tag 标签: ESD保护

相关博文
  • 热度 2
    2017-5-23 20:01
    3576 次阅读|
    1 个评论
    1. 续流二极管的另一种用法 另外一般也主要利用续流二极管用作抑制瞬态。当流经一个电感器件的电流被突然关断时,根据电磁理论,突然消失的磁场将会在电感线圈上产生一个高电压脉冲,这个高电压脉冲瞬态幅值或许可以达到几千伏,这对系统来说是灾难,并且尤其在继电器线圈中更为常见。此时,工程上常见的做法是用一个续流二极管并联在继电器线圈的两端,以便给高压脉冲提供一个短路通道来保护系统,通过续流二极管的泄放通道保护继电器,器件选取上,需要具有足够的功率。 图1 续流二极管的作用 上图右侧是续流二极管一个更为实用的例证,通过继电器旁边的二极管保护继电器,放在晶体管旁边的续流二极管则是保护晶体管,避免晶体管在关断时继电器因为磁场感应而被损坏。 2. 二极管用作ESD保护(击穿特性) ESD保护有很多备选器件,通常会采用压敏电阻和瞬态二极管。也就是我们常说的VDR和TVS。这个更多的是一些对外的接口用得多,是选便宜点得压敏电阻还是瞬态二极管,这个需要好好了解下各自的性能。对于同样选择压敏电阻,是抑制瞬态的多还是周期性大信号的多,也是有所不同的。这里多说一点,作开发和作产品最大的不同,就是产品对于空间和成本的要求了,尤其对于追求极致的移动设备。或许,可以慢慢认为ESD的保护可以看作是续流二极管用作抑制瞬态的一种变种用法,作为硬件工程师,多多思考往往可以把知识串起来,也很有趣。 图2 VARISTOR的特性曲线以及作用 USB中由于接口是可热插拔的,所以比较容易因为不可避免的人为因素导致静电损坏器件,比如挂机hang,烧板等,如果cpu的ESD保护比较弱,那么大概率会损坏CPU,实际调试中碰到过类似状况,所以使用USB接口的电路需要加入ESD保护器件,如下图所示,同时不要忽略电源pin上也要有ESD保护器件,并且从成本考虑信号上ESD与电源上ESD一般不是一个型号,大家可以考虑原因。 图3 USB的ESD保护 一般来说,电源线上一般采用工作电压略高于5V的,电容一般为几十甚至100多的压敏电阻连到屏蔽线上。而差分线上因为速率高达480Mbps,此时需要电容很小的ESD器件,才能满足。原因时,较大的电容能使数据信号波形劣化,甚至导致位错误。因此需要电容低的器件,可以通过波形来看电容大小对波形的影响。 图4 不同的电容值对USB信号影响 3. 开关二极管 二极管在正向电压作用下电阻很小,处于导通状态,相当于一只接通的开关;在反向电压作用下,电阻很大,处于截止状态,如同一只断开的开关。利用二极管的开关特性,可以组成各种逻辑电路。 图5 二极管构成开关电路 如果有兴趣,大家可以了解一下PIN二极管,这种二极管主要用作射频和微波的开关。在射频电路中,开关是极为讲究的,需要专门的技术的技术来减少信号的衰减,即使暂时用不到,有时间研究一下也乐在其中。
  • 热度 23
    2013-9-22 09:46
    1245 次阅读|
    0 个评论
    Littelfuse推出的新款低电容瞬态抑制二极管阵列,可提供优于类似元件的浪涌和ESD保护 超强的 功率处理能力为现代电信接口提供安全保障 Littelfuse公司是全球电路保护领域的领先企业,现已推出两个系列的分散式低电容瞬态抑制二极管阵列(SPA®二极管),这两个系列均经过优化,可帮助电信电路和硬件设计师保护电信接口,以防遭受雷击感应浪涌和静电放电(ESD)的破坏。 SP4020和SP4021系列 瞬态抑制二极管阵列 通过将低电容控向二极管与一个或两个瞬态抑制二极管集成在一起,可以为3.3V(SP4020)和5V(SP4021)应用提供单向或双向电气威胁保护。 这两个系列的产品可提供比市场上其他解决方案低16%的负载电容,因而有助于保持信号的完整性,并将数据丢失率降至最低。 SP4020系列可提供两倍于市场上类似解决方案的功率处理能力;SP4021系列可提供相当于其他解决方案1.5倍的功率处理能力。 