tag 标签: 信号完整性

相关帖子
相关博文
  • 热度 7
    2018-4-14 11:50
    6242 次阅读|
    1 个评论
    信号反射的几个重要体现及电路设计
    本文要点: 1,介绍信号分列反射的具体表现; 2,结合具体电路分析。 信号沿传输线向前传播时,每时每刻都会感受到一个瞬态阻抗,这个阻抗可能是传输线本身的,也可能是中途或末端其他元件的。对于信号来说,它不会区分是什么,信号所感受到的只有阻抗。如果信号感受到的阻抗是恒定的,那么他就会正常向前传播,只要感受到的阻抗发生变化,信号都会发生反射。这些因素可能包括过长的走线,末端匹配的传输线,过量的电容或电感及阻抗失配。 反射会造成信号过冲 overshoot 、下冲 undershoot 、振铃 ringing 、边沿迟缓也就是阶梯电压波。过冲是振铃的欠阻尼状态,边沿迟缓是振铃的过阻尼状态。当信号的第一个波峰超过原来设定的最大值。过冲是指信号跳变的第一个峰值或谷值,它是在电源电平之上或参考地电平之下的额外电压效应; 边沿迟缓我们也成为台阶,回勾现象,其危险主要是会造成误触发。 下冲是指信号跳变的下一个谷值或峰值。过冲与下冲都是不利的因素,过大的过冲电压经常长期性地冲击会造成器件的损坏,如上图所示。严重的下冲会超过接收器件的门限而导致电路的逻辑错误。 如果信号在驱动器和接收器之间来回多次反射,就会产生振铃现象,这增加了信号稳定所需要的时间,从而也影响了系统稳定的时序。 细节处如下图, 电路设计 Tips : 一般做电路设计中,如果时钟信号链路比较长,会在时钟输出信号上串接一个小电阻,比如 22 欧姆或者 33 欧姆。 至于为什么,很多成熟设计都是这么做,算是一个经验设计方法。实际上, 其实这个小电阻的作用就是为了解决信号反射问题。而且随着电阻的加大,振铃会消失,但你会发现信号上升沿不再那么陡峭了,串联电阻是为了减小反射波,避免反射波叠加引起过冲。这个解决方法叫阻抗匹配,一定要注意阻抗匹配,阻抗在信号完整性问题中占据着极其重要的地位。
  • 热度 4
    2018-3-10 17:09
    3911 次阅读|
    0 个评论
    信号完整性基础-反射是如何产生的?续
    好吧,春节过完,博客接着更新了。。。。 给大伙拜个晚年:祝大家新年快乐,步步为营,分别在不同的地方看到了两组图片挺有意思的,拿出来,分享博大家一乐。 每逢春节胖三斤 扯远了。。。重回正题,更新信号完整性方面的基础,年前手头的项目耽搁了。 有小伙伴看完之前的文章说,不够深入浅出,想了想,再写一篇,力图简单易懂的说明白反射是如何形成的。 要说明白反射,需要涉及前文提到过阻抗及匹配的概念,形象来说,如下图,如同拼图游戏一般,红色方块太大,或者太小都放不进空格中,会产生信号完整性问题;只有匹配上,才能正好放进去,没有反射。 具体的,前文说到了特性阻抗,我们熟知实际电路中最大功率传输定理是关于负载与电源相匹配时,负载能获得最大的功率。迁移到高速电路中,其表现是: 激励电路特性与传输线特性极大地影响了从一个装置传送到另一个装置信号的完整性。 具体来说,在高速电路中要想把信号能量从源端全部有效的传送到负载端,必须使传输线特征阻抗与信号的源端阻抗和负载阻抗匹配,否则信号会发生反射,导致信号波形的畸变等一系列问题。 之前,还有在网上读到其他大牛写的文章,对阻抗及反射的关系写得很形象易懂,大概是说,将电流类比于水流,而将水位的高度看作为电压,这跟我们初高中接触的物理知识是一致的。水流的速度看作是信号的频率,假设,河道中水的宽度为阻抗,那么河道宽阻抗必然越小,这应该很好理解,我们的走线也是一样, 走线越宽,阻抗越小 。 所以,对于河道,如果水流突然流进了窄道,水道变窄,那么阻抗会增大。这个时候,如果水流速度很快,也就是信号频率很高,那么试想是不是会溅起水花,如下图,这就是反射。而如果,河道由宽到窄,那么小沟中水位想想肯定是会抬高的(去过苏杭的运河游船的应该是很清楚这一点),说明这就产生了正反射,电压变高了。 