tag 标签: temperature

相关博文
  • 热度 24
    2013-12-10 17:00
    1903 次阅读|
    0 个评论
    When developing precision electronics or working on a detailed worst-case analysis, one quickly learns to consider parameters that may not be so important in other applications. One of the more interesting things to learn is that the tolerance of a resistor is just the starting point. It does not actually define the maximum or minimum value the resistor could be within your circuit.   The key parameters associated with a resistor are as follows. * Tolerance: This defines how close to the nominal value is allowable for the resistor when it is manufactured. A nominal 1,000Ω resistor with a tolerance of ±5% will have a value ranging between 950 and 1,050Ω. This value will be fixed; the value of the resistor will not vary during its life due to the tolerance. However, the engineer has to consider the tolerance in design calculations and ensure the circuit will function across the entire potential value range. * Temperature coefficient: This describes how the value of the resistor changes as a function of temperature. It is defined as parts per million/Kelvin; common values are 5, 10, 20, and 100 PPM/K. Actually, the best way to think of this is parts per million per ohm/Kelvin. A 1,000Ω resistor with a temperature coefficient of 100 PPM experiencing a ±60K temperature change over the operating temperature range (240-360K, based on an ambient room temperature of 300K) will experience a resistance change of ±6Ω based on its nominal value.     Obviously, the lower the temperature coefficient, the more expensive the resistor will be. (This is the same for low-tolerance resistors.) * Resistor self-heating: For really high-precision circuits, it is sometimes necessary to consider the power dissipation within the resistor. The resistor will have a specified thermal resistance from the case to ambient, and this will be specified in°C/W. The engineer will know the power dissipation within the resistor; this can be used to determine the temperature rise and hence the effect on the resistance. To determine the maximum and minimum resistance applicable to your resistor, you must consider the tolerance, the temperature coefficient, and the self-heating effect. As you perform your analysis, you may notice some of the parameters are negligible and can be discounted, but you have to consider them first to know whether or not you can discount them. For some precision circuits (gain stages in amplifiers, for example) it may be necessary to match resistors to ensure their values are within a specified tolerance of each other and have the same temperature coefficients. In certain circuits, it is also important to make sure that critical resistors are positioned correctly to ensure both terminal ends of the resistor are subjected to the same heating or cooling effects. Otherwise, the Seebeck effect may need to be considered. When using forced airflow, for example, it may be necessary to ensure that both resistor terminals are perpendicular to the airflow, so the component is of uniform temperature. To what level do you consider these effects in your own designs? Also, are there any other factors you take into consideration when selecting a resistor? Adam Taylor Head of Engineering Systems E2V  
相关资源
  • 所需E币: 1
    时间: 2022-7-23 16:55
    大小: 48.6KB
    上传者: Argent
    TemperatureTrendDirectionFlag
  • 所需E币: 1
    时间: 2022-7-23 13:28
    大小: 6.93MB