这些产品可安全地吸收较高的雷击感应浪涌电流,是T1/E1/T3/E3、10/100/1000以太网、USB 1.1/2.0等接口的理想选择。 “SP4020和SP4021瞬态抑制二极管阵列可提供超强的浪涌和ESD保护,可帮助设计工程师达到并超过IEC61000-4-2(4级)和IEC61000-4-5(2级)等所有相关行业标准的要求。”瞬态抑制二极管阵列产品系列总监Chad Marak表示。 “其强大的功率处理能力和较低的动态电阻确保了其卓越的箝位性能,可防止当今敏感的芯片组过早失效。” 特色 • 与市场上类似的解决方案相比,可为监管标准规定的电气威胁提供更高的保护能力:功率处理能力分别提升2倍(SP4020)和1.5倍(SP4021) • 有助于保持信号完整性,并将数据丢失率降至最低  • 性能远超IEC61000-4-2标准的最高等级(±8kV),可在安装和维护设备时提供更高的可靠性  • 为敏感的芯片集提供低箝位电压,防止其发生灾难性故障并最大程度地提高系统可靠性
  • 热度 28
    2013-7-22 09:34
    1600 次阅读|
    0 个评论
    近二十年来,电子工业以惊人的速度发展。新技术的进步在减小设备尺寸的同时,也加大了分立元件制造商开发理想性能器件的压力。 在这些器件中,晶片电阻当前始终保持很高的需求,并且是许多电路的基础构件。它们的空间利用率优于分立式封装电阻,减少了组装前期准备的工作量。随着应用的普及,晶片电阻具有越来越重要的作用。主要参数包括 ESD 保护、热电动势 (EMF)、电阻热系数 (TCR)、自热性、长期稳定性、功率系数和噪声等。 以下技术对比中将讨论线绕电阻在精密电路中的应用。不过请注意,线绕电阻没有晶片型,因此,受重量和尺寸限制需要采用精密晶片电阻的应用不使用这种电阻。 尽管升级每个组件或子系统可以提高整体性能,但整体性能仍是由组件链中的短板决定的。系统中的每个组件都具有关系到整体性能的内在优缺点,特别是短期和长期稳定性、频响和噪声等问题。分立式电阻行业在线绕电阻、厚膜电阻、薄膜电阻和金属箔电阻技术方面取得了进步,而从单位性能成本考虑,每种电阻都有许多需要加以权衡的因素。 各种电阻技术的优缺点如表1所示,表中给出了热应力和机械应力对电阻电气特性的影响。 应力(无论机械应力还是热应力)会造成电阻电气参数改变。当形状、长度、几何结构、配置或模块化结构受机械或其他方面因素影响发生变化时,电气参数也会发生变化,这种变化可用基本方程式来表示:R = ρ L/A,式中 R = 电阻值,以欧姆为单位, ρ = 材料电阻率,以欧姆米为单位, L = 电阻元件长度,以米为单位, A = 电阻元件截面积,以平方米为单位。 电流通过电阻元件时产生热量,热反应会使器件的每种材料发生膨胀或收缩机械变化。环境温度条件也会产生同样的结果。因此,理想的电阻元件应能够根据这些自然现象进行自我平衡,在电阻加工过程中保持物理一致性,使用过程中不必进行热效应或应力效应补偿,从而提高系统稳定性。 精密线绕电阻 线绕电阻一般分为“功率线绕电阻”和“精密线绕电阻”。功率线绕电阻使用过程中会发生很大变化,不适于精密度要求很高的情况下使用。因此,本讨论不考虑这种电阻。 线绕电阻的制作方法一般是将绝缘电阻丝缠绕在特定直径的线轴上。不同线径、长度和合金材料可以达到所需电阻和初始特性。精密线绕电阻 ESD 稳定性更高,噪声低于薄膜或厚膜电阻。线绕电阻还具有 TCR 低、稳定性高的特点。 线绕电阻初始误差可以低至 ± 0.005 %。TCR (温度每变化一摄氏度,电阻的变化量) 可以达到 3 ppm/°C典型值。不过,降低电阻值,线绕电阻一般在15 ppm/°C 到 25 ppm/°C。热噪声降低,TCR 在限定温度范围内可以达到 ± 2 ppm/°C 。 线绕电阻加工过程中,电阻丝内表面 (靠近线轴一侧) 收缩,而外表面拉伸。这道工艺产生永久变形 — 相对于弹性变形或可逆变形,必须对电阻丝进行退火。