tag 标签: 程控电源

相关帖子
相关博文
  • 热度 38
    2015-1-13 20:49
    2933 次阅读|
    1 个评论
    在电源产品的测试中, 电子负载是必不可少的设备。 多数的电源产品为恒压类产品, 例如电池、电源适配器等。 对这些产品的测试, 为了测试这些产品在实际使用是的工作参数, 需要利用电子负载的恒流( CC )或是恒阻( CR )工作模式。 也就是说, 在测试过程中通过改变被测电源的工作电流, 来验证电源输出工作电压的稳定性、效率、瞬态特性及其它特性。     为了提高测试精度, 就必须考虑电子负载的这两种工作模式对被测电源产品的影响。 有观点认为测试电压源时,恒流和恒阻负载可以互换。该观点在一定程度上正确,但有些条件下可能会有问题,因为这两种负载的工作模式对被测电源的性能存在明显不同的影响。   首先,我们探讨静态时的工作性能。 我们以此为例, 分别对一个零输出电阻的理想电压源,例如稳压电源, 以及电池这样的非理想电压源进行测试。在电池中, 由于存在内阻, 因此通常被视为非理性的电压源。 在图 1 所示中, 两个电源拥有相同的开路电压。电源输出特征上方是两条负载线:恒流负载线和恒阻负载线。如图所示,理想电压源的电压曲线( Ideal Voltage Source ) , 当负载的牵引电流发生变化时,或是外接电阻发生变化时, 电压输出将保持稳定。 但是, 对于电池这样的非理想电压源, 由于内阻的存在, 随着牵引电流的增大, 或者外部电阻的下降,内阻消耗的电压上升,导致输出电压(端电压) 的下降。 如图中的Non-Ideal Voltage Source 曲线。   图 1 :理想 / 非理想电压源的恒流和恒阻负载特性   恒流负载经常用于电源产品的静态测试, 使被测电源在指定电流输出时,精确测量到的工作电源电压。 恒流负载此时模块的被测电源的工作环境,而设置的时候, 也无需考虑被测电源输出电压高低,或者是否符合标准。电池等非理想电压源较为复杂,通常需要测量指定恒流和恒阻负载条件下的技术指标,以表征在实际应用环境中的负载特征。 鉴于电池输出电压(端电压)与负载相关,在实际的测试过程中, 需要分别表征它在恒流或恒阻工作模式下的工作特性。      现在,我们讨论动态性能。恒流负载对电源启动、瞬态性能和稳定性的影响高于恒阻负载。在电源启动时,起初始输出电压为零,而恒阻负载启动时的电流需求为零。 但是,恒流负载则需要全电流, 它可能导致有些电源无法正常启动。由于电流需求取决于电压,恒阻负载具有阻尼效果,电流需求可以随瞬态电压的升高或降低而增加或减少,因此对被测电源瞬态响应和稳定性的影响较小。恒流负载则不具有类似效果,它会降低电源的瞬态响应和稳定性。在实际工作中,使用恒流或恒阻负载取决于被测电源技术指标规定的测试条件。 对于电池这样的非理想电源,其性能也会受到动态因素影响, 这主意由于电池本身的内阻和复杂的放电特性决定的,这也是我们常说的电池输出响应模型。 这个电池模型, 决定了电池的输出端电压会随着电流变化而变化。               因此,在先进的电子负载中,通常都具备恒压、恒流和恒阻工作模式。在测量电源产品的过程中,不同的工作模式都会直接影响被测电源的特性。选用正确的负载工作模式,可以帮我们实现相对精确和完整的测试。    
  • 热度 34
    2014-12-27 10:49
    1993 次阅读|
    0 个评论
    在测试过程中,超出被测器件极限的电流或电压相关的事件, 是造成被测件电气损坏的两个最常见原因。导致电流或电压超限的原因可能出自被测件自身, 或是由测试系统导致。过压是导致被测器件受损的最常见电源相关事件,也就是电压高于被测器件允许的最大安全电压值。出现过压的原因很多,但对于测试系统来说, 其根源在于设置错误或者内部故障。   为了避免被测件遭受意外的过压损坏,测试系统电源内置的过压保护( OVP )系统可以在检测到电压高于预设阈值后即时关闭输出。如需了解过压保护的详细信息,请参阅此前文章“ 电源的 “ 刹车系统 ”OVP - 程控电源的技术和应用( 21 ) ” http://forum.eet-cn.com/BLOG_ARTICLE_17079.HTM , 了解相关细节。   