    上传者: Argent
    SimpleTemperatureControlBuildingBlock
  • 所需E币: 1
    时间: 2022-7-23 10:59
    大小: 12.18KB
    上传者: Argent
    TemperatureConverter
  • 所需E币: 1
    时间: 2022-7-23 10:19
    大小: 203.44KB
    上传者: Argent
    PIDControlofTemperature
  • 所需E币: 3
    时间: 2020-4-7 11:37
    大小: 1.63MB
    上传者: 978461154_qq
    (Springer)MultilayeredLowTe...,abbr_yeredLowTemperatureCofiredCeramicsLtccTechnologyPdfEbook-Yyepg[1]……
  • 所需E币: 4
    时间: 2019-12-28 23:44
    大小: 28KB
    上传者: givh79_163.com
    Thecomponentsshownenablethistemperature-to-periodconverter(IC1)tointerfacewithstandardindustriallogiclevels,whileoperatingona-48Vtelecommsystemsbus.ThecircuitpresentedfeaturestheMAX6576digitaltemperaturesensor.……
  • 所需E币: 5
    时间: 2019-12-28 23:46
    大小: 42KB
    上传者: 二不过三
    Atemperature-sensorchipispoweredbytheTxchannelofanRS-232interfacechip,andthesignal(asquarewavewithfrequencyproportionaltothesensor-packagetemperature)isreturnedviatheRxchannel.……
  • 所需E币: 4
    时间: 2019-12-28 23:52
    大小: 474.3KB
    上传者: quw431979_163.com
    TheMAX1464isafullydigital,high-performancesignalconditionerwithmultichannelinputs,analoganddigitaloutputs,andsupportfor4-20mAoutputapplications.TheMAX1464canbeprogrammedtocorrectthenonlinearitiesandtemperaturedependentcharacteristicsofsensors.……
  • 所需E币: 3
    时间: 2019-12-28 23:53
    大小: 72KB
    上传者: rdg1993
    AcircuitisdescribedthattransmitstemperaturedataoveranIRlink,thusallowingisolationofthetemperaturesensor.ThecircuitconsistsofanIRtransmitter,anIRreceiver,andatemperaturesensor.……
  • 所需E币: 3
    时间: 2019-12-28 23:55
    大小: 47.5KB
    上传者: 238112554_qq
    TheDS1862XFPLaserControlandDigitalDiagnosticIChasanauxiliarymonitorpin.ThisapplicationnoteexplainshowtheauxiliarymonitorworksandwhatregistersareusedtointernallycalibratetheAUX2MONpinsoitcandrivetheLook-UpTable.ThethreeproceduresforsettinguptheinternalregistersaredetailedanddemonstratedwiththeDS60,anexampletemperaturesensor.……
  • 所需E币: 4
    时间: 2019-12-24 23:36
    大小: 83.57KB
    上传者: 二不过三
    IntroductionWithitsnumerousfeatures,theMAXQ2000cancreateamultitudeofusefulapplications,suchascontrollingafan'sspeedbypulsewidthmodulation(PWM).AmongthemanyfeaturesoftheMAXQ2000areitstimerwithPWMandSerialPeripheralInterface(SPI™)and1-Wire®capabilities.ThisapplicationnotedescribeshowtheMAXQ2000canbeusedtodriveafanandchangeitsspeed,inrealtime,byPWM.ThisprocessrequirestheuseofanotherMaximproduct,theMAX1407multichanneldata-acquisitionsystem(DAS).UsingSPI,theMAXQ2000cancommunicatewiththeMAX1407(containinga16-bitanalog-to-digitalconverter[ADC]anddigital-to-analogconverter[DAC]).Asanalternativetousingathermistor,theMAXQ2000's1-WirebusmastercanbeusedinconjunctionwithatemperatureiButton(DS1920).Thesourcecodeusedinthisapplicationnoteisavailablefordownload.Temperature-BasedFanControlUsingtheMAXQ2000MicrocontrollerSep16,2005Abstract:ThisapplicationnotedescribeshowtouseaMAXQ2000microcontrollertocontrolDCfanspeedandmonitortemperaturefromathermistororiButton.IntroductionWithitsnumerousfeatures,theMAXQ2000cancreateamultitudeofusefulapplications,suchascontrollingafan'sspeedbypulsewidthmodulation(PWM).AmongthemanyfeaturesoftheMAXQ2000areitstimerwithPWMandSerialPeripheralInterface(SPI)and1-Wirecapabilities.ThisapplicationnotedescribeshowtheMAXQ2000canbeusedtodriveafanandchangeitsspeed,inrealtime,byPWM.ThisprocessrequirestheuseofanotherMaximproduct,theMAX1407multichanneldata-acquisitionsystem(DAS).UsingSPI,theMAXQ2000cancommunica……
  • 所需E币: 5
    时间: 2019-12-24 23:29