永久性机械变化 (不可预测) 会造成电阻丝和电阻电气参数任意变化。因此,电阻元件电性能参数存在很大的不确定性。 由于线圈结构,线绕电阻成为电感器,圈数附近会产生线圈间电容。为提高使用中的响应速度,可以采用特殊工艺降低电感。不过,这会增加成本,而且降低电感的效果有限。由于设计中存在的电感和电容,线绕电阻高频特性差,特别是 50 kHz 以上频率。 两个额定电阻值相同的线绕电阻,彼此之间很难保证特定温度范围内精确的一致性,电阻值不同,或尺寸不同时更为困难 (例如,满足不同的功率要求)。这种难度会随着电阻值差异的增加进一步加剧。以1-kΩ 电阻相对于100-kΩ电阻为例,这种不一致性是由于直径、长度,并有可能由于电阻丝使用的合金不同造成的。而且,电阻芯以及每英寸圈数也不同—机械特性对电气特性的影响也不一样。由于不同的电阻值具有不同的热机特性,因此它们的工作稳定性不一样,设计的电阻比在设备生命周期中会发生很大变化。TCR 特性和比率对于高精度电路极为重要。 传统线绕电阻加工方法不能消除缠绕、封装、插入和引线成型工艺中产生的各种应力。固定过程中,轴向引线往往采用拉紧工艺,通过机械力加压封装。这两种方法会改变电阻,无论加电或不加电。从长期角度看,由于电阻丝调整为新的形状,线绕元件会发生物理变化。 薄膜电阻 薄膜电阻由陶瓷基片上厚度为 50 A 至 250 A的金属沉积层组成 (采用真空或溅射工艺)。薄膜电阻单位面积阻值高于线绕电阻或 Bulk Metal 金属箔电阻,而且更为便宜。在需要高阻值而精度要求为中等水平时,薄膜电阻更为经济并节省空间。 它们具有最佳温度敏感沉积层厚度,但最佳薄膜厚度产生的电阻值严重限制了可能的电阻值范围。因此,采用各种沉积层厚度可以实现不同的电阻值范围。薄膜电阻的稳定性受温度上升的影响。薄膜电阻稳定性的老化过程因实现不同电阻值所需的薄膜厚度而不同,因此在整个电阻范围内是可变的。这种化学/机械老化还包括电阻合金的高温氧化。此外,改变最佳薄膜厚度还会严重影响 TCR。由于较薄的沉积层更容易氧化,因此高阻值薄膜电阻退化率非常高。 由于金属量少,薄膜电阻在潮湿的条件下极易自蚀。浸入封装过程中,水蒸汽会带入杂质,产生的化学腐蚀会在低压直流应用几小时内造成薄膜电阻开路。改变最佳薄膜厚度会严重影响 TCR。由于较薄的沉积层更容易氧化,因此高阻值薄膜电阻退化率非常高。 《电子设计技术》网站版权所有,谢绝转载 厚膜电阻 如前所述,受尺寸、体积和重量的影响,线绕电阻不可能采用晶片型。尽管精度低于线绕电阻,但由于具有更高的电阻密度 (高阻值/小尺寸) 且成本更低,厚膜电阻得到广泛使用。与薄膜电阻和金属箔电阻一样,厚膜电阻频响速度快,但在目前使用的电阻技术中,其噪声最高。虽然精度低于其他技术,但我们之所以在此讨论厚膜电阻技术,是由于其广泛应用于几乎每一种电路,包括高精密电路中精度要求不高的部分。 厚膜电阻依靠玻璃基体中粒子间的接触形成电阻。这些触点构成完整电阻,但工作中的热应变会中断接触。由于大部分情况下并联,厚膜电阻不会开路,但阻值会随着时间和温度持续增加。因此,与其他电阻技术相比,厚膜电阻稳定性差 (时间、温度和功率)。 由于结构中成串的电荷运动,粒状结构还会使厚膜电阻产生很高的噪声。给定尺寸下,电阻值越高,金属成份越少,噪声越高,稳定性越差。厚膜电阻结构中的玻璃成分在电阻加工过程中形成玻璃相保护层,因此厚膜电阻的抗湿性高于薄膜电阻。 金属箔电阻 将具有已知和可控特性的特种金属箔片敷在特殊陶瓷基片上,形成热机平衡力对于电阻成型是十分重要的。然后,采用超精密工艺光刻电阻电路。这种工艺将低 TCR、长期稳定性、无感抗、无 ESD 感应、低电容、快速热稳定性和低噪声等重要特性结合在一种电阻技术中。 这些功能有助于提高系统稳定性和可靠性,精度、稳定性和速度之间不必相互妥协。为获得精确电阻值,大金属箔晶片电阻可通过有选择地消除内在“短板”进行修整。当需要按已知增量加大电阻时,可以切割标记的区域 (图2),逐步少量提高电阻。 