过压损坏的关键在于,大多数情况下,电压超过被测器件损坏阈值的同时,被测器件即遭受损坏。因此,您必须优化测试系统和设置以提供有效的被测器件过压保护。首先,过压保护启动阈值设置应低于被测器件的最高电源损坏阈值,同时略高于被测器件的预期最高工作电压,如图 1 所示。 图 1 :过压保护设置点   但是,要确定高于最大工作电压且低于被测器件损坏电压的“合理设置值”,您需要考虑电源输出和过压保护系统的动态响应特性,如图 2 所示。关于电源的瞬态响应特性的详细描述,请查看以往的文章: 程控电源技术和应用指南( 10 ) - 瞬态响 应 http://forum.eet-cn.com/BLOG_ARTICLE_16525.HTM   图 2 :电源输出和过压保护动态响应特征 确保过压保护设置高于最大工作电压且预留足够的裕量,这是避免过压保护误启动的重要措施,因为被测器件从电源吸收电流,电源将产生校正负载的瞬态电压响应,瞬态电压可能高于被测器件的最高工作电压。确保过压保护设置低于被测器件的损坏电压阈值、且预留足够的裕量同样重要,因为电源输出电压一旦超过过压保护设置值后, 过压保护系统需要 10 到 100 微妙的时间来做出响应,关闭电源输出,此时的电源是以最快的速度把电压拉回零,或是设定的安全电压值。事实上,“合理设置值”的分辨率通常需要低至小数点后一到二位。   通常,确保裕量并不困难,但如果被测件工作电压很低、或者由于大工作电流引发导线上出现大幅度压降,要准确设置会变得不太容易。 因为传统过压保护基于电源输出端测量到的电压值。 如果需要在被测件测量电压值,并以此作为过压保护条件,可利用远端电压感应线路。远端感应线路过压保护感应可以替代或补充传统的功率输出端感应。   关于电源的远端感应,请参阅以往的文章: 程控电源技术和应用指南( 8 ) - 远端回读精确控制电压 http://forum.eet-cn.com/BLOG_ARTICLE_16467.HTM 。         遵循以上建议,您可以实施有效的过压保护,确保被测器件测试安全!  
  • 热度 38
    2014-12-21 11:24
    1845 次阅读|
    0 个评论
    (接上篇) 3 ) 同向的多路开关断开和闭合的一致性的测试 使用 N6705B 和四个电源模块,一路给控制信号输出 24V-0V 的交变电压脉冲,另三路给同方向开关 . 如 1 , 2 , 3 供电,观察控制信号电压与开关的电流波形。 通道 1 , 2 , 3 同步数据   通道 5 , 6 , 7 同步数据   4 ) 反向的多路开关断开和闭合的一致性测试   对比通道 2 和通道 6 , 我们发现在通道 2 断开时,通道 6 即可闭合,但抖动持续了 12ms ; 而通道 6 断开时,即使不考虑通道 2 的抖动,通道 2 都没有即可闭合,导致期间出现 A , B 两端无任何一端闭合的情况。 理论上, A , B 两端应该是交替进行通、断,如下图所示:   三、 N6705B 介绍和多路开关典型配置 是德科技的 N6705B 直流电源分析仪,是独特的、高度集成化的模块化设计,在一台主机中提供了多种测试仪表功能 : • 1 至 4 路高性能电源输出或电子负载 • 数字电压表和电流表 • 带功率输出的任意波形发生器 • 电压、电流示波器 • 电压、电流数据采集 • 所有的测量和功能都能通过前面板实现 是德科技为它提供超过 34 种不同性能,电压,电流,功率等级的模块,任意的组合搭配最灵活的多通道电源 • 基础型模块:最高电压 150V ,最大电流 20A ,功率 50W -300W; • 高性能型自动量程模块:最高电压 60V , 50A ,功率 500W ,电压编程时间 2ms; • 精密型模块:最高电压 60V , 50A ,功率 500W , 0.016% 的电压输出精度; • SMU 源表模块: 20V/8A , 20W ,双象限或四象限工作,低至 nA 级电流测量精度; 在以上这个多路继电器测试的测试中,我们用了 N6705B 的配置为: 1. N6705B 直流电源分析仪 600W 主机 ; 2. N6734A 35V , 1.5A , 50W 模块 x1; 3. N6741B 5V , 20A , 100W 模块 x 3; 了解是德科技 N6705B 的详细信息,请访问: www.keysight.com/find/n6705 观看 N6705B 的产品应用和演示视频,请访问: http://v.youku.com/v_show/id_XMzU0NTkzMjYw.html?f=18816127  