    大小: 99.34KB
    上传者: rdg1993
    Abstract:Thisarticleprovidesageneraloverviewofthe1-Wiretechnology,itscommunicationconceptand,asabenefitofthelowpincount,unusualpackageoptions.Themainsectiondiscusses1-Wiredevicesbytheirfeaturesetandexplainsthetypicalapplications.Thearticleendswithpracticalinformationonhowtoevaluate1-Wiredevices,explainsdevicecustomizationoptions,andreferencesresourcesthatassistcustomersinintegrating1-Wiretechnologyintheirsystems.Overviewof1-WireTechnologyandItsUseBy:BernhardLinke,PrincipalMemberTechnicalStaffJun19,2008Abstract:Thisarticleprovidesageneraloverviewofthe1-Wiretechnology,itscommunicationconceptand,asabenefitofthelowpincount,unusualpackageoptions.Themainsectiondiscusses1-Wiredevicesbytheirfeaturesetandexplainsthetypicalapplications.Thearticleendswithpracticalinformationonhowtoevaluate1-Wiredevices,explainsdevicecustomizationoptions,andreferencesresourcesthatassistcustomersinintegrating1-Wiretechnologyintheirsystems.WhatIs1-WireTechnology?Thebasisof1-Wiretechnologyisaserialprotocolusingasingledatalineplusgroundreferenceforcommunication.A1-Wiremasterinitiatesandcontrolsthecommunicationwit……
  • 所需E币: 3
    时间: 2019-12-24 23:28
    大小: 41.38KB
    上传者: 微风DS
    Abstract:Twocommonthermal-resistancevaluesmeasuredforICpackagesarejunctiontoambient(ThetaJA)andjunctiontocase(ThetaJC).Theseparametersareusefulforcalculatingmaximumpowerdissipationandself-heating,andforcomparingpackagetypes.ThetaJAandThetaJCvaluesarepresentedhereforselectMaximtemperaturesensorsand1-Wire®devices.Examplesforcalculatingthevaluesaregiven.PackageThermalResistanceValues(ThetaJA,ThetaJC)forTemperatureSensorsand1-WireDevicesNov16,2006Abstract:Twocommonthermal-resistancevaluesmeasuredforICpackagesarejunctiontoambient(ThetaJA)andjunctiontocase(ThetaJC).Theseparametersareusefulforcalculatingmaximumpowerdissipationandself-heating,andforcomparingpackagetypes.ThetaJAandThetaJCvaluesarepresentedhereforselectMaximtemperaturesensorsand1-Wiredevices.Examplesforcalculatingthevaluesaregiven.IntroductionManagingheatinelectronicsystemsiscrucialforensuringproductreliability.Integratedcircuits(ICs)exposedtohightemperaturescanfailormalfunctioninthefield,thusrequiringcostlyrepairorredesign.Typicalthermal-resistanceparametersgivet……
  • 所需E币: 5
    时间: 2019-12-24 23:27
    大小: 23.66KB
    上传者: 二不过三
    Abstract:TheDS18B20andDS18S20aretwoverypopular1-Wiredigitalthermometers.Thisapplicationnoteexplainsthesimilaritiesanddifferencesbetweenthesetwoparts,andguidescustomersinselectingthebestpartforanapplication.ComparisonoftheDS18B20andDS18S201-WireDigitalThermometersMar18,2009Abstract:TheDS18B20andDS18S20aretwoverypopular1-Wiredigitalthermometers.Thisapplicationnoteexplainsthesimilaritiesanddifferencesbetweenthesetwoparts,andguidescustomersinselectingthebestpartforanapplication.IntroductionTheDS18B20andDS18S201-Wiredevicesarebothpopularandexcellentchoicesforanyapplicationrequiringdigitalthermometers.Bothdevicesofferthesameresolutionandaccuracy.Thetwopartsdifferonlyinhowthedataispresentedtotheuser.Thisapplicationnotedescribeshowthedevicesworkandthedifferencesbetweenthem.Applicationsforeachdevicearerecommended.HowtheDevicesWorkTheDS18B20andDS18S20bothusethesamebasedesign.Temperat……
  • 所需E币: 5
    时间: 2019-12-24 23:20
    大小: 127.78KB
    上传者: 二不过三
