tag 标签: 发动机故障

相关博文
  • 2025-3-5 11:00
    75 次阅读|
    0 个评论
    案例 1 2008款保时捷卡宴车行驶中发动机偶发熄火 故障现象  一辆 2008款保时捷卡宴车,搭载4.8 L 自然吸气发动机,累计行驶里程约为21万km。车主反映,该车行驶中发动机偶发熄火;重新起动,发动机能够起动着机,只是起动时间延长,且组合仪表上的发动机故障灯异常点亮。 故障诊断 接车后试车,发动机起动及怠速运转正常。用故障检测仪检测,发动机控制单元( DME)中存储有故障代码“P0335 曲轴位置传感器A电路”,由此怀疑曲轴位置传感器信号偶尔异常,导致发动机熄火。 用虹科 Pico汽车示波器测量曲轴位置传感器信号、进气凸轮轴位置传感器信号及点火触发信号波形。发动机怠速运转约30 min后突然熄火,采集到发动机熄火瞬间的相关波形如图1所示。分析图1可知,曲轴位置传感器信号突然丢失,紧接着点火信号消失,发动机熄火。 图 1 发动机异常熄火时的相关波形1 发动机正常熄火时的相关波形如图 2所示,可知曲轴位置转速信号是逐渐消失的。 图 2 发动机正常熄火时的相关波形 曲轴位置传感器是磁电式的,不需要供电和搭铁,只要曲轴转动,曲轴位置传感器就会产生交流电压信号,并输送至 DME。检查曲轴位置传感器线路,未见异常;诊断至此,推断曲轴位置传感器损坏。 故障排除  更换曲轴位置传感器后反复试车,故障未再出现。交车 1星期后进行电话回访,车主反映故障未再出现,故障排除。 故障总结 如图 3所示,发动机突然异常熄火后重新起动,虽然曲轴位置传感器信号一直丢失,但依靠进气凸轮轴位置传感器信号,发动机仍能起动着机,只是起动时间较长,约为4 s。 图 3 故障出现后重新起动时的相关波形 案例 2 2010款保时捷帕拉梅拉车行驶中发动机偶发熄火 故障现象 一辆 2010款保时捷帕拉梅拉车,搭载4.8 L自然吸气发动机,累计行驶里程约为17万km。车主反映,该车行驶中发动机偶发熄火;重新起动,发动机能够正常起动着机。 故障诊断 接车后试车,发动机起动及怠速运转正常。用故障检测仪检测, DME无故障代码存储存储。用虹科Pico汽车示波器测量曲轴位置传感器信号、进气凸轮轴位置传感器信号、点火触发信号及喷油电流波形。反复试车,采集到发动机熄火瞬间的相关波形如图4所示,可知点火和喷油信号突然消失,紧接着发动机熄火,曲轴位置传感器信号逐渐消失。 图 4 发动机异常熄火时的相关波形2 放大点火和喷油信号突然消失时的波形(图 5),发现曲轴位置传感器信号有一处异常的下拉(电压由5 V下拉至3 V),怀疑故障是由此引起的。 图 5 放大点火和喷油信号突然消失时的波形 故障排除 拆检曲轴位置传感器,未见异常;更换曲轴位置传感器后反复试车,故障未再出现。交车 1 星期后进行电话回访,车主反映故障未再出现,故障排除。 故障总结 发动机是一个复杂系统的集成,点火、喷油、气门开闭、信号控制等系统相互配合工作。在这一过程中,一旦某个系统出现异常,就会带来连锁反应,导致整个系统的工作不良。例如本案例中,曲轴位置传感器信号突然消失 /波动,导致点火和喷油中断,致使发动机熄火。 因此,想要更准确地诊断发动机故障,就需要从时间维度上,去寻找第一个出现异常的单元,从而更准确的判断故障源根。 马来西亚吉隆坡 JLF Auto Service 蓝利祥
  • 热度 4
    2025-1-23 10:46
    548 次阅读|
    0 个评论
    汽车免拆诊断案例 | 2007 款日产天籁车起步加速时偶尔抖动