  • 热度 34
    2014-12-21 11:15
    2970 次阅读|
    0 个评论
    继电器是一种电控制器件,是当输入量(激励量)的变化达到规定要求时,在电气输出电路中使被控量发生预定的阶跃变化的一种电器。它具有控制系统(又称输入回路)和被控制系统(又称输出回路)之间的互动关系。通常应用于自动化的控制电路中,它实际上是用小电流去控制大电流运作的一种“自动开关”。故在电路中起着自动调节、安全保护、转换电路等作用。继电器广泛应用于遥控、遥测、通讯、自动控制、机电一体化及电力电子设备中。 继电器的种类繁多,根据不同的应用要求和工作原理,可以分为电磁继电器、舌簧继电器、时间继电器、极化继电器、光继电器,声继电器,热继电器,仪表式继电器,霍尔效应继电器,差动继电器等。按照继电器的负载大小,可分为微功率继电器、弱功率继电器、**率继电器、大功率继电器。按照不同的继电器控制开关数量,可分为单路或多路继电器。 下面给大家介绍是如何使用 N6705B 实现一个 8 路、大功率、电磁继电器的性能测试。该类型的继电器被广泛的用于地铁、高铁的列车车门等控制系统,日常地铁的车门无法正常开启或关闭的问题多数是由该继电器异常导致的。这种继电器的工作原理如下: 上图中, A ,B表示继电器的切换位置,在控制线圈不加电时,继电器A端闭合(开关 1-4 导通);相反,如果线圈加 24V 电压,继电器切换至 B 端闭合(开关 5-8 导通)。 结合以下实际案例,给大家详细的介绍是德科技的 N6705B 直流电源分析仪如何全面地评估这种继电器的性能。 二、 N6705B 如何测试继电器开关性能 近日拜访某地铁维护中心,工作人员透露,该地铁系统中日常使用大量的这种多路继电器,而且经常需要更换,但因为继电器的价格非常昂贵,通常需要数千人民币。客户希望能够准确的评估更换的继电器性能并对继电器进行器件维修,但目前没有非常有效的评估和测试手段。通常都是裸眼观察和凭借自己的经验,如看继电器的触点是否变形,变色,磨损等。如下图中清晰的看到,靠左侧的端子(通道 1 )表层“镀金层”已经脱落,属于明显性能异常的端子。 结合继电器的指标参数(如上表),以及多路继电器的工作方式,我们初步怀疑继电器失效的 几种可能,并对各种可能进行分析: 1 ) 各组开关的切换功能是否正常,包括能否正常断开或闭合? 使用万用表测量各个通道开关的在断开和闭合的电阻,没有发现问题。 2 ) 控制信号与开关动作的时延过大?   如上图,使用 N6705B 和两个电源模块,一路给控制信号输出 24V-0V 的交变电压脉冲,另一 路给开关供电,观察控制信号电压与开关的电流波形 通过观察对比 24V 控制信号和各通道的电流信号,从图中发现通道 8 的时延较大 40ms, 超出指 标规定的 22ms ;同时我们还观察到开关闭合时,电流存在较大的抖动现象。 (未完待续)  
  • 热度 21
    2014-10-29 08:25
    2244 次阅读|
    0 个评论
    在过去的文章中,关于电源保护能力的文章就有好几篇。测试过程中电源的保护能力,就如同汽车的制动和安全防护系统,其重要性超过其他的所有特性。 当今系统直流电源整合了多种保护特性,能够保护被测器件( DUT )和电源自身免于故障或设置不当导致的损坏。你肯定对过压保护( OVP )和过流保护( OCP )不陌生,这是大多数系统直流电源应用的两个核心保护特性,能够防护功率相关损坏。 过压保护可以在电压高于允许运行电压上限时帮助确保被测器件不会遭受电源相关的损坏。过压损坏几乎在瞬间产生,因此在设置过压保护电压时,应低于被测件的损坏电平,以提供一定范围的裕量;但保护电压的设置,也要略高于被测器件的最大预期工作电压,以避免电压瞬变造成被测件的重启。