tag 标签: 发动机故障

相关博文
  • 2024-11-27 17:00
    57 次阅读|
    0 个评论
    故障现象  一辆 2017款捷豹F-PACE车,搭载2.0 L GTDi发动机,累计行驶里程约为16万km。车主反映,车辆组合仪表上发动机故障灯点亮(图1),且发动机偶尔怠速不稳。 图 1 发动机故障灯点亮 故障诊断 接车后试车,组合仪表上发动机故障灯点亮,但怠速不稳的现象并未出现。使用故障检测仪检测,在发动机控制模块( PCM)存储有2个故障代码“P000A-00 ‘A’凸轮轴位置响应过慢(第1列气缸组)”“P0011-71 ‘A’凸轮轴位置-正时过于超前或系统性能(第1列气缸组)”,由此怀疑凸轮轴正时系统(VCT)发生故障。 检查气门室盖和正时盖,发现有拆装过的痕迹。询问车主得知,该车由于起动异响,更换过正时链轮,之后组合仪表上发动机故障灯便点亮,且发动机偶尔怠速不稳。 检查 VCT电磁阀导线连接器,安装正确,相关线路也未出现断路或短路。使用故障检测仪读取发动机数据流,并没有所需的及实际的进、排气凸轮轴位置数据。 使用 虹科 P ico 汽车 示波器测量故障车的发动机正时波形(图 2),发现进、排气凸轮轴位置相对曲轴位置的角度分别为67.01°和62.87°。 图 2 故障车的发动机正时波形 测量正常车的发动机正时波形(图 3),发现进、排气凸轮轴位置相对曲轴位置的角度分别为60.47°和63.76°。对比可知,故障车进气凸轮轴位置相对曲轴位置偏差了6.54°,已经超出了规定范围(正常偏差不超过3°),由此确定进气凸轮轴正时存在偏差。 图 3 正常车的发动机正时波形 故障排除 根据维修手册,使用正时专用工具重新安装正时。安装完成后试车,发动机故障灯不再异常点亮。再次测量发动机正时波形,发现进、排气凸轮轴位置相对曲轴位置的角度分别为 60.61°和63.58°,数据正常。进行加速,进、排气凸轮轴相对曲轴位置对应地提前和滞后移动,说明VCT工作正常。进行路试,发动机怠速平稳,加速有力。交车1周后进行电话回访,车主反映车辆使用一切正常,故障排除。 故障总结 (1) 在安装 2.0 L GTDi发动机的正时时,一定要严格遵守维修手册要求操作,使用专用工具,并按照规范进行拆装,否则很容易出现正时偏差的问题。 (2) 车辆出现正时故障代码时,使用进排气凸轮轴 +曲轴位置传感器信号组合而成的正时波形,可以非常快速且有效地判断其相对位置的准确性,避免了反复拆装调节的麻烦。 作者: 蔡永福 11月28日,周四晚 8点,《汽车维护与修理》杂志社副主编——汤多顺老师将 做客 虹科 Pico直播间!拥有上万篇案例审阅经验,出版了两本免拆诊断案例集的汤主编,将和我们分享NVH问题的诊断思路与技巧,其中也许就有你可能会忽略的地方哦! 直达 直播 间 : https://olezi.xetslk.com/s/sU9Ts
  • 2024-11-22 17:38
    59 次阅读|
    0 个评论
    故障现象  一辆 2012款路虎揽胜运动版车,搭载3.0T柴油发动机(型号为306DT),累计行驶里程约为10.2万km。车主进厂反映,车辆行驶中加速无力,且发动机故障灯异常点亮。 故障诊断 接车后试车,发动机怠速轻微抖动,发动机故障灯异常点亮;原地加速,提速无明显异常。用故障检测仪检测,发动机控制模块( ECM)存储有故障代码“P0302-00 检测到气缸2失火间歇”(图1);保存并清除故障代码后试车,发动机故障灯熄灭。 