合金特性及其与基片之间的热机平衡力形成的标准温度系数,在0 °C 至 + 60 °C 范围内为 ± 1 ppm/°C (Z 箔为0.05 ppm/°C) (图3)。 采用平箔时,并联电路设计可降低阻抗,电阻最大总阻抗为 0.08 uH。最大电容为 0.05 pF。1-kΩ 电阻设置时间在 100 MHZ以下小于 1 ns。上升时间取决于电阻值,但较高和较低电阻值相对于中间值仅略有下降。没有振铃噪声对于高速切换电路是十分重要的,例如信号转换。 100 MHZ 频率下,1-kΩ 大金属箔电阻直流电阻与其交流电阻的对比可用以下公式表示: 交流电阻/直流电阻 = 1.001 金属箔技术全面组合了高度理想的、过去达不到的电阻特性,包括低温度系数(0 °C 至 + 60 °C 为 0.05 ppm/°C),误差达到 ± 0.005 % (采用密封时低至 ± 0.001 %),负载寿命稳定性在 70 °C,额定加电2000小时的情况下达到 ± 0.005 % (50 ppm),电阻间一致性在 0 °C 至 + 60 °C 时为 0.1 ppm/°C,抗 ESD 高达 25 kV。 性能要求 当然并非每位设计师的电路都需要全部高性能参数。技术规格相当差的电阻同样可以用于大量应用中,这方面的问题分为四类: (1) 现有应用可以利用大金属箔电阻的全部性能升级。 (2) 现有应用需要一个或多个,但并非全部“行业最佳”性能参数。 (3) 先进的电路只有利用精密电阻改进的技术规格才能开发。 (4) 有目的地提前计划使用精密电阻满足今后升级要求 (例如,利用电阻而不是有源器件保持电路精度,从而节省成本,否则仅仅为了略微提高性能则要显著增加成本)。 例如,在第二 (2) 类情况下,一个参数必须根据所有参数的经济性加以权衡。与采用全面优异性能的电阻相比,这样可以节省成本,因为不需要调整电路 (及组装相关组件的成本)。主要通过电阻而不是有源器件提高精度也可以节省成本,因为有源器件略微提高一点性能所需的成本要比电阻高的多。另一个问题是:“利用高性能电阻提高设备性能是否可以提高市场的市场占有率?” 《电子技术设计》网站版权所有,谢绝转载
  • 热度 31
    2010-10-15 16:17
    2639 次阅读|
    0 个评论
    替代型号; WE05M3LC  RClamp0502B Feature  Solid-state silicon-avalanche technology  Protect up two data lines  Low clamping voltage  Working voltage: 5V  Low leakage current  125 watts peak pulse power(Tp=8/20us)  Complies with the following standards: IEC 61000-4-2(ESD)Air-15kv,Contact-8kv Applications  High-Definition Multimedia Interface(HDMI)  Mobile Display Digital Interface(MDDI)  RF/Antenna Circuits  USB 2.0Firewire Ports  HBT Power Amp Protection  Infiniband Transceiver Protection TVS器件的主要电参数   1、 击穿电压V(BR) 器件在发生击穿的区域内,在规定的试验电流I(BR) 下,测得器件两端的电压称为击穿电压,在此区域内,二极管成为低阻抗的通路。   2、 最大反向脉冲峰值电流IPP 在反向工作时,在规定的脉冲条件下,器件允许通过的最大脉冲峰值电流。IPP与最大箝位电压Vc(MAX)的乘积,就是瞬态脉冲功率的最大值。 使用时应正确选取TVS,使额定瞬态脉冲功率PPR大于被保护器件或线路可能出现的最大瞬态浪涌功率。 