tag 标签: 智能充电

相关博文
  • 热度 3
    2024-5-17 12:12
    387 次阅读|
    0 个评论
    ISO 15118-2标准中描述的PnC功能,可以实现插枪即充电,识别、计费信息、充电参数都通过高级别通信在EV和EVSE之间自动交换。简化了电动汽车的充电过程,提高了用户体验,为电动汽车行业带来了更智能、更便捷的充电解决方案。 然而,电动汽车和充电站之间要实现自动通信和计费,必须交换大量的敏感数据,如个人数据、支付细节等。为了确保通信安全无误,PnC功能在公钥基础设施(PKI)中使用传输层安全协议(TLS)进行加密。也就是用了双重验证机制,在传输层,使用TLS 1.2 及更高版本加密传输层上的通信通道。在应用层,基于XML的数字签名和PKI用于验证发送者的真实性和某些交换消息的完整性。 为了开发智能充电技术,我们需要对PnC相关功能进行测试和验证,包括计费流程、安全认证和数据传输等。 图示为PnC模式下,EV与EVSE交互过程 Vector工具包括: 测试硬件:VT system-仿真EV/EVSE,访问CP、PP信号等 测试执行:CANoe以及Option.Ethernet、SmartCharging-充电系统分析、仿真和测试等 测试设计:CANoe Test Package EV on vTESTstudio-标准的测试用例库,可以在vTESTstudio中编写修改 PnC测试关键步骤: 搭建仿真和测试环境 配置SCC_ChargePoint.vmodule和TCP/IP协议栈,用户可以直接基于CANoe提供的示例工程开发。 Security相关配置 Security Configuration,在TLS and IPSec选项卡处关联PKI,CANoe根据ISO15118-2中的命名和结构提供了符合ISO 15118的PKI,并且可以使用 Vector Security Manager进行证书管理。 EV内部安装数字证书 用户可以打开Vector提供的PKI(安装CANoe时,会自动安装PKI,路径:%ProgramData% \Vector\Security Manager\PKI),用户需要给EVCC刷新3个文件,OEM证书和密钥、V2G根证书,以SmartCharging Default PKI为例,文件分别为: OEMProvCertA_X_cert.cer OEMProvCertA_X_key.pem V2GRoot_X_cert.cer 在xxx_SCC_ChargePoint.xml文件中指定证书 当EV连接到充电设备时,充电设备会验证EV内部的数字证书,然后根据其授权等级来决定是否允许充电。所以充电设备的XML配置必须与Vector Security Manager中的Name字段所提供的证书名称相匹配,以便使充电设备能够对EV进行身份验证和授权管理。 完成相关配置后,我们可以使用Panel(CANoe提供的GUI),只需要勾选PnC Active选项激活PnC功能,通过Trace窗口分析基于合同的付款方式(即插即充)的充电流程以及证书安装和证书更新流程等。 欧标充电测试包CANoe Test Package EV支持DIN 70121/ISO 15118,用户可以根据被测系统(SUT)的功能和实现特性选择相关测试用例组,此功能通过变体特性来实现。另外用户也可以点击Open Test Design图标进入到vTESTstudio查看具体的测试设计。 总结 利用Vector工具链,我们可以测试基于ISO 15118-2充电通信标准的即插即用(PnC)功能,并且可以很轻松地仿真充电基础设施和公钥基础设施(PKI)中所有对象的行为,验证并确保充电过程的稳健性。 扩展:针对CCS系统,CANoe支持ISO15118-20规定的新的能源传递方式BPT特性,欧标充电桩的测试包CANoe Test Package EVSE也新增ISO15118-20的测试脚本(Vector开发)。针对于ISO15118-20,大家可以参考往期文章《智能充电未来之路:ISO 15118-20的关键角色》,该文章中介绍了ISO15118-20新增功能以及CANoe提供的测试工程。 北汇信息紧跟新能源发展方向,结合多年测试经验,从客户的角度出发在实践中不断优化测试方案,同时作为Vector中国的合作伙伴,得益于Vector中国的大力支持,不断将充电功能的测试运用到实际中。北汇信息愿为各OEM提供VCU、BMS、Inverter、OBC、EVCC测试等解决方案,为中国电动车行业的发展增砖添瓦。