图 1ECM中存储的故障代码 用 虹科 Pi co 汽车 示波器测量曲轴位置传感器信号和气缸 4喷油电流波形(图2),分析可知气缸2喷油后曲轴加速较其他气缸偏低,说明气缸2工作不良,推断可能的原因有:气缸2喷油器及其线路故障;ECM故障;气缸2压力不足。 图 2 曲轴位置传感器信号和气缸4喷油电流波形 测量气缸 2的喷油电压和电流波形(图3),发现是连续3次喷油,且第3次喷油脉宽明显变大 。 图 3 气缸2的喷油电压和电流波形 放大第 2次喷油电压和电流波形(图4),分析可知,该车为压电晶体式喷油器,第1阶段为充能阶段,持续时间约为159微秒,电压逐渐升高(最高电压约118 V),压电晶体堆变形,电流逐渐降低,喷油针阀打开,开始喷油;第2阶段为保持阶段,持续时间约为104微秒,电压保持为118 V,电流为0 A;第3阶段为释能阶段,持续时间约为195微秒,电压逐渐下降至0 V,压电晶体堆复原,电流为负值,喷油针阀关闭,停止喷油;整个喷油器的工作过程很短暂,只有约460微秒。与气缸4的喷油电压和电流波形进行对比,波形基本一致,由此排除ECM及喷油器电路存在故障的可能。 图 4 放大气缸2第2次喷油电压和电流波形 进行相对压缩测试(图 5),起动电流波动无明显异常,初步判断气缸2的密封性良好。 图 5 相对压缩测试波形 诊断至此,怀疑气缸 2喷油器存在机械故障。仔细检查气缸2喷油器,发现怠速时气缸2喷油器附近有废气泄漏(图6),且气缸2附近的油污较多。 图 6 气缸2喷油器附近有废气泄漏 拆下气缸 2喷油器,外壳有很多油污(图7),而其他喷油器的外壳很干净,由此推断气缸2喷油器密封不良。 图 7 气缸2喷油器外壳上有很多油污 故障排除 更换所有气缸的喷油器密封件修理包后进行路试,车辆加速恢复正常,发动机故障灯不再异常点亮,故障排除。 故障总结  气缸 2喷油器密封不良,气缸压力越大,漏气量越大。相对压缩测试时的漏气量很小,所以从测试结果看不出异常;怠速时的漏气量较小,气缸2没有完全失火,发动机加速无明显异常;车辆行驶中加速时的漏气量较大,气缸2完全失火,发动机加速不良。 该车压电晶体式喷油器的结构如图 8所示。 图 8 压电晶体式喷油器的结构示意 杭州捷盛行汽车服务有限公司 乐翔 11月28日,下周四晚8点,《汽车维护与修理》杂志社副主编,汤多顺老师做客虹科直播间!奥迪A7行驶中发动机异响?汤主编教你更科学的诊断方法与技巧,一起探索NVH问题的解决之道! 这是 一个有些特别的异响案例,也许就是你曾忽略的地方 哦 ! 直达直播间:https://olezi.xetslk.com/s/sU9Ts
  • 2024-11-13 14:15
    99 次阅读|
    0 个评论
    汽车免拆诊断案例 | 2016款福特蒙迪欧车发动机怠速不稳
    故障现象  一辆 2016款福特蒙迪欧车,搭载CAF488WQ3发动机,累计行驶里程约为12.4万km。车主反映,怠速时座椅上偶尔有轻微抖动感,同时组合仪表上的发动机转速表指针上下小幅度摆动,但车辆行驶加速正常。 故障诊断  接车后试车,车主反映的故障现象确实存在,但发动机怠速抖动并不明显;用故障检测仪检测,无故障代码存储。用 虹科 P ico 汽车 示波器测量曲轴位置传感器信号和气缸 1点火信号波形(图1),分析可知,气缸1、气缸3、气缸4均会偶发失火;放大波形观察,发现气缸失火和未失火时的点火信号基本一致,说明故障与点火系统无关。 图 1 故障车怠速时的曲轴位置传感器信号和气缸1点火信号波形 读取发动机数据流,观察燃油修正数据,无明显异常,初步排除混合气浓度异常引发故障的可能,怀疑发动机正时存在偏差,使气缸内偶尔残留的废气较多,以致气缸偶尔失火。 