当瞬时脉冲峰值电流出现时,TVS被击穿,并由击穿电压值上升至最大箝位电压值,随着脉冲电流呈指数下降,箝位电压亦下降,恢复到原来状态。因此,TVS能抑制可能出现的脉冲功率的冲击,从而有效地保护电子线路。 峰值电流波形 A、正弦半波 B、矩形波 C 、标准波(指数波形) D、三角波 TVS峰值电流的试验波形采用标准波(指数波形),由TR/TP决定。 峰值电流上升时间TR:电流从0.1IPP开始达到0.9IPP的时间。 半峰值电流时间TP:电流从零开始通过最大峰值后,下降到0.5IPP值的时间。下面列出典型试验波形的TR/TP值: A、EMP波:10ns /1000ns B、闪电波:8μs /20μs C、标准波:10μs /1000μs   3、 最大反向工作电压VRWM(或变位电压)器件反向工作时,在规定的IR下,器件两端的电压值称为最大反向工作电压VRWM。通常VRWM =(0.8~0.9)V (BR) 。在这个电压下,器件的功率消耗很小。使用时,应使VRWM 不低于被保护器件或线路的正常工作电压。   4、 最大箝位电压Vc(max ) 在脉冲峰值电流Ipp 作用下器件两端的最大电压值称为最大箝位电压。使用时,应使Vc(max )不高于被保护器件的最大允许安全电压。最大箝位电压与击穿电压之比称为箝为系数。 即:箝位系数=Vc(max )/V(BR) 一般箝位系数为1.3左右。 最大箝位电压VC(max )的测试方法见4.4。   5、 反向脉冲峰值功率PPR TVS的PPR取决于脉冲峰值电流IPP和最大箝位电压Vc(max ),除此以外,还和脉冲波形、脉冲时间及环境温度有关。 当脉冲时间Tp一定时,PPR =K1...·K2 ·Vc(max ) ·Ipp 式中K1为功率系数,K2为功率的温度系数。 典型的脉冲持续时间tp为1MS,当施加到瞬态电压抑制二极管上的脉冲时间tp 比标准脉冲时间短时,其脉冲峰值功率将随tp的缩短而增加。TVS的反向脉冲峰值功率PPR与经受浪涌的脉冲波形有关,用功率系数K1表示,各种浪涌波形的K1值如表1所示。 E=∫i(t).V(t)dt 式中:i(t)为脉冲电流波形,V(t)为箝位电压波形。 这个额定能量值在极短的时间内对TVS是不可重复施加的。但是,在实际的应用中,浪涌通常是重复地出现,在这种情况下,即使单个的脉冲能量比TVS器件可承受的脉冲能量要小得多,但若重复施加,这些单个的脉冲能量积累起来,在某些情况下,也会超过TVS器件可承受的脉冲能量。因此,电路设计必须在这点上认真考虑和选用TVS器件,使其在规定的间隔时间内,重复施加脉冲能量的累积不至超过TVS器件的脉冲能量额定值。   6、 电容CPP TVS的电容由硅片的面积和偏置电压来决定,电容在零偏情况下,随偏置电压的增加,该电容值呈下降趋势。电容的大小会影响TVS器件的响应时间。   7、 漏电流IR 当最大反向工作电压施加到TVS上时,TVS管有一个漏电流IR,当TVS用于高阻抗电路时,这个漏电流是一个重要的参数。 SESLC5VT523-3U资料下载     SESLC5VT523-3U PDF下载     SESLC5VT523-3U电路图    型号  品牌  替代型号  封装  价格   SESLC5VT523-3U  Semitel  RClamp0502B  SOT523  0.48   WE05M3LC  Wayon  RClamp0502B  SOT-23  0.48   SES5VD923-2U  Semitel  ESD9C5  SOD-923  0.07 电源IC 类: 音箱 IC 类: 手机 IC 类: 液晶电视 IC 类: LED照明类: 石英晶振: ESD 保护/ TVS管 : P ESD IC 类: 其它 IC 类: Flash IC 类: 联系方式   联系人:张羚羚 Q  Q : 317613359 MSN : baiyu-lili@163.com 手机: 13760719153 邮箱: baiyu-lili@163.com 网址: