tag 标签: 开关矩阵

相关博文
  • 2018-8-23 14:44
    1135 次阅读|
    0 个评论
    一般而言,一个矩阵是使用树型MUX的实现的还是用相交点的都不是很明显,几乎总是使用简单的相交点图描述矩阵的功能。跟随着产品的驱动也隐藏了硬件的复杂性,使得客户编程起来变得更加容易. 相交点矩阵开关 相交点矩阵使用组合的SPST开关来实现X到Y轴路径。 X1与路径Y1路由上(绿色路径正确的图像)上出现一个残余(红色),这限制了矩阵的带宽。 在一组路径中,用相交点实现的解决方案是在每一个交叉点的一组开关连接Y轴X轴的。这很容易理解,并且相对容易布局,也提供了极大的连接灵活性。然而,对于高频测试系统来说可能是不合适的,因为矩阵中存在带宽的限制。 在上面的例子中,如果Y1由开关连接X1那么红色路径是一个残余(un-terminated输电线路)。在低频率残余将增加连接电容,因此会限制最高频率,而不引入过多的损失。 也形成一个输电线路,当输电线路长四分之一波长的远端开路,转换为短路连接开关-会导致矩阵中出现非常高的路径损耗。 增加残余部分的长度取决于所选择的路径,例如如图所示路径Y1到X4没有多余的残留,这就不会受到这种影响。但是这条路不是没有缺陷的,因为开关在每个交叉点处会引入寄生电容(或短残余),再次导致信号电平损失。这种损失也可能是根据连接到其他开关的连接方式而定的。 其他路径会有不止一个残余连接,例如Y1到X2,Y和X轴都有残余。 并且对于大型矩阵,这个可能会很长的。 PCB上的路径通常也不会设计成一个输电线路交叉点上和特定的阻抗矩阵,而不是周围的路径根据电流和电压等级来设计开关系统。典型的相交点矩阵往往传输线阻抗较低,因为使用密集的路径,,PCB层数可能很高,因此每一层很薄的。 矩阵的布局也可能不遵循功能图上所示的一样,例如道路Y1和X4可能不是最远的路径。 这种类型的交叉点开关适用于信号带宽不是至关重要的低频应用。它是一项非常符合成本效益的解决方案,例如它完全让X到X连接或Y到Y连接以及X到Y连接。它非常适合测试系统X到X是用于连接UUT的仪器的连接形式。 树型MUX矩阵开关 当对信号带宽的要求很高的时候,就需要用到树型MUX矩阵 。 矩阵是由连接一组X,Y轴连接的。4 x4矩阵中,16个连接需要连接在一起,还有许多的连接方式,随着矩阵大小的增加,所需的连接数量会迅速增长。 非常清楚的是,由于开关数目较多,会增加额外的成本,还有MUX互连系统可能需要许多点对点的连接,这就昂贵或难以实现,所以只能有更低密度的设计。 添加成本的矩阵使用树型MUX的引入了另一个约束,也就是无法提供一个X到X或Y到Y的连接。树型MUX选择一条路径或另一个,它不能连接常见的两条途径,这样可以防止X到X或Y到Y连接使用。矩阵本质上是为实现Y到X(或X到Y)的操作,驱动也将锁定X到X试图连接的可能性。 混合解决方案 在某些情况下,设计矩阵的时候将使用一个混合的方法来实现矩阵功能。例如可能组装一组较小的交叉点开关,然后使用树型的信号路由到MUX或传统MUX,这就提供了足够信号带宽。这种方法更为复杂,然而这种复杂性可以从驱动软件中实现对用户隐藏的。 1 2×8的矩阵的一个例子如下所示: 左边显示了一个带有隔离开关的矩阵的X和Y轴简化的功能图。 右边所示的矩阵是由一组四个子矩阵组成的。 还有许多其他的方法设计一种混合矩阵。 对于所有的产品,我们都提供定制的服务,当然包括所有的矩阵模块。 (本文译者:广州虹科电子科技有限公司 郑南润 有疑问请邮件咨询:znr@hkaco.com)
  • 2018-8-23 14:32
    705 次阅读|
    0 个评论