查看维修手册得知,在安装该款发动机正时时,需要注意以下步骤。 (1) 转动曲轴使气缸 1位于上止点位置,然后用正时销固定曲轴(图2)。 图 2 用正时销固定曲轴 ( 2)安装进、排气凸轮轴后需要用专用工具进行定位(图3)。 图 3 使用专用工具定位进、排气凸轮轴 ( 3)安装传动带轮时需要用螺栓定位传动带轮(图4)。 图 4 用螺栓定位传动带轮 ( 4)安装曲轴位置传感器时需要用专用工具定位 ( 图 5)。 图 5 用专用工具定位曲轴位置传感器 用 虹科 P ico 汽车 示波器测量发动机正时及气缸 1压力波形(图6),发现曲轴位置传感器大齿缺信号下降沿与进气凸轮轴位置传感器窄齿信号上升沿相差约11个曲轴信号齿,曲轴位置传感器大齿缺信号下降沿与气缸1压缩上止点位置(对应气缸压力最大位置)相差约20个曲轴信号齿。 图 6 故障车的发动机正时及气缸1压力波形 图 7 正常车的发动机正时及气缸1压力波形 对比图 6与图7可知,故障车的曲轴位置传感器位置安装正确,但进气凸轮轴位置延迟了约1个曲轴信号齿,即6°曲轴转角,由此确定发动机正时存在偏差。 用专用工具校对发动机正时,将曲轴转动至气缸 1压缩上止点,发现专用定位工具无法卡入进、排气凸轮轴末端开口(图8),再次确认发动机正时存在偏差。 图 8 专用定位工具无法卡入进、排气凸轮轴末端的开口 正常情况下,专用定位工具卡入进、排气凸轮轴末端开口的状态如图 9所示。 图 9 专用定位工具可以卡入进、排气凸轮轴末端的开口 故障排除  严格按照维修手册上的步骤,使用专用工具重新校对发动机正时后试车,车主反映的故障现象消失; 用虹科 P ico 汽车 示波器再次测量曲轴位置传感器信号和气缸 1点火信号波形(图10),可以看到,所有气缸均未再出现失火现象,发动机怠速运转平稳,故障排除。 图 10 正常车怠速时的曲轴位置传感器信号和气缸1点火信号波形 故障总结 通常,故障代码指引了故障诊断的大体方向。但有时,当故障比较轻微且程度未达到设定好的阈值时,车辆电脑中并不会记录故障。此时,使用虹科 Pico示波器则可以很好地将这种轻微的故障展现出来,为维修指引一个正确的方向,减少盲目猜测,提高诊断效率。 作者:余姚东江名车专修厂 叶正祥 插电混动车,作为纯电与燃油车的 “综合体”,拥有着更为特殊的结构与动力系统。那这一类车型的NVH问题,当如何应对呢? 11月14日晚8点,“玩示波器的行者”应良卿老师 将 空降虹科 Pico直播间,深度剖析宝马G38 PHEV时速30-40Km/h车身振动案例,教你轻松拿捏混动车低速抖动问题! 直达直播间: https://olezi.xetlk.com/s/UBJcy
  • 热度 1
    2024-7-17 11:16
    276 次阅读|
    0 个评论
    汽车免拆诊断案例 | 2017 款林肯大陆车发动机偶尔无法起动
    故障现象 一辆 2017款林肯大陆车,搭载2.0T发动机,累计行驶里程约为7.5万km。车主进厂反映,有时按下起动按钮,起动机不工作,发动机无法起动,组合仪表点亮正常;多次按下起动按钮,发动机又可以起动着机了。故障没有明显规律,几天出现一次,为此更换过蓄电池、起动机及起动按钮,但故障依旧,于是将车开至我厂进行检修。 故障诊断 接车后反复试车,故障未能再现。用故障检测仪检测,发现多个控制模块中均存储有以字母 “U”开头的通信类故障代码(图1),其中与动力控制模块(PCM)通信丢失相关的故障代码出现的次数最多,初步判断该车存在偶发的通信故障。 图 1 存储的故障代码 仔细分析图 1中的故障代码,发现一个奇怪的地方,即PCM和ABS(防抱死制动控制模块)中均未存储通信类故障代码。PCM是要与ABS交流信息的,如制动状态、车速、发动机转速等信息。假设ABS与PCM之间的通信总线存在故障,那么两者会相互识别到对方通信丢失,即ABS中会存储与PCM通信丢失的故障代码,PCM中会存储与ABS通信丢失的故障代码。为什么PCM和ABS中均未存储通信类故障代码呢?分析认为,故障出现时PCM和ABS均无法正常工作,所以均无法识别通信类故障代码,由此怀疑PCM和ABS的共用电源或搭铁线路存在故障。 再分析图 1中的故障代码,发现ABS中存储有故障代码“U300A-29-28 点火开关”,TRCM(变速器范围控制模块)中存储有故障代码“P2534-00-28 点火开关运转/起动位置电路电压偏低”,2个故障代码均与起动按钮控制的电源有关,于是接着重点检查PCM和ABS的电源,特别是受起动按钮控制的电源。 查看相关电路(图 2)得知,PCM、ABS、TRCM及PSCM(电动转向控制模块)等均由运行/起动继电器控制供电。用故障检测仪查看TRCM的电源数据流,反复按下起动按钮(在IG ON与IG OFF之间切换),“点火开关运行/起动位置电路电压-测量值”变化均正常。 图 2 运行/起动继电器控制供电电路 用虹科 Pico示波器测量熔丝F33(图3)输出端子上的电源波形(图4),乍一看未见异常;放大运行/起动继电器接通瞬间的电源波形,发现电源有明显的波动,怀疑运行/起动继电器触点偶尔接触不良。 图 3 熔丝F33及运行/起动继电器的安装位置 图 4 故障车熔丝F33输出端子上的电源波形 拆下运行 /起动继电器检查,外观无异常,且安装孔无松动;人为反复给运行/起动继电器线圈供电,触点均能够吸合。拆下运行/起动继电器外壳,观察触点,无明显烧蚀痕迹。在运行/起动继电器触点间塞一张纸,装复试车,故障现象再现,且存储的故障代码也与图1一致,由此验证故障是由运行/起动继电器触点偶尔接触不良引起的。 故障排除 更换运行 /起动继电器后再次测量熔丝F33输出端子上的电源波形(图5),发现运行/起动继电器接通瞬间的电源波动明显变好。交车1个月后进行电话回访,车主反映故障未再出现,故障排除。 图 5 正常车熔丝F33输出端子上的电源波形 故障总结 1、汽车是复杂系统的高度集成,牵一发而动全身。因此,进行故障诊断之前,必须熟悉车辆各系统之间的联动关系。在本案例中,面对大量的通信故障,笔者敏锐地发现了PCM与ABS故障码间的异常关系,从而有效缩小的故障范围,降低了排查难度。 2、偶发、轻微的故障通常排查难度是更大的。本案中,故障是因运行/起动继电器触点偶尔接触不良引起的,不难看出,这类偶发的接触不良仅通过拆检观察是非常难发现的。而使用虹科Pico示波器,捕捉异常波形,就能成为有力的提示与证据,帮助技师锁定故障,避免错漏问题! 作者:叶正祥 看了这么多波形诊断案例, 你是否也想了解,波形诊断到底能不能提升收益?怎样才能吸引更多客户,实现利润提升? 7月18号晚 八点,欣车汇创始人,维修检测工程师陆瑾老师,将分享她的经验与秘籍!还有百元 豪礼送不停 !错过就真的错亿咯,速速预约起来咯 ! https://olezi.xetlk.com/s/3rH8os
  • 热度 4
    2023-11-24 09:52
    372 次阅读|
    0 个评论