  • 热度 4
    2022-6-5 18:08
    674 次阅读|
    0 个评论
    近日我国多地发出限电通告,谈及限电原因,众说纷纭,我们这里不做讨论。但有一点可以肯定,一定是缺电才会限电。我们不得不承认,以往很少担心的用电,现在似乎也成了一种稀缺资源。 同时,伴随着电动汽车行业的飞速发展和国家政策的倾斜,国内的电动汽车数量和充电桩数量与日俱增,电动汽车对电能的需求也在逐年增多。 我们不得不担心,电动汽车可能会对我们目前的能源系统构成威胁。在这样的背景下,“Smart Charging”的概念显得越来越重要。 什么是Smart Charging 智能电动汽车充电或智能充电是指电动汽车与充电设备共享数据连接,充电设备与充电运营商共享数据连接的系统。与传统电设备不同,智能充电系统会智能监控、管理和限制其设备的使用,以优化能源消耗。 智能充电系统对设备的控制包括简单的开启和关闭充电,车辆的单向控制(V1G),允许增加或减少充电率,以及具有技术挑战性的双向车辆到电网(V2G),允许电动汽车在放电模式下向电网提供服务。此外,汽车到家庭(V2H)和汽车到建筑(V2B)是一种双向充电形式,电动汽车在停电期间用作住宅备用电源。 Smart Charging 的好处 1 、对用户的好处 (1)充电更快 智能设备将自动使用最大可用能量。 (2)充电更安全 智能设备在开始充电前会自动测试你的车辆和设备之间的连接。所有充电事件都被监控,可以远程控制。 (3)既省钱又保护环境 有了智能充电,汽车可以一直插电,设备会将充电时间安排在低消耗时间,以节省我们的花销,当电网负载过高时,汽车还可以暂时用作电力储备,当然这个过程不会产生额外的花销。 2 、对电网的好处 可以降低负载,系统协调用户需求和电网负载之间的关系,尽量使得充电行为发生在低负载的时候。 我们可以预见,Smart Charging会是电动汽车产业下个阶段一项很重要的技术。 Smart Charging 技术带来的开发挑战 随着未来Smart Charging应用的日益广泛,DC充电将会变成更加重要的部分(ISO 15118的要求),AC充电也会被叠加更多智慧功能。对于任何想要进入充电领域的企业来说,除了传统的AC充电,将不可避免地需要实现Smart Charging和DC充电技术。 在基础建设端,DC充电将要求更多的部件和强大的充电控制器。DC充电技术要更为复杂,需要处理各种标准,比如ISO 15118、OCPP(OpenCharge Point Protocal)、PLC(PowerLine Communication)、以太网、CAN和工业领域总线,并且这些标准还在持续发展中。如下的Vector的通用型的充电控制器为例,它可以并行处理2个充电进程,比如1个是CCS充电,另一个是CCS充电或者CHAdeMO、AC或者GB/T充电。 既然Smart Charging会是电动汽车产业下个阶段一项很重要的技术。在这项技术发展的过程中,必定需要很多测试工作。基于这个需求,Vector公司推出了一款产品——Canoe Option SmartCharging,用于支持电动汽车、充电桩开发过程中的测试需要,下面我们一起来认识一下它。 CANoe Option SmartCharging 简介 CANoe Option SmartCharging支持模拟电动汽车(EV)或充电桩(EVSE)在充电过程中的通信,支持充电过程的数据分析、测试、故障注入,这使得SmartCharging成为电动汽车、充电桩开发过程中进行功能验证、测试的理想工具。 得益于CANoe完整的通信测试工具链,以及对多种协议的支持,可以方便的集成交直流电源、负载,结合CANoe Option SmartCharging可以搭建完整的充放电测试系统,包括集成EV、EVSE充电控制器的网络测试功能。 