    用户面对的常见的问题是如何根据系统来决定什么选用矩阵的大小。矩阵的大小关乎到成本,但性能也是如此。矩阵越大,信号线路将会越长,除非增加了减少加载额外的开关。 常见的误区是,一个矩阵应该连接在一个轴(Y)和UUT测试设备连接到轴(X)。这通常会导致系统非常的低效,矩阵的大小和成本通常是直接依赖于相交点的数目,也就是X轴的大小乘以Y轴的大小。 一个更有效的方法是,将测试设备和UUT连接在同一轴(X)上,即使用另一个轴(Y)提供的连接。如下所示: 这种方法要求X轴有一个大小与连接到测试设备的数量相等的UUT。 Y轴的大小不通过测试设备连接的数量来决定所需的连接数量。四线测量使用数字例如4 x4矩阵,Y轴的数量是足够。对于大多数测试系统,x6,x12或x16的混合体是一个适当的选择。系统可以更高效但成本越高。 测试系统要求要有很高的Y轴数目的话,LXI平台通常是一种更好的方法。 唯一使用这种方法的缺点是,每个路径由两个继电器接点串联连接,所以一些路径可能会有更高的阻力。虽然会有更短的路径,因为连接相对较近,因此减少铜损。 用户可能想要设计他们的系统,简化布线,UUT连接到一个连接器,而测试设备是一个不同的连接器。这可能只是实际有更多的面板空间,能够支持较大的开关系统的连接器。 我们还有许多LXI解决方案,提供很多种类。可以到产品介绍页去查看合适的LXI设备。 (本文译者:广州虹科电子科技有限公司 郑南润 有疑问请邮件咨询:znr@hkaco.com)
  • 热度 3
    2016-5-20 15:56
    453 次阅读|
    4 个评论
    本系列的特点:采用高品质仪器级舌簧继电器为达到最佳性能表现而设计 作为电子测试与验证领域模块化信号开关和仿真产品的领导者,英国Pickering公司最近宣布再次扩充其单刀高密度PXI矩阵开关产品家族。 该系列高密度矩阵开关(40-520家族) 包括22种不同配置,单个模块最高可包含256个开关节点,可匹配众多种类的测试需求。 提供六种总线宽度选项 (x16, x12, x8, x6, x4 和 x2),是价格极具竞争力的解决方案。产品基于 Pickering Electronics 的仪器级高品质继电器, 这些高品质继电器有极长的寿命,同时在传导微弱信号时也有很好的表现,以及出色的导通电阻稳定性。 最新的40-520家族基于Pickering公司具有悠久历史的PXI矩阵模块而研发,具有稳定的1A 150Vdc开关能力,设计为单块PCB结构,配合舌簧继电器可实现轻松维护。该系列产品集成 Pickering公司的内置继电器自诊断(BIRST)功能,同时也支持外置开关系统诊断工具(eBIRST)。这些工具可以帮助用户快速简单的找到模块中有故障的继电器。 该系列产品的典型应用包括自动测试系统(ATE)和数据采集系统(DAQ)中信号路由的管理。 所有Pickering公司提供的产品均提供 标准3年质保和长期的产品技术支持服务。产品价格及相关产品信息已经在官方网站同步更新,更多信息请访问: www.hkaco.com. 授权整理:郑南润 虹科电子 关于Pickering公司 英国Pickering公司 为电子测试与仿真领域的用户设计并生产模块化的信号开关与仪器。我们提供目前业内最多种类的基于 PXI , LXI, PCI 和 GPIB 总线的开关产品。 同时全线提供配套的线缆和连接器供用户选择。Pickering公司的产品被应用于世界各地的测试系统中, 因产品的高可靠性和高性价比而获得了广泛赞誉。 Pickering公司的业务遍布布世界各地,在中国、美国、英国、德国、瑞典、法国和捷克设有自己的分公司,同时在美洲、欧洲、亚洲的很多国家建立了合作代理经销网络。 目前我们主要服务于汽车电子、航空航天 、国防、电力、医疗、能源和消费电子等行业。 关于信号开关和信号调理产品的更多信息以及销售的联系方式请访问我们的官网: www.hkaco.com.
  • 2015-3-24 13:51
    333 次阅读|
    0 个评论
       1 引言   自动测试设备在军事及工业领域的应用越来越广泛,然而在电路单元尤其是电路板测试中,由于被测单元种类多,被测通道数量大,传统的开关矩阵体积大、切换速度慢、电气性能差。已不能满足现代测试仪器高速、便携的要求。本文介绍了一种采用USB接口,利用I2C总线传输数据,由CPLD控制多路复用器件的大型开关矩阵结构,具有较高的切换速度及较好的电气性能,并满足了小型化的要求。    2 系统结构及功能   开关矩阵主要实现自动测试设备与被测电路单元之间的信息交换,功能如下:   (1)将程控电源系统输出的电源自动加至被测电路单元要求的引脚上;   (2)将自动测试设备信号源分系统输出的信号转接至被测电路单元要求的引脚上;   (3)将被测电路单元输出的信号转接至自动测试设备的适当测量通道上;   (4)为被测电路单元提供必要的外接元件,如负载、调整旋钮、大体积器件等。   不同的被测电路单元其连接器定义不同,每个插针都可能被定义为电源、输入信号、输出信号、外接元件端子之一。并且现代电子设备的电路单元通道数很多,大量的信号通道对ATE的开关矩阵设计提出了严峻的挑战。本文所设计的开关矩阵采取针床连接方式,可有效连接多种接插件。通过单片机控制的多路复用器,可将信号加至所需的被测通道,系统结构框图如图l所示。    3 硬件设计   3.1 测试电路结构   测试电路结构组成如图2所示。系统采用上、下位机的结构,上位机由计算机及控制软件组成,下位机由USB总线接口及控制板组成,USB模块通过I2C总线将控制数据传送给控制板上各个测试模块。控制板上各测试模块收到总线发送来的串行码流,译码后提取地址值,控制模块中的多路复用器选取相应通道。I2C是一种串行总线的外设接口,它采用同步方式串行接收或发送信息,主从设备在同一个时钟下工作,I2C由数据线SDA和时钟线SCL构成双向串行总线,由于I2C只有一根数据线,因此信息的发送和接收只能分时进行。各模块组件均并联在总线上,每一个模块都有唯一的地址。因此系统可在允许范围内增加或减少被测板数量,I2C总线上各节点模块支持热插拔,所以采取该方案可以有效减小测试系统体积,使用操作方便,可同时连接多个被测单元。    3.2 控制电路组成   本系统中,控制板上各测试模块均通过I2C总线与测试主机进行通讯,各模块地址由板上I2C芯片地址唯一确定,主机首先确定各板卡地址进行板选,与相应板卡建立通讯后,发送串行控制数据SDA。在同一时刻,I2C总线上只能有一个模块处于活动状态,利用多路复用器状态的“保持”特性,即可实现测试模块上及测试模块之间探针的切换。控制板电路结构组成如图3所示。   PCA9501是一款带中断的8位I2C和SMBus总线器件,用于接收总线发送的数据并与本地地址进行比较,若结果相同则将数据转换成并行地址信号送至CPLD器件EMP7128,CPLD用来接收PCA9501发送的并行数据,并分析数据内容,将不同的串行数据转换成相应的并行控制数据并通过I/O端口送出,从而控制32路多路复用器件ADG732的通道选择。    4 系统软件设计   系统软件包括主机控制程序和下位机测试程序,主机控制程序可以采用通用编程工具如VisualC++或者C++Builder等来进行编写。下位机测试程序包括USB控制程序、I2C发送程序、CPLD控制程序,其中USB控制程序及I2C发送程序是对USB控制器CY7C68013进行编程,采用Keil C51编译器开发,CPLD控制程序采用MAX PLUSⅡ进行开发,Verilog HDL硬件描述语言编写。    4.1 主机控制程序设计   主机控制程序设计取决于下位机控制流程,下位机控制流程如图4所示。   (1)打开USB设备并进行初始化,然后复位设备,将所有ADD732芯片内部开关打开。   (2)主机下达命令进行被测板选择,被测板地址由被测板上的PCA9501确定,对被测板进行选择只需向所需地址发送数据即可,所有被测板对接收到的地址数据进行比较,只有通过比较的被测板才会通过PCA9501将数据发送给CPLD。   (3)选取被测板,选择测试芯片,即多路复用器阵列中多路复用器件的选择,CPLD解析接收到的芯片选择数据,将该数据转换成对多路复用器的片选信号,并禁用多路复用器件。   (4)主机程序将测试点地址发送到USB端点缓冲区,由CPLD解析发送的端点选择数据,将该数据转换成对多路复用器的通道选择信号,并使能多路复用器件,将板选、片选及测试点选择数据同时送出,则相应被测板上的多路复用器将导通,从而实现测试点的选择。   (5)每个芯片上所有点测试完毕后,在进行下一个芯片测试之前,需要将该芯片复位。同样在所有测试点测试完毕后,将整个开关矩阵复位。   主控程序数据发送部分程序如下:    4.2 下位机测试程序设计   下位机测试程序包括USB单片机CY7C68013接收主机发送的控制数据,并解释主机数据,然后通过该单片机的I2C接口将数据送至测试板上的I2C数据转换器件PCA9501,PCA9501将接收的被测板地址同自身地址相比较,如相同将自动把串行数据转成并行数据送CPLD,CPLD解析发送的并行数据,然后在使能信号的作用下(通过USB控制器件CY7C68013的PB7口)将数据同时送出。   单片机接收/发送数据程序如下:   CPLD用来接收PCA9501发送的并行数据,并对接收的数据进行解释,然后将其转化成对多路复用器件ADG732的控制信号,程序如下:    5 结束语   本系统采用USB接口技术及I2C数据传输方式,有效缩小了系统体积,为多通道开关矩阵的小型化做出了有益的探索。所研制的开关矩阵可挂接多个测试模块,并支持热插拔,具有很强的通用性和可扩展性,与传统的固定式测试针床相比,无需针对每个被测电路板制作专门的通道板,减小了体积,降低了成本,为低成本、便携化、通用化、多通道测试方案提供了一种新的实现手段。
  • 2015-1-29 09:25
    301 次阅读|
    0 个评论
    一、背景     大型强子对撞机(LHC)在欧洲核子研究组织,被称为欧洲核子研究中心,最近因为Higgs玻色子–所谓上帝粒子的发现而吸引大众的眼球。欧洲核子研究中心在瑞士和法国边境附近的日内瓦的地底下100米深的地方,设有一个高能量的对撞机,用于探索高能物理。这是一个巨大的高能物理设施,在世界上没有其他的设施配套可以与之相比。      对撞机操作一对反向旋转的粒子环四实验,颗粒从相反的方向彼此碰撞,彼此有交叉,说明短暂存过,最近也发现Higgs波色子 。      大部分的注意力都被集中于捕获所有可用的数据以确定新粒子的实验上,然而监测环本身也是一个重大的关键点,这个是需要通过打开模拟信号信息系统来实现,该系统称为OASIS。从对撞机监控传来的信号可以敲打很多地方,所以要确保系统中的每个点都是可用的。      一个像CERN这样的拥有大量预算资金的组织,虽然已确保其预算与政府财政支持赞助,该系统也是具有成本效益的。OASIS系统利用一套数字化仪获得信号,信号是通过以太网系统转送到使用者那里的,但设备非常昂贵,不可能每个监控信号都用一种数字化仪。pickering的开关系统是用来让OASIS系统从各种可用的信号中选择需要显示的信号,开关系统是基于VXI和最近的cPCI的解决方案的,这是其中的改进的地方。 二、升级CERN系统      欧洲核子研究中心每两年都会升级其系统,对撞机的能量可以提高很多(几乎翻了一番),升级之后可以进行更多的新物理探讨。对撞机进行(二月2013)这个升级的计划,未来将有更多的需求的。升级过程是少不了OASISI系统的升级的。      显示器信号给开关系统提出了不少的难题。欧洲核子研究中心希望在每个位置能选择16个最多104个信号进行数字化。模拟信号的频率内容很多很多MHz,有从不同的显示器上得来的相近的潜在差异。这主要是通道以及带宽之间的串扰上的困扰。如果一个高层次的源信号被选择,同时从一个较低的水平上不同的通道的信号也被选择,然后大信号会分为小信号,这样会混淆控制器的。      CERN面临的另一个重要问题是对撞机的规模太大,你不能从这个位置很快就去到另一个位置,就算隧道里已经装备了自行车,也是很困难的。远距离的操作是任何一个解决方案都得具备的基本要求。 三、设计新的OASIS开关系统      CERN找到了pickering以寻找建立一个新的开关系统的建议,他们的目的是想在计划中的升级过程中进行开关系统的升级。基础的要求是用一个拥有10MHz的带宽和一个最大可达104x16的矩阵。经过谈论之后,我们发现,通道之间的串扰是一个最值得考虑的部分,还有就是系统本身的尺寸的要求让利用传统的产品来解决这个问题是不可能的,还有无法达到目标和远超出了预算的要求。      明显的是矩阵不得不比在每一个模拟信号中放置一个数字化仪更加优惠。这个优越的平台是在工业计算机中的PCI,但是它明显是在加载了PCI的模块之后无法将它添加到开关系统中,在cPCI和PXI中也存在着同样的问题。 图1  CERN的要求(在高达16个数字化仪上连接高达104个模拟数据源)        为了得到一个高性能的矩阵模块,这就要求开关系统来决定最后的方案中的产品类型--这就排除了在方案中使用任何固定模块化的平台的可能。一个模块需要的是使得矩阵系统的大小在不同的位置中是可以升级的,这就要求矩阵式有不能的规格的,可能在一个位置要求的是一个64x16的矩阵,在另一个位置要求的是一个106x16的矩阵。系统也可以跟随着传感器的数目的变化和通道数目的变化来改变他们的要求。这就表明了一个可以升级的模块是必须要的,而且模块的大小是需要适合矩阵的设计的要求的。这就激励着Pickering Interfaces考虑使用一个大小很灵活可以改变的的LXI路由器。 四、LXI 路由器      LXI拥有对于CERN很有用的特点,因为他们中的大部分已经用到了以太网数据,所以说将LXI矩阵连接到它之上是没有多大的问题的。LXI控制也意味着他们可以在没有添加内部控制器的情况下管理它们的网络,这是LXI的产品网络服务中心带来的好处。      在讨论另一个问题的过程之中,碰撞机上进行得的实验是非常多的,并且昂贵的管理费用,CERN想要的是找出了在矩阵中的开关有一个大的错误并且有预防监控的操作。在得知Pickering Interfaces已经在LXI和PXI(叫做BIRST)进行了自行的测试,CERN要求在开关系统中进行一系列自行的测试,还有就是在理想的状态下,开关是需要同轴的连接器,测试也必须是可以在连接到一个没有供电电源或者是负载的输入和输出中是可用的。可以添加和运行设备将是一个OASIS的一个有力的工具。   图2  65-110矩阵模块        最后被CERN采纳的是65-110 带宽模块化LXI矩阵。这个开关矩阵式基于一个拥有专用的模拟总线系统的机箱。在机箱里面有一套可以用来安装的插件,在左手边的部分提供了一个可以用在数字化仪的16Y的连接器。一套X插件也提供了一个模拟信号输入,在模块插件上增加8个信号。X插件的数目可以从一个(8off X连接器)到多大13个(104off X连接器)进行扫描,允许用户在机箱的限制范围内创建任何尺寸的矩阵。不用安装第二个Y插件就可以允许创建一个Y=8的系统--虽然CERN没有要求这个设置,但是其他的用户可能会在他们要求拥有一个小的系统的时候会觉得这个是一个优点。这个设计是用户完全可以进行设置的,插件模块可以进行物理安装或者是不安装,并且在LXI控制器中的固件将会识别和设置,然后可以根据已经安装的插件模块的大小来改装矩阵的大小。这个基于网络的软件面板,是一个在LXI标准上建立的,它允许矩阵不用安装驱动。   图3  65-110软件控制界面        这个矩阵式一个超前的方案,但是这个模块的大小是鳞状的,是为了装在应用中,而不是根据特别的标准来安装的。65-110的插件和模拟总线系统是必须要很仔细地为了RF功能来进行设计,特别是串扰,这个可以确保它是可以在系统应用中使用的。RF (射频信号)的带宽是高于300MHz的,并且可以在低串扰的情况下驱动,还有优秀的电压驻波比。      跟许多流行的设备一样,模块的通讯是通过一个PCIe接口和一个LXI控制器来实现的,这个是一个简单的矩阵,所以,LXI控制器让用户很容易就可以对矩阵进行编程。LXI控制器隐藏了开关系统的复杂性,矩阵在用户面前显示的只是一个实体,而不是一个单独的子组件。它表现更像一个可用的设备,而不是一个模块设备。      这个设计用了一个在插件模块底层的模拟总线,并不是用了一个在模块系统中的插件的背面--是在一个矩阵内的,它让X和Y轴的信号线在正确的角度里拥有更多的意义,这个是为了提高串扰和隔离的能力。LXI的这个特点不是限制在模块的固定的大小内的,或者是放置一个模拟总线的,这样Pickering Interfaces就有能力根据开关的要求去设计一个更加超前的设备。   图4  65-110允许通过设置页便捷地添加自行测试通道        65-110 LXI矩阵包括了一个自行测试的设备,可以检测错误的继电器的所有的信号路径(关闭,打开和高阻抗)。这个设计用了一个低水平的信号,所以用户的连接器不需要在测试的时候断开(同时可以测试100个同轴的连接器),并且,自主测试可以在LXI的网络接口中开始,也不用在用户距离矩阵很远的地方的情况下,添加额外的用户控制器。      显示器也包括在Pickering Interfaces的LXI产品中,这就允许用户在没有任何矩阵的编程通道的情况下显示矩阵的设置,LXI系统允许在拥有多个控制器的情况下,非常容易创建系统。一个控制器可以设置开关,另一个不同的控制器可以用来在没有扰乱编程的情况下监视设置的过程。 五、总结      CERN的要求表明了LXI为其提供的优秀的平台,这个平台用来创建不同的拥有高性能的开关系统,这个开关是复杂的,也是带有远程控制功能的。CERN将要利用LXI的65-110开关矩阵作为OASIS系统的一部分,用于进行下一次更高性能的碰撞机试验中。 六、参考      可以登陆虹科电子的网站以及发邮件到support@hkaco.com了解关于LXI开关模块的更多信息。       如果你想要看一下CERN是怎么样进行它的实验的,可以在他们的网站上看到详细的消息。以下的链接提供了可以参考的资料: http://home.web.cern.ch/about/updates/2013/04/animation-shows-lhc-data-processing  http://home.web.cern.ch/about/engineering  http://home.web.cern.ch/about/accelerators  https://project-oasis.web.cern.ch/project-oasis/  
相关资源
  • 所需E币: 4
    时间: 2020-1-1 23:22
    大小: 542.21KB
    上传者: quw431979_163.com
    AgilentU2751AUSB模块化开关矩阵为自动测试提供高质量的低价开关解决方案。它有按4行乘8列配置的32个两线纵横交叉点,可实现任何行与列组合的连接,包括同时连接多个通道。并且还带有继电器循环计数器。AgilentU2751AUSB模块化开关矩阵技术资料特性和能力AgilentU2751AUSB模块化开关矩阵●4x8配置中的32个两线纵横交AgilentU2751AUSB模块化开关矩阵为自动测试提供高质量的低价开关解叉点决方案。它有按4行乘8列配置的32个两线纵横交叉点,可实现任何行与列组合的连接,包括同时连接多个通道。并且还带有继电器循环计数器。●在高达45MHz时的最小串扰●无终端块时的带宽为45MHz经济实惠、可靠和灵活的开关解决方案●继电器循环计数器●在高达45MHz时的最小串扰,适应更精确测量的需要●灵活的连接配置―能同时闭合●无终端块时的45MHz带宽使您能进行只有最小插入损耗的高带宽测量多个通道●通过能快速和容易地安装在PC上的捆绑AMM软件,使您的工作又轻松又方便●高速USB2.0(480Mpts)●灵活的独立工作和模块化工作能力使您实现低的起始成本●捆绑软件―Agilent测量管理器●SCPI和IVI-COM支持及……
广告