反之,如果由河道进入了大江,江明显更宽,那么此时阻抗会变小,同时水位也会变低,此时就会产生负阻抗啦,叠加后电压就低了。 通过上面的类比,我们再看下面的就很 easy 了。 反射就是在传输线上的回波。信号功率 ( 电压和电流 ) 的一部分传输到线上并达到负载处,但是有一部分被反射了,如下图所示。源端与负载端阻抗不匹配会引起线上反射,负载将一部分电压反射回源端。如果负载阻抗小于源阻抗,反射电压为负,反之,如果负载阻抗大于源阻抗,反射电压为正。布线的几何形状、不正确的线端接、经过连接器的传输及电源平面的不连续等因素的变化均会导致此类反射。 好吧,形成的原因,大概就到此,感兴趣推导的公式的伙伴们可以推到一个3-5次反射的情况,理解就更深入了。
  • 热度 18
    2014-2-10 11:36
    1812 次阅读|
    16 个评论
          春节假期,看了本思维导图宝典(东尼.博赞),感觉不错,推荐大家看一看。无论是项目管理还是知识体系的构建,甚至思维的表达及引导,都能发挥出很好的效果。特别是在自己思维的小火花忽现的时候,拿起手机就能把“瞬间”记录到“体系”中来。利用假期我也整理了一份自己的电学体系知识构架,仅仅是针对电学相关联的构架,所以各分支不慎详细和全面,并且末梢之间其实有交叉互联的内容,以后会慢慢补上,不过目前还是能看得出点眉目的,分享给大家。       工程师朋友们,看着这份思维导图,寻找下有没有自己的“技术关注点”,或者如果没有,这个“点”该添加到哪个位置?思考着自己还可以有哪些可以去扩展的?反问自己有哪些已经成为自己设计中的拦路虎了呢?       分享与讨论,可以使之更完善!
  • 热度 15
    2013-5-2 10:23
    5883 次阅读|
    13 个评论
    多年前,在我开始研究信号完整性问题时也曾经有过这样的疑问,随着对信号完整性理解的深入,便没有再仔细考虑。后来在产品开发过程中,朋友、同事经常向我提出这一问题。有些公司制作复杂电路板时,硬件总也调不通,于是找到我,当我解决了问题,并告诉他们,原因就在于没有处理好信号完整性设计,负责开发的硬件工程师也会提出同样的问题。他们通常的说法是:高速电路中会有问题,可是什么情况下必须进行专门的信号完整性设计? 不断的有人问我,我不得不作更深入的思考。说实话,这个问题很难回答,或者说他们这种问法很难回答。他们的意思可以解释为,速度高了就要考虑信号完整性,低速板不存在这个问题,那总要有个临界频率,这个频率是多少?有人曾提出过这样的论点,当外部总线频率超过80MHz时,就要进行专门的分析设计,低于这一频率,不用考虑信号完整性问题。对这一论点,我不敢苟同。仔细分析,他们这种问法的背后是对信号完整性的一种误解。 如果必须有一个答案的话,我想答案应该是:只要信号畸变到了无法容忍的程度就要考虑信号完整性问题。呵呵,看起来像是在胡说八道,不过这确实是能找到的最好的答案了。 要想弄清这个问题,必须先了解信号完整性的实质到底是什么。产生信号完整性的原因很多,频率(值得推敲,暂且借用提问者的说法)只不过是其中的一个而已,怎么能单单用频率来强行地划分界线!顺便说一句,很多人说频率的影响,其实这个词很值得推敲。频率到底指的是哪个部分的频率?电路板上有主时钟频率,芯片内部主频,外部总线带宽,数字信号波形带宽,电磁辐射频率,影响信号完整性的频率到底指的是哪一个?问题根源在于信号上升时间。如果你不是很理解,可以到于博士信号完整性研究网学习。 信号完整性最原始的含义应该是:信号是否能保持其应该具有的波形。很多因素都会导致信号波形的畸变,如果畸变较小,对于电路板不会产生影响,可是如果畸变很大,就可能影响电路的功能。系统频率(芯片内部主频以及外部频率)、电磁干扰、电源波纹噪声,数字器件开关噪声、系统热噪声等都会对信号产生影响,频率并不具有特殊的地位,你不能把所有的注意力都放在频率这个因素上。 那么这里又会出现另一个问题,波形畸变多大,会对电路板功能产生影响。这没有确定统一的指标,和具体应用以及电路板的其他电气指标有关。对于数字信号而言,对畸变的容忍度较大。能有多大的容忍度,还要考虑电路板上的电源系统供电电压波纹有多大,系统的噪声余量有多大,所用器件对于信号建立时间和保持时间的要求是多少等等。对于模拟信号,相对比较敏感,容忍度较小,至于能容忍多大的畸变,和系统噪声,器件非线性特性,电源质量等等有关。 是不是听起来很晦涩!确实,要说清楚这个问题并不容易,因为牵扯到了太多的因素在内。下面这个数字信号波形的例子能让你有一个简单直观的理解。       这是一个受反射影响的方波数字信号,波形的畸变仅仅是反射的结果,没有迭加其他噪声。假设低电平逻辑小于0.7v,高电平大于2v。对于高电平来说,震荡的低谷部分可能会冲到2v以下,此时电路处于不定态,可能引起电路误动作。所以,迭加在高电平上的波纹幅度不能太大。由于电路存在噪声,电源也有波纹,这些最终都会迭加到信号波形上,所以你计算波纹幅度的时候要考虑这些因素,而这些因素和你的电路板其他部分设计有关。所以你无法确定一个统一的畸变标准,只能根据你具体电路的设计和应用综合考虑。最终的原则只有一个:通过信号完整性设计、电源完整完整性设计等手段,将总的信号畸变控制在一定范围内,保证电路板正常稳定工作。 工程中,解决信号完整性的问题是一个系统的工程,并不是一两种方法就可以包打天下的。什么时候会碰到信号完整性问题也不是可以硬性的划一道线来区分,一句话,要根据你的实际情况来定。 可能你会感觉,这么多不确定的因素,还怎么在最初设计的时候考虑信号完整性问题?嗯,没问题的,其实对于所有影响信号质量的因素,你都可以通过一定的设计技术来控制。对于电源波纹问题,那是电源完整性的问题,又是一个系统的工程。而其他的电磁干扰,电磁兼容等则是另外一个系统工程。 总之,信号完整性问题涉及的知识较多,是一个跨学科的知识体系。网上关于信号完整性基础知识讲解很多,但很少有讲得很深入的。要想学好信号完整性,你需要有一定的精力投入,但可以告诉你,只要掌握学习方法,其实不难。一旦你学好它,回报是非常高的,毕竟这方面的人才现在是奇缺阿,很多公司给信号完整性工程师开价都在25W以上,如果你很牛的话,呵呵,决不是这个价。
  • 热度 6
    2013-4-15 15:37
    2953 次阅读|
    5 个评论
    当信号在传输线上传播时,信号感受到的瞬态阻抗与单位长度电容和材料的介电常数有关,可表示为: 。 如果PCB上线条的厚度和宽度不变,并且走线和返回平面间距离不变,那么信号感受到的瞬态阻抗就不变,传输线是均匀的。对于均匀传输线,恒定的瞬态阻抗说明了传输线的特性,称为特性阻抗。 如果PCB上线条的厚度增大或者宽度增加,单位长度电容增加,特性阻抗就变小。同样,走线和返回平面间距离减小,电容增大,特性阻抗也减小。 一个很重要的特性阻抗就是自由空间的特性阻抗,也叫自由空间的波阻抗,在EMC中非常重要。自由空间特性阻抗为   对于常见的FR4板材的PCB板上, 特性阻抗的典型结构如图所示。对于微带线,线宽W是介质厚度h的2倍。对于带状线,线条两侧介质总厚度b是线宽W的两倍。       FR4板材的PCB板上, 特性阻抗传输线另一个特性是: 单位长度电容=3.3pF/in 单位长度电容=8.3nH/in       了解这些特殊的特性阻抗,对于设计电路板有一定的参考意义,能让我们在制作电路前有个直觉的认识。 精确地特性阻抗计算需要用场求解器。推荐用Polar Instruments的SI9000软件,大名鼎鼎,绝对精品。下载地址为:http://www.sig007.com/rjxz/115.html     于博士讲信号完整性系列 信号完整性(一):PCB走线中途容性负载反射 信号完整性(二):接收端容性负载的反射 信号完整性(三):PCB走线宽度变化产生的反射 信号完整性(四):信号振铃是怎么产生的 信号完整性(五):信号反射 信号完整性(六):多长的走线才是传输线
相关资源
广告