支持标准 ▲IEC61851 ▲ISO/IEC15118 ▲DIN70121 ▲GB/T27930 ▲CHAdeMO 应用领域 支持符合国际标准IEC 61851, DIN 70121, ISO 15118,GB/T 27930和CHAdeMO的电动汽车与充电桩之间充电过程数据分析,仿真、测试。 产品功能 CANoe Option SmartCharging支持在trace窗口中分析充电数据、支持充电数据记录文件的离线回放。 在EV、EVSE的仿真测试方面,Option SmartCharging提供了SCC_ChargePoint.dll、SCC_Vehicle.DLL、GBT27930_IL.dll、CAPL API等文件,可以方便、快速的搭建EV或者EVSE仿真节点,结合CAPL脚本,实现对EVSE或者EV的功能及协议一致性测试。部分CAPL API如下图: 以GBT27930 EV测试为例,需要使用到GBT27930_IL.dll仿真EVSE。GBT27930_IL.dll配置了充电过程状态机,可以控制充电状态的切换、设置充电参数、故障注入。EVSE的仿真需要GBT27930_IL.dll和CAPL结合实现,首先激活GBT27930_IL.dll的使用, 仿真步骤 如下: ▲在dbc中定义J1939节点 ▲添加节点属性,且属性值为GBT27930_IL.dll ▲定义节点要发送的报文 ▲定义节点地址 ▲节点中添加CAPL脚本 ▲CAPL脚本中编辑CAPL API控制节点的功能,GBT27930IL_InitAsCharger、GBT27930IL_StartChargingSimulation、GBT27930IL_SetDelayForStateTransition ▲编辑Panel面板,实现与测试工程师的交互 使用需求 (1)软件部分 CANoe option SmartCharging用于实现高层通讯,例如应用层。对于较低层通讯(如传输层),针对不同的充电标准,需要结合不用的CANoe options。 对于DIN 70121和ISO15118标准的联合充电系统(CCS),需要结合optionEthernet。 对于GB/T 27930国标充电,需要结合option.J1939。 对于CHAdeMO日标充电,CANoeoption SmartCharging即可满足 (2)硬件部分 对于基于电力线通信(PLC)的DIN 70121和ISO 15118联合充电系统(CCS)标准,需要使用VT7970 (Qualcomm)或VT7971 (Vertexcom)或VT7870。 GB/T 27930和CHAdeMO标准基于CAN通信。因此,Vector提供了广泛的接口硬件来匹配CANoe option SmartCharging,如VN1600系列硬件和VT系统的VT6104A模块。 (3)测试用例 针对充电过程通信的测试,主要有协议一致性测试、互操作性测试以及OEM规范自定义的测试。根据相关协议一致性、互操作性测试标准,Vector开发了相应的车辆端、充电桩端测试用例包,可以减少测试工程师的工作量,极大加快项目开发进程。 充电测试HiL 基于Vector VT系统、以CANoe为上位机的OBC测试系统,由于CANoe丰富的软硬件接口,方便集成第三方硬件,能够满足OBC充电、放电、DCDC测试需求,兼顾信号级测试、功率级测试。vTESTstudio测试用例编辑操作简单,易上手,可以大大节省客户的测试时间,达到事半功倍的效果。高精度的CSM高压测量模块,采用微秒级的采样周期配合vMeasure exp内置的eMobility Analyzer函数运算,让实时的功率、效率计算变得更简单。 后记 随着电力能源的紧缺与电动汽车行业能耗的增长,智能充电网络系统必将是未来的发展趋势,相信这项技术的逐渐发展和完善,可以促进电动汽车行业的繁荣发展。当然,这需要所有汽车行业从业者们的共同努力。 注:图中部分图片来自于vector。
  • 热度 22
    2016-4-13 09:21
    3643 次阅读|
    6 个评论