    故障现象  一辆 2007款日产天籁车,搭载VQ23发动机(气缸编号如图1所示,点火顺序为1-2-3-4-5-6),累计行驶里程约为21万km。车主反映,该车起步加速时偶尔抖动,且行驶中加速无力。 图 1 VQ23发动机的气缸编号 故障诊断 接车后试车,发动机怠速运转平稳,但只要换挡起步,稍微踩下一点加速踏板,就能感觉到车身明显抖动。用故障检测仪检测,发动机控制模块( ECM)无故障代码存储,且无失火数据流。用虹科Pico汽车示波器测量气缸1点火信号(COP点火信号)和曲轴位置传感器信号波形(图2),发现故障出现时有气缸偶尔不工作 。 图 2 气缸1点火信号和曲轴位置传感器信号波形 局部放大波形(图 3),发现每次都是气缸6点火后,曲轴转速偶尔不升反降,这说明气缸6偶尔不工作,其他气缸工作正常。 图 3 局部放大后的波形 用 2个串联的COP探头同时测量气缸4和气缸6的点火信号波形(图4),发现气缸6点火信号的次级段明显异常,由此推断气缸6的点火线圈或火花塞损坏。 图 4 同时测量气缸4和气缸6的点火信号波形 拆检气缸 6的火花塞,未见异常,与气缸4调换点火线圈后试车,失火气缸转移至气缸4,由此确定气缸6的点火线圈损坏。 故障排除  更换气缸 6点火线圈后试车,起步加速时抖动现象消失,故障排除。 故障总结 气缸 6的点火线圈在怠速时能够正常点火,但随着发动机负荷增大,会偶尔点火失败,以致发动机偶尔抖动。 使用示波器测量曲轴位置传感器传感器信号,然后计算出曲轴转速,通过观察各气缸点火后的曲轴转速变化,可以判断是否有气缸工作不良;而一旦有气缸工作不良,再配合点火信号分析,就可以推断出是哪一个气缸工作不良。这种诊断方法非常适用于诊断发动机偶发失火且无故障代码的故障。 作者: 江苏省常熟市爱卡汽车 孙 娄
  • 热度 1
    2024-12-19 10:06
    183 次阅读|
    0 个评论
    汽车免拆诊断案例 | 2011 款奔驰 S400L HYBRID 车发动机故障灯异常点亮
    故障现象 一辆 2011款奔驰 S400L HYBRID 车,搭载 272 974发动机和126 V高压电网系统,累计行驶里程约为29万km。车主反映,行驶中发动机故障灯异常点亮。 故障诊断 接车后试车,组合仪表上的发动机故障灯长亮;用故障检测仪检测,发现发动机控制模块( ME)中存储有故障代码“P001500 排气凸轮轴(缸组1)调节执行过晚”“P001464 排气凸轮轴(缸组1)位置偏离额定值。存在一个不可信信号”;记录并清除故障代码,故障代码可以清除,且发动机故障灯熄灭;原地试车,故障未再出现;进行路试,加速时故障再现,且故障代码P001500和P001464再次存储。继续路试,观察进气、排气凸轮轴相位调节数据流(图1),发现加速时进气、排气凸轮轴相位开始调节,气缸列1和气缸列2(坐在驾驶室看向发动机室,右侧气缸为气缸列1,左侧气缸为气缸列2)的进气凸轮轴相位调节角度变化一直同步,而气缸列1和气缸列2的排气凸轮轴相位调节角度变化不同步,气缸列2(左侧气缸)排气凸轮轴相位调节角度较大,且波动较小,而气缸列1(右侧气缸)排气凸轮轴相位调节角度较小,且波动较大,由此推断气缸列1排气凸轮轴相位调节不到位,可能的故障原因有:气缸列1排气凸轮轴相位调节电磁阀损坏;气缸列1排气凸轮轴相位调节阀阀芯卡滞;气缸列1排气凸轮轴链轮损坏;机油油路局部堵塞,导致气缸列1排气凸轮轴链轮调节腔中的机油压力不足;相关线路故障;发动机控制模块故障。 图 1 故障车进气、排气凸轮轴相位调节数据流 怠速时人为将气缸列 1排气凸轮轴相位调节电磁阀控制线短暂搭铁,发现气缸列1排气凸轮轴位置传感器信号右移了约1个窄齿位(图2),约40°曲轴转角。 图 2 人为将气缸列1排气凸轮轴相位调节电磁阀控制线短暂搭铁时的相关波形 人为将气缸列 2排气凸轮轴相位调节电磁阀控制线短暂搭铁,发现气缸列2排气凸轮轴位置传感器信号也右移了约1个窄齿位(图3),约40°曲轴转角。 图 3 人为将气缸列2排气凸轮轴相位调节电磁阀控制线短暂搭铁时的相关波形 对比两列气缸的测试结果可知,在人为控制的情况下,气缸列 1排气凸轮轴相位调节与气缸列2一样,能够达到最大调节角度(约40°曲轴转角),由此初步排除气缸列1排气凸轮轴相位调节电磁阀、阀芯、链轮及机油油路存在故障的可能,怀疑气缸列1排气凸轮轴相位调节电磁阀控制信号异常。 测量气缸列 1和气缸列2的排气凸轮轴相位调节电磁阀控制信号波形(图4、图5),对比可知,气缸列1 排气凸轮轴相位调节电磁阀控制信号由低电位变为高电位时出现了约55 V的感应电动势,异常。 图 4 气缸列1排气凸轮轴相位调节电磁阀控制信号波形 图 5 气缸列2排气凸轮轴相位调节电磁阀控制信号波形 测量气缸列 1和气缸列2的排气凸轮轴相位调节电磁阀电流波形(图6、图7),对比可知,气缸列2排气凸轮轴相位调节电磁阀控制信号由低电位变为高电位时对应的电流是缓慢降低至0 A的,而气缸列1排气凸轮轴相位调节电磁阀控制信号由低电位变为高电位时对应的电流会快速降低至0 A。由此推断发动机控制模块内部的续流电路损坏,无法通过占空比信号精确控制气缸列1排气凸轮轴相位调节阀阀芯位置,以致气缸列1排气凸轮轴相位调节不到位。 图 6 气缸列1排气凸轮轴相位调节电磁阀电流波形 图 7 气缸列2排气凸轮轴相位调节电磁阀电流波形 故障排除  更换发动机控制模块后路试,发动机故障灯未再异常点亮,再次读取进气、排气凸轮轴相位调节数据流(图 8),发现加速时气缸列1和气缸列2的进气、排气凸轮轴相位调节角度变化均同步,故障排除。 图 8 正常车进气、排气凸轮轴相位调节数据流 故障总结 1、 续流电路 (通常是续流二极管)提供一个回路,使电流得以平稳衰减,避免电感元件产生过高的感应电动势尖峰,保护驱动电路和信号完整性。如果 损坏 , 如续流二极管击穿或开路, 则 反向感应电动势将无法被有效吸收和抑制 。 高电压尖峰可能反馈到控制信号线路,叠加在占空比信号的下降沿,形成一个短暂的感应电动势尖峰。 通过汽车示波器,可以将这短暂的异常完整地展现出来,帮助技师更好地判断故障问题。 2、在无法先行确定故障原因的情况下,技师往往会采用价格从低到高换件的形式,来反推故障。但模块损坏的维修成本通常是比较高的,如果使用换件的方法可能会造成很高的成本浪费和客户不满。使用汽车示波器则可以提供强有力的数据支撑,辅助技师先锁定故障,后自信维修! 作者:余姚东江名车专修厂 叶正祥 Tech Gear 汽车诊断学院汽车免拆诊断专家,现任余姚东江名车专修厂厂长兼技术总监,被聘为哈弗汽车区域技术专家;2015 年获得首届中国汽车诊断师大赛总决赛三等奖;2016 年取得中国汽车工程学会汽车诊断专业领域中级工程师资格证书。 12月26日晚,下周四晚8点,从业24年,拥有丰富疑难故障诊断经验的叶正祥老师,也将带领我们一起,厘清NVH常见问题的诊断方法的技巧,巩固加提升,更好地应对未来的挑战!直播预约链接:https://olezi.xetslk.com/s/2ojbh6
  • 热度 3
    2024-12-11 11:03
    202 次阅读|
    0 个评论
    汽车免拆诊断案例 | 2014款保时捷卡宴车发动机偶尔无法起动
    故障现象 一辆 2014款保时捷卡宴车,搭载3.0T 发动机,累计行驶里程约为18万km。车主反映,发动机偶尔无法起动。 故障诊断 接车后试车,发动机起动及运转均正常。用故障检测仪检测,发动机控制单元( DME)中存储有多个历史故障代码,其中故障代码“P065200 传感器参考电压B过低”最有可能导致发动机无法起动。查看维修资料得知,当传感器参考电压B(正常约为5 V)低于4.6 V时,则会存储故障代码P065200。 由图 1可知,DME端子A14为曲轴位置传感器和节气门体总成提供5 V参考电压,DME端子A35为凸轮轴位置传感器、燃油低压压力传感器及进气歧管绝对压力传感器等提供5 V参考电压,DME端子B63为增压压力传感器、机械增压器旁通阀及进气管活门阀位置传感器等提供5 V参考电压。 图 1 传感器参考电压电路 反复试车再现故障,用虹科 Pico汽车示波器测得故障出现时的传感器参考电压波形如图2所示,DME端子A35和端子B63上的参考电压均拉低至2.2 V左右,异常。 图 2 故障出现时的传感器参考电压波形 故障消失后人为将燃油低压压力传感器的参考电压线对搭铁短路(图 3),发现机械增压器旁通阀的参考电压也同时被拉低,而节气门体总成的参考电压不变,由此推断DME端子A35和端子B63共用参考电压电路,而DME端子A14为独立的参考电压电路。诊断至此,推断DME端子A35和端子B63下游的参考电压线路对搭铁短路、元件内部对搭铁短路或DME损坏。 图 3 人为将燃油低压压力传感器的参考电压线对搭铁短路后测得的相关波形 依次检查 DME端子A35和端子B63下游元件的外观及导线连接器,发现气缸列1进气管活门阀位置传感器线路的绝缘层老化破损(图4),参考电压线偶尔与搭铁线短路,拉低了多个元件的参考电压,导致多个信号失准,其中包括低压燃油压力、高压燃油压力及进气歧管绝对压力等信号,以致发动机无法起动。 