热度 19
2012-8-22 09:19
2792 次阅读|
0 个评论
在数字信号处理中,测量数据由于加法、乘法等运算位宽被扩大,但是资源利用上的考虑,在精度和误差有效范围内后续的处理并不需要这么大的位宽,因此对数据进行截断或者舍入处理是很有必要的。如图1所示为Xilinx FIR IPCore的参数配置界面,在FIR滤波器实现中必不可少的就是乘累加运算了,因此输出必有舍入处理,如图中Output Rounding Mode选项中就有很多种舍入算法。 图1 关于舍入算法有多种,主要有Round Toward Nearest、Round Ceiling、Round Floor和Truncation: Round Toward Nearest Rounding Toward Nearest就是通常所说的“四舍五入”,以5为有符号数为例,高3位为整数位(包含最高位符号位),低2位为小数位。如图2所示,对5为有符号二进制数进行了舍入处理,舍去小数位,其中小数位大于0.5,整数位进1,小于0.5时不进位,而等于0.5时,舍入后数据打了问号,因为对于0.5的舍入处理,又可分为4种处理算法: (1). Round Half Up ;(2). Round Half Down ;(3). Round Half Even ;(4). Round Half Odd 并且以上第(1)、(2)种算法对应分别有对称(Symmetric)和非对称(Asymmetric)2类。 图2 (1). Round Half Up Round Half Up算法对于0.5的舍入处理为向上取值,因此此例中整数位进1,而这仅对正数部分而言,对于负数部分可按照相对于0对称与否分为2类,如图3所示。 图3 (2). Round Half Down Round Half Down算法对于0.5的舍入处理为向下取值,因此此例中整数位不进,而这仅对正数部分而言,对于负数部分可按照相对于0对称与否分为2类,如图4所示。 图4 (3). Round Half Even Round Half Even算法根据有效位来判断是否进位,在此例中,舍去小数位,因此判断整数位即可,如果整数位为偶数,则不进位,奇数则进位,因此舍入处理后整数位肯定是个偶数。如图5所示,可以发现Round Half Even必然是Symmetric算法。 图5 (4). Round Half Odd Round Half Odd算法根据有效位来判断是否进位,在此例中,舍去小数位,因此判断整数位即可,如果整数位为奇数,则不进位,偶数则进位,因此舍入处理后整数位肯定是个奇数。如图6所示,可以发现Round Half Odd必然是Symmetric算法。 图6 Round Ceiling Round Ceiling算法的舍入处理总是朝正无穷趋近,对于正数而言,只要舍去位大于0,就进位;对于负数则直接截断处理,如图7所示。 图7 Round Floor Round Floor算法的舍入处理总是朝负无穷趋近,舍入处理与Round Ceiling相反,对于负数而言,只要舍去位大于0,就进位;对于正数则直接截断处理,如图8所示。 图8 Truncation Truncation是直接的截位处理,如图9所示。另外还有一种Round To Zero算法,舍入处理采用的也是简单的截断。 图9