    “人工智能AI”已成为当下的一个热词,尤其是受到最近的一个“围棋比赛”的新闻的影响以及一个“可以避障可以跟踪的新型无人机”的发布,很多人会以为人类将被机器人取代的日子要来临了?“机器人”是人设计的,尤其是它的“思维”,取决于编写它的程序算法,代替工人进行生产线上的重复性工作早已不是什么现在才有的新鲜事儿,想具有人类的聪明大脑的水平,“神经网络算法”的研究貌似又进入了一个新的**阶段。这样发展下去,人类是否会对自己创造出来的未来机器人有些忧虑?想不轻易被机器人取代,还是多活动活动右脑,比如,经常写写文章之类的。   智能手机的充电过程其实也是很智能的,而且随着技术的发展,充电技术越来越智能。智能手机充电的实际过程是什么样子?接下来,我就把一台数字万用表当成数据采集器或者波形记录仪来使用,记录一下我的手机的充电过程,如图1所示。 图1:通过DM3068记录充电电流的变化波形   看看我的三星NOTE2手机充电的实际过程中电流的变化过程是什么样子。一切就绪,接通充电器的电源,手机开始充电。DM3068被触发并开始采集数据,同时在LCD屏幕上绘出了电流的波形,如图2所示。从图2可以看到,在充电开始阶段,能明显看出电流有4次脉冲式的变化。通过后续测试其他几个不同品牌的智能手机发现:并不是所有的手机都会有这样的动作。想必是我的手机内部的电源管理芯片在进行“智能检测”,通过检测来判断外接充电器的类型从而能判断出能提供的充电电流的大小,结合手机内部电池的电量的余量状况,最终判断出应该以何种充电模式,使用多大的充电电流对内部的电池进行充电。 如果是这样,看来我的这部手机充电“挺智能的”。 图2:对手机充电开始阶段进行数据采集的结果   观察一下细节,可以看到如图3所示的电流波形,充电器输出的电流在手机内部电源管理芯片的控制下呈台阶状递增,然后又递减,如此循环4次,最终达到一稳定电流值进行充电。 图3:充电电流的变化波形   接下来我们对充电过程进行长时间的采集和观察。此时手机显示的电池余量是60%,充电过程中,我对手机进行不同的操作,以便观察相应的状态下充电电流的变化情况: 1)  打开手机的WLAN,然后关闭手机屏幕显示:看到此时的充电器输出的电流波形有周期性的尖峰波动,波动的幅度大概有~100mA,如图4中屏幕右侧波形所示: 图4:充电电流的波形变化   2)打开手机的WLAN,打开手机屏幕显示:此时的充电器输出的电流明显变大,如图5中屏幕右侧波形所示: 图5:充电电流的波形变化 3)关闭手机的WLAN,关闭屏幕显示时的充电波形,充电器输出的电流明显变小,且稳定,如图6中屏幕右侧波形所示: 图6:充电电流的波形变化   4)打电话时的充电电流波形,充电器输出的电流明显升高,如图7中屏幕右侧波形所示: 图7:充电电流的波形变化   5)打开WLAN,下载并播放视频,继续充电时的电流波形,如图8中的右侧波形的高低起伏段: 图8:充电电流的波形变化   6)图9中屏幕的右侧波形的两个峰皆为打开手机屏幕时的充电电流。此时手机的充电提示灯已由红变绿,DM3068显示的充电电流只有187mA, 充电可以结束了。屏幕左侧的波形为由DM3068所记录的整个充电过程中电流波形的变化:能够清楚地看到充电电流整体呈现出由大变小的递减趋势,但在充电过程中,由于进行了打开WLAN,打电话,下载播放视频等操作,使得充电过程被打搅,电流出现了明显的波动,看来,如果想充电快,最好充电时别打搅手机。可能有不少人经常在充电时玩儿手机,尤其是边充电边玩儿游戏等,此时充电器的输出可能不但要给手机内部的电池进行充电,还要电给手机内部的电路供电。 图9:整个充电过程的电流波形的变化   通过以上的实测,把数字万用表当做数据采集器/波形记录仪来使用,详细地监测记录了我的手机充电的整个过程中电流的变化。我的手机充电起始时进行了识别充电器和判断充电电流的工作,充电过程中对手机的各种操作都会引起充电器输出电流的波动。对于我的这部手机来说,要想充电快,别打搅它,最好是关机充,这样就比较专一,充电速度会比较快。   注: 1. 若转载到其他媒体,请注明出处: EDNChina JIGONG 的博客 微测 2.我的EDNChina 微测 的所有博客文章: http://bbs.ednchina.com/blog_index.jspa?blog_id=2004572