图 4 气缸列1进气管活门阀位置传感器线路的绝缘层老化破损 故障排除 修复破损的气缸列 1进气管活门阀位置传感器线路后反复试车,故障未再出现,故障排除。 故障总结 故障发生时的异常信号,是精准判断故障的重要依据。因此,在面临偶发故障诊断时,根据车辆结构提前推测可能的故障原因,并使用具有记录功能的诊断设备,采集故障发生时的信号是尤为重要的。虹科 Pico汽车示波器能够一次性采集并记录多个信号,大大降低了偶发故障的诊断难度,是这类故障的诊断“法宝”之一。 案例作者: 杭州捷盛行汽车服务有限公司 乐翔 现任杭州捷盛行汽车服务有限公司技术经理、开思杭州地区技术顾问; 2015年获保时捷全球认证技师资质;2016年取得汽车维修高级技师资格证书。 从业 18年,接触波形诊断多年。拥有丰富的示波器诊断经验。 底盘异响总修不好? 12月12日晚8点,乐翔老师 将 用两个燃油车底盘异响诊断案例,带你了解异响问题的诊断之道! 丰富有趣的诊断案例,与异响问题的诊断技巧和方法,尽在本周 虹科 Pico 直播间! 直达直播间: https://olezi.xetlk.com/s/1HXMZf
  • 热度 2
    2024-11-27 17:00
    253 次阅读|
    0 个评论
    故障现象  一辆 2017款捷豹F-PACE车,搭载2.0 L GTDi发动机,累计行驶里程约为16万km。车主反映,车辆组合仪表上发动机故障灯点亮(图1),且发动机偶尔怠速不稳。 图 1 发动机故障灯点亮 故障诊断 接车后试车,组合仪表上发动机故障灯点亮,但怠速不稳的现象并未出现。使用故障检测仪检测,在发动机控制模块( PCM)存储有2个故障代码“P000A-00 ‘A’凸轮轴位置响应过慢(第1列气缸组)”“P0011-71 ‘A’凸轮轴位置-正时过于超前或系统性能(第1列气缸组)”,由此怀疑凸轮轴正时系统(VCT)发生故障。 检查气门室盖和正时盖,发现有拆装过的痕迹。询问车主得知,该车由于起动异响,更换过正时链轮,之后组合仪表上发动机故障灯便点亮,且发动机偶尔怠速不稳。 检查 VCT电磁阀导线连接器,安装正确,相关线路也未出现断路或短路。使用故障检测仪读取发动机数据流,并没有所需的及实际的进、排气凸轮轴位置数据。 使用 虹科 P ico 汽车 示波器测量故障车的发动机正时波形(图 2),发现进、排气凸轮轴位置相对曲轴位置的角度分别为67.01°和62.87°。 图 2 故障车的发动机正时波形 测量正常车的发动机正时波形(图 3),发现进、排气凸轮轴位置相对曲轴位置的角度分别为60.47°和63.76°。对比可知,故障车进气凸轮轴位置相对曲轴位置偏差了6.54°,已经超出了规定范围(正常偏差不超过3°),由此确定进气凸轮轴正时存在偏差。 图 3 正常车的发动机正时波形 故障排除 根据维修手册,使用正时专用工具重新安装正时。安装完成后试车,发动机故障灯不再异常点亮。再次测量发动机正时波形,发现进、排气凸轮轴位置相对曲轴位置的角度分别为 60.61°和63.58°,数据正常。进行加速,进、排气凸轮轴相对曲轴位置对应地提前和滞后移动,说明VCT工作正常。进行路试,发动机怠速平稳,加速有力。交车1周后进行电话回访,车主反映车辆使用一切正常,故障排除。 故障总结 (1) 在安装 2.0 L GTDi发动机的正时时,一定要严格遵守维修手册要求操作,使用专用工具,并按照规范进行拆装,否则很容易出现正时偏差的问题。 (2) 车辆出现正时故障代码时,使用进排气凸轮轴 +曲轴位置传感器信号组合而成的正时波形,可以非常快速且有效地判断其相对位置的准确性,避免了反复拆装调节的麻烦。 作者: 蔡永福 11月28日,周四晚 8点,《汽车维护与修理》杂志社副主编——汤多顺老师将 做客 虹科 Pico直播间!拥有上万篇案例审阅经验,出版了两本免拆诊断案例集的汤主编,将和我们分享NVH问题的诊断思路与技巧,其中也许就有你可能会忽略的地方哦! 直达 直播 间 : https://olezi.xetslk.com/s/sU9Ts