface Pro 7 无风扇版在系统设计上有退步,还是无风扇的 Surface Pro 6 实际已经达成被动散热的最优设计。无论如何,这次的 Surface Pro 7 在 CPU 持续性能提升幅度上都算是比较有限的。但如果我们这里做个导购建议,则因为 Surface Pro 6 的系统性能实在十分糟糕(如前文所述,存储性能差),PCMark 10 这类测试综合成绩还不如 Surface Pro 5,那么 Surface Pro 7 无风扇 i5 版的可购买推荐指数依然是比较高的。它在 PCMark 10 的综合得分与 Surface Book 2 差不多,甚至还与 Surface Laptop 3 锐龙版差不多,比 Surface Pro 6 带风扇的 i7 版都有 15% 的成绩优势。 不过我总体觉得,PCMark 10/8 可能仍无法代表 Surface Pro 7 的日常使用体验,这里也不清楚 NoteBookCheck 在进行 PCMark 10/8 测试时具体是怎么跑的。所以也在这里给各位作参考吧。 如前文所述,酷睿十代包括了两个版本,分别是改进版 14nm 工艺,架构不变(Skylake)的 Comet Lake;以及采用 Intel 最新 10nm 工艺,架构变为 Sunny Cove 的 Ice Lake。这里不再具体谈十代酷睿的具体表现,不过就已上市 Comet Lake-U 的超级本来看,Comet Lake 架构没变、工艺也基本没变的情况下,其实际表现比八代的 Whiskey Lake 虽无同频性能的太大提升,但同频功耗降低不少;在相同散热条件下,Comet Lake-U 能够提升 15-20% 的性能 。 就这方面的表现来说,Comet Lake 似乎是对 14nm 四核低压处理器的一次完善和补足,或者说可能在八代酷睿低压 CPU 核心和线程数目翻番显得过于匆忙时,在十代 Comet Lake 身上完成了一次比较出色的修正,让四核低压 CPU 真正步入成熟。(本文未探讨六核低压 CPU) 不过去年更新的 Surface 系列采用的十代酷睿并非 Comet Lake 版,而是 Ice Lake 版——也就是新工艺、新架构的版本,听起来好像更美好了。但前文就提到了,可能是 Intel 的 10nm 制程还没有那么成熟(后续我打算把 WikiChip Fuse 针对 Intel 10nm 工艺的文章翻译过来),虽然 Intel 宣称 Ice Lake 有 18% 的 IPC 提升,但市面上的 Ice Lake CPU 在最高频率方面不及 Comet Lake。 来源:笔吧评测室 从笔吧评测室的测试数据来看 ,3.5GHz 的 Ice Lake-U 差不多等于 4GHz 的 Comet Lake-U。实际上如果对比同频功耗,Ice Lake 是略高一点的,但 Ice Lake 的同频性能也更高。按照同性能来比较功耗,Ice Lake 还是胜出的(Uncore 以及核显的功耗会明显更高,此处 Uncore 也因为有了四个 Thunderbolt 3 原生支持故功耗更高)。 来源:笔吧评测室 以功耗为尺度做衡量,则在 PL1/PL2 为 15W/25W 的超级本上,Ice Lake 的性能会略低于 Comet Lake;但达到 35W 及更高时就会超越。就这个角度来看,Surface Laptop 3 采用 Ice Lake 应该还是个相当不错的选择;但 Surface Pro 7 的无风扇酷睿 i5 版也选择 Ice Lake,实际就有那么点小问题了。 但就上面我援引的各种数据来说,Surface Pro 7 无风扇酷睿 i5 版在 CPU 性能方面比 Surface Pro 6 高出 14-17% 之间(峰值和持续性能),这实际完全符合在相同散热设计下,十代酷睿(Comet Lake-U)比八代酷睿(Whiskey Lake-U)强约 15% 的预期,而 Ice Lake 在较低功耗设定下的性能相较 Comet Lake 没有优势,所以 Surface Pro 7 的表现完全符合预期。或者说 Surface Pro 6 可能已经在12寸设备上做到了被动散热的最优设计,Surface Pro 7 则延续了这一传统。 当然,在 Surface Pro 体系内,无风扇的被动散热大概的确做得不错,只是被动散热一定意味着性能会打折扣。 另外这里再分享一篇我觉得很有意思的文章,AnandTech 前不久参加 CES 2020 的 Intel 的主题演讲 。Intel 在会上对比了自家低压 Comet Lake/Ice Lake 与 AMD Ryzen Mobile 3000 系列,表明自家产品性能、特性领先多少。不过这不是重点,实际上这个对比结果也没什么奇怪的,从 Surface Laptop 3 的酷睿版和锐龙版比较,就能看出在低压版 CPU 的这一局,Intel 还是有相当优势的。 不过在这个对比中, AnandTech 发现,Intel 分别发布了两张 PPT,一张对比 Comet Lake 与 Ryzen Mobile 3000,另一张对比 Ice Lake 与 Ryzen Mobile 3000。三个对比对象分别是酷睿 i7-10710U、酷睿 i7-1065G7,以及 AMD Ryzen 7 3700U。而自家 Comet Lake 与 Ryzen Lake 却没有直观对比。AnandTech 觉得十分好奇,于是他们将两张 PPT 上的成绩放到了一起,一次来比较十代酷睿的两个版本究竟表现如何,如下图所示。 来源:Intel via AnandTech Intel 宣称这些测试项是最能代表“真实环境的测试”。不过在包括 PCMark 10、WebXPRT 在内的测试中,Comet Lake 在前四项测试中都胜出,浏览器测试(PCMark10 Edge)基本是平手;WebXPRT 浏览器测试两者得分也相近,Ice Lake略胜。Office 真实测试也是对半开,Word 测试互有胜负(PPT PDF 导出测试,Comet Lake 的优势似乎还不小)——比较奇特的是这里的 Powerpoint 转为 1080p 视频测试,日常不知道有谁会这样操作;Photoshop 测试完全打平;至于 Topaz Labs AI 测试,这应该属于小众测试——而且 Intel 还和这家软件供应商合作进行了 GPU 加速(说好的真实环境测试呢?)。 总结一下上表的对标情况。Comet Lake 的这枚六核心的酷睿 i7-10710U 可以达到 4.7GHz 的睿频,而代表 Ice Lake 的四核酷睿 i7-1065G7 最高频率限制在 3.9GHz。即便后者 IPC 有 18% 的优势,也足以被频率和核心数差异抵消。比如 Office 负载,i7-10710U 可以同时开 12 个线程,这其实还是有很大优势的。 所以就现阶段来看,如果单论性能,则在具体的 CPU 产品上,Comet Lake 仍是更加成熟的选择——即便它采用的是旧架构和旧工艺。另外 Ice Lake 引入了一些消费用户暂时不怎么用得到的东西,比如说 AVX-512 指令原生支持——在现有某些特定冷门项目上,Ice Lake 估计可以获得更好的成绩。这么看来,如果真的说“真实环境测试”,则 Comet Lake 也是优选。虽然这种局面大概是 Intel 不怎么愿意看到的。 最后展望一下今年的 Surface Pro:其实去年发布的 Surface Pro X 真的挺好看,我倒是不在意设备厚不厚,而在意 Surface Pro 的屏幕太小了;Surface Pro X 就弥补了这个短板,屏占比增大了,屏幕变大了。无奈 Surface Pro X 是台 Arm 设备,知乎有几篇谈 Pro X 使用体验,以及 x86/x64 转 Arm64 效率的测试文章,至少现在 Arm 平台的 Windows 本体验是真的不好的。 我觉得很有理由相信,x86 平台的 Surface Pro 在屏幕、外观方面也会有类似 Surface Pro X 这样的升级,或许 Surface Pro 8 身上就能看到。还有一点,AMD 在前不久的 CES 大会上发布了 Ryzen 4000 系列 APU,这仍然会对低压超级本市场产生一次性能、效率上的冲击。Intel 计划中的 Tiger Lake 在路上。不确定 Surface Pro 8 能否赶得上。其实感觉这两年由于 AMD 的搅动,即便“摩尔定律放缓”,桌面 CPU 市场也焕发了一波生机。2020 年的 Surface Pro 或许会具有极大的吸引力。 最后的最后,总结一下本文的一些推论: 1. 无风扇设计的 Surface Pro 在持续性能上,会明显弱于同时代同配置的其他主动散热超级本;持续性能差距可以达到 20-35%。 2. Surface Pro 的酷睿 i5 版与 i7 版性能差别会比较大,这和其他品牌超级本的情况很不一样; 3.微软可能已经在 Surface Pro 被动散热设计上做到了最优化; 4.Surface Pro 6 相比 Pro 5 实现了一次性能飞跃; 5.Surface Pro 7 无风扇酷睿 i5 版的升级还是相当值得的,尤其系统性能提升比较大; 6.即便十代酷睿的 Ice Lake 用上了更好的工艺、更新的架构,但 Comet Lake 仍然拥有更出色的成熟性,和更实用的性能; 7.未来的 Surface Pro 8 可能相当值得期待,或许 Surface Pro 8 可以实现性能与外观(屏幕尺寸)的双重飞跃。 这里再多说一句,虽然本文花了比较多的篇幅在说被动散热的 Surface Pro 相比同配置超级本性能更孱弱,但我从未对于购买 Surface Pro 无风扇版的设备后悔——只不过我更加认识到 Surface Pro 的 i5 和 i7 版价格差别较大还是有原因的。对于无风扇设计,微软大约也有自己的想法。毕竟移动、安静本身就需要付出代价,就好像超级本的性能远弱于游戏本——但价格却依然可能很高,这是一样的道理,看你愿意为何种元素买单罢了。 ---- 注:有热心市民提醒,NoteBookCheck 的测试没有交代测试具体环境,尤其是室温:室温实际对于持续性能影响也很大。在看本文时,请留意此信息的缺失!所以 20-35% 这一数字值得商榷。 我猜 NoteBookCheck 应该有相应的文档来解释测试环境,但我太懒了,不想去看了,有兴趣的同学自己可以去翻一翻。 参考来源及推荐阅读: Microsoft Surface Pro 6 (2018) (i5, 128 GB, 8 GB) Convertible Review - NoteBookCheck Intel’s Confusing Messaging: Is Comet Lake Better Than Ice Lake? - AnandTech Microsoft Surface Pro 7 Core i5 Review: More Like a Surface Pro 6.5 - NoteBookCheck 美丽的谎言——8代Intel低压4核性能测试 - 笔吧评测室 Intel 10代酷睿移动版性能测试(一)—— CometLake-U 4核 - 笔吧评测室 intel 10代酷睿移动版性能测试(三)—— IceLake-U 核心篇 - 笔吧评测室
相关资源
广告