    一、故障现象 一辆2011款瑞麒M1车,搭载SQR317F发动机,累计行驶里程约为10.4万km。该车因发动机起动困难、抖动、动力不足、热机易熄火等故障进厂维修。用故障检测仪检测,发动机控制单元(ECU)中存储有故障代码“P0340相位传感器安装位置不当”。 为此维修人员更换了火花塞、凸轮轴位置传感器、曲轴位置传感器及正时链条套装等,并反复校对了发动机配气正时,但故障依旧,于是向笔者请求技术支持。 二、故障诊断 该车只在进气凸轮轴上配备了凸轮轴位置传感器(资料上称为相位传感器),用于检测进气凸轮轴上4齿的齿槽磁通量变化;当各个齿转过凸轮轴位置传感器时,传感器电子装置根据磁场变化输出一个脉冲信号;凸轮轴每转1圈就有4个不同宽度的脉冲信号输出,输出信号的频率取决于凸轮轴转速;发动机控制单元通过对窄齿和宽齿进行解码来识别凸轮轴位置,从而确定发动机的最佳点火和喷油时刻。 根据故障代码P0340提示,首先对凸轮轴位置传感器的线路进行检测,电源(5V)和搭铁均正常,且信号线无断路、短路现象,由此怀疑凸轮轴位置传感器信号失常。于是用示波器测量凸轮轴位置传感器的信号波形(图1),发现信号形状及幅值均无明显异常。 图1 凸轮轴位置传感器的信号波形 考虑到发动机曲轴转角与凸轮轴转角之间有一定的对应关系,如果两者的对应关系出现问题,便会导致配气正时错误,从而使发动机起动困难、动力不足,严重时发动机根本无法起动。仔细检查发动机正时机构和凸轮轴的安装,并无异常。 【咨询pico示波器:400-999-3848www.qichebo.com】用 示波器 同时测量该车曲轴和凸轮轴位置传感器的信号波形(图2),并与正常车的相关波形(图3)进行对比。曲轴位置传感器为“60-2齿”(原本为60个齿,减去2个齿)结构,齿与齿间隔角度为360°/60=6°,每个凸齿和小齿缺所占曲轴转角均为3°。 图2 故障车曲轴和凸轮轴位置传感器信号波形 曲轴旋转1圈,将会产生58个脉冲信号。大齿缺所占的弧度相当于2个凸齿和3个小齿缺所占弧度,大齿缺所占曲轴转角为(2+3)×3°=15°。大齿缺输出基准信号,对应发动机气缸1或气缸4压缩上止点前的一定角度,到底是气缸1还是气缸4,则需根据凸轮轴位置传感器信号来确定。 如图3所示,正常车的凸轮轴位置传感器第2个宽齿信号上升沿与曲轴位置传感器大齿缺信号下降沿对齐,故障车的凸轮轴位置传感器第2个宽齿信号上升沿与曲轴位置传感器大齿缺信号下降沿相差了15个脉冲信号,每个脉冲信号占6°曲轴转角,相当于相差了15×6°=90°曲轴转角。 图3 正常车曲轴和凸轮轴位置传感器信号波形 如果发动机配气正时真的相差这么多,发动机不可能起动着机,加上之前检查发动机配气正时未见异常,怀疑曲轴或凸轮轴位置传感器的信号盘发生偏转。进一步检查发现,进气凸轮轴的信号轮上有锤击痕迹(图4)。 图4 进气凸轮轴的信号轮上有锤击痕迹 由于信号轮和凸轮轴后端采用过盈配合的方式进行连接(图5),因此在外力作用下两者的相对位置关系会发生偏转,从而使凸轮轴位置传感器信号失准。 图5 信号轮与凸轮轴后端采用过盈配合的方式连接 三、故障排除 调整凸轮轴信号轮的位置,使曲轴和凸轮轴位置传感器的信号波形与正常车的信号波形一致,清除故障代码后试车,发动机起动顺利,加速有力,故障排除。 四、故障总结 这类故障在发动机实际维修过程中并不多见,按照传统的思路对凸轮轴位置传感器及线路、发动机配气正时进行检测,未能解决问题,最后借助示波器测量曲轴和凸轮轴位置传感器的信号波形,与正常车的信号波形进行对比才发现了问题。 作者: 郑州市国防科技学校 党令军 河南地矿职业学院 禹露