过压形成通常源于被测器件的外部因素。在高性能的程控电源中,过压保护的响应时间通常在 10uS-100uS 。 过流保护可以帮助保护被测器件,防止内部短路或其他故障导致过高的电流,造成被测件的损坏。过流保护的响应时间通常是从百微秒级到毫秒级,不同性能的电源这个指标相差较大,性能越好的电源,响应时间越短。同时,过流越高,电源的响应时间则越短。由于被测件在启动过程中往往存在比较高的浪涌电流,这会远高于被测件的正常工作电流,如果这个浪涌电流的时间过长,就会触发电源的 OCP ,从而电源下电,被测件无法启动。正是由于这个原因,有些被测件在用高性能电源常常无法正常启动,而使用杂牌的电源时,被测件则可以启动, 因为杂牌电源 OCP 启动时间过长。为了解决这个问题,高性能电源可以允许使用者设置电源上电时 OCP 启动的电流幅度窗口和时间,即确保被测件的正常启动, 又可确保了被测件的安全 但在很多的应用场合,仅仅 OVP 和 OCP 对于器件测试过程中的保护往往是不够的。在这里,我们用一个实例来说明。图 1 是实例被测器件的过压保护和过流保护描述。这是一个电压固定输出为 48V / 最大工作电流 9.4A 的电源,最大功耗为 450W 。测试过程中,我们设定过压保护和过流保护为比被测器件的电压和电流值高 10% ,以保护被测器件。 然而,并非所有被测器件都具有与图 1 类似的电压和电流工作范围。以车载 DC – DC 转换器为例, 这类器件具有宽泛的工作电压范围,而功率相对恒定。这里的 DC-DC 转换器广泛应用在车载及军用电子产品中,以适应变化范围大、输入电压不稳定的工作环境。如图 2 所示, DC – DC 转换器的工作电压为 24-48 V ,功耗 225W 。 DC – DC 转换器的转换效率通常很高,其自身的能量损耗极低,绝大部分传输到了负载。如果 DC – DC 转换器一旦发生故障,就会导致自身能耗迅速上升,转换效率降低,可能会由于过热而损坏。在这种情况下,就需要设置 24V 的过压保护。可是,一旦设置了 24V 的过压保护,就会导致更高电压值的测试无法进行。如下图 所示。 具备过功率保护能力的程控电源可以解决上述问题,因为过功率保护可以在所有输入电压设置条件下保护被测器件。 图 3 :应用过功率保护的 DC - DC 转换器输入电压( V )和电流( I )范围实例   目前市面上的程控系统电源,绝大多数不具备过功率保护特性。如果针对每次测试电压的设置 , 都需要修改过压保护设置,不仅繁琐而且不实用。 Keysight N6900A 和 N7900A APS 先进系统直流电源提供可配置的智能触发系统,可以持续感应输出功率,进而创建逻辑表达式,以便根据输出功率触发输出保护的下电。如图 4 所示,使用 N7906A 软件工具可以直观地配置逻辑表达式,然后下载至 APS 电源。智能触发系统是由仪器的硬件支持,能够确保快速响应,这是构建保护机制的重要因素   图 4 : N7906A 软件工具可以直观地配置过功率保护关机 此外, N7906A 具有故障延迟功能,可以防止被测器件因瞬态事件产生临时功率峰值导致的误触发。除了故障触发电源的下电,输出功率还可以用于触发众多其它的事件和动作。 了解更多 Keysight APS 电源, 可以观看网上视频:http://v.youku.com/v_show/id_XNjEzOTQxMTAw.html?f=20013609   或访问: www.keysight.com/find/aps  
相关资源
  • 所需E币: 1
    时间: 2023-3-30 09:16
    大小: 208.6KB
    上传者: 张红川
    电热原子化器的单片机程控电源研制.pdf
  • 所需E币: 5
    时间: 2019-12-25 22:52
    大小: 377.17KB
    上传者: 238112554_qq
    介绍了一种基于DSP的程控交流电源。该交流电源不仅能够输出频率幅值,可变的正弦电压,而且能够输出周期性畸变电压。电源系统采用数模混合控制,数字部分实现高精度的波形发生器和电压有效值控制;模拟部分完成电压电流瞬时值控制。最后给出原理样机的实验波形。……