    Abstract:AnIP-basednetworkedsensormonitorcaneasilybecreatedthroughthecombinationoftheTinyInternetInterfaces(MxTNI™)platform,1-Wire®sensors,andtheappropriateJava™software.TheMxTNIplatformprovidestheTCP/IPnetworkstackandthelocalcontrolcapabilitiesrequiredtodesignIP-based,networkedsensors.TheincludedJavaruntimeenvironmentandthe1-Wireperipheralinterfacelibrary,allowforeasycontrolandcommunicationsusing1-Wiredevices.ThisapplicationnotedemonstratesanIP-basednetworkedtemperaturemonitor,withadownloadableappletcontrolinterfacethatexecutesinJavaenabledbrowsers.ItutilizesaMxTNIVerificationModuleandaDS1920iButton®orDS18201-Wiretemperaturesensor.Theappletcontrolsthesensoranddisplaysthetimeandtemperaturesamplestaken.TheappletisautomaticallydownloadedbybrowsingtotheIPaddressoftheMxTNI,andisservedusingtheMxTNIRuntimeEnvironment.Maxim>DesignSupport>TechnicalDocuments>ApplicationNotes>1-WireDevices>APP198Maxim>DesignSupport>TechnicalDocuments>ApplicationNotes>Microcontrollers>APP198Maxim>DesignSupport>TechnicalDocuments>ApplicationNotes>TemperatureSensorsandThermalManagement>APP198Keywords:MxTNI,DSTINI-1,TCP/IP,Java,1-Wire,iButton,iButtons,internet,webbrowser,sensor,sensors,1-Wiresensors,thermostat,temperaturerecorder,datalogger,IPaddress,1wireJul22,2002APPLICATIONNOTE198NetworkedTemperatureMonitoringJul22,2002Abstract:AnIP-basednetworkedsensormonitorcaneasilybecreatedthroughthecombinationoft……
  • 所需E币: 5
    时间: 2019-12-24 23:05
    大小: 774.55KB
    上传者: 238112554_qq
    Abstract:ThisapplicationnoteexplainshowtoenablecommunicationbetweenaBluetooth®serialandMaxim1-Wireadapters.Topicsdiscussedare:selectingtheproperBluetoothadapter,setupinstructions,andsamplecodetoenablethecommunication.TheDS9097U1-WireCOMPortAdapterisusedtoreceivetheBluetoothcommands.Maxim>Designsupport>Appnotes>iButton>APP4633Keywords:bluetooth,wireless,mobile,1-Wire,alternative,Wi-Fi,radio,exchange,range,communication,SPP,serial,profile,phone,DS1920,DS1922,DS1923,temperature,COMFeb26,2010APPLICATIONNOTE4633Bluetoothto1-WireCommunicationUsingtheDS9097UBy:CarlosContrerasAbstract:ThisapplicationnoteexplainshowtoenablecommunicationbetweenaBluetoothserialandMaxim1-Wireadapters.Topicsdiscussedare:selectingtheproperBluetoothadapter,setupinstructions,andsamplecodetoenablethecommunication.TheDS9097U1-WireCOMPortAdapterisusedtoreceivetheBluetoothcommands.Introd……
  • 所需E币: 4
    时间: 2019-12-24 23:04
    大小: 258.76KB
    上传者: wsu_w_hotmail.com
    本应用笔记介绍了如何使用P89LPC9251温度传感器。另外还提供了演示代码。AN10806HowtousetheP89LPC9251temperaturesensorRev.01―17April2009ApplicationnoteDocumentinformationInfoContentKeywordsP89LPC9251,TemperaturesensorAbstractThisapplicationnotedescribeshowtousetheP89LPC9251temperaturesensor.Democodeisalsoprovided.NXPSemiconductorsAN10806HowtousetheP89LPC9251temperaturesensorRevisionhistoryRevDateDescription0120090417Initialversion.ContactinformationForadditionalinformation,pleasevisit:http:/……
  • 所需E币: 4
    时间: 2019-12-24 22:52
    大小: 385.68KB
    上传者: wsu_w_hotmail.com
    摘要:许多工业和医学应用需要±1°C甚至更高精度的温度测量,并且成本合理,可覆盖宽温范围(-270°C至+1750°C),这些系统往往还要求低功耗性能。经过正确选择和标准化处理,利用高分辨率ADC数据采集系统(DAS)和新型热电偶,能够覆盖这一温度范围,即使在恶劣的工业环境下,亦可确保精确测量。利用先进的热电偶和高分辨率Σ-ΔADC实现高精度温度测量JosephShtargot,应用工程师SohailMirza,应用经理Mar04,2012摘要:许多工业和医学应用需要±1°C甚至更高精度的温度测量,并且成本合理,可覆盖宽温范围(-270°C至+1750°C),这些系统往往还要求低功耗性能。经过正确选择和标准化处理,利用高分辨率ADC数据采集系统(DAS)和新型热电偶,能够覆盖这一温度范围,即使在恶劣的工业环境下,亦可确保精确测量。类似文章于2011年6月22日发表在EETimes杂志。引言热电偶广泛用于各种温度检测。热电偶设计的最新进展,以及新标准和算法的出现,大大扩展了工作温度范围和精度。目前,温度检测可以在-270°C至+1750°C宽范围内达到±0.1°C的精度。为充分发挥新型热电偶能力,需要高分辨率热电偶温度测量系统。能够分辨极小电压的低噪声、24位、Σ-Δ模/数转换器(ADC)非常适合这项任务。数据采集系统(DAS)采用24位ADC评估(EV)板,热电偶能够在很宽的温度范围内实现温度测量。热电偶、铂电阻温度检测器(PRTD)和ADC相结合,可构成高性能温度测量系统。采用低成本、低功耗ADC的DAS系统,可理想满足便携式检测的应用需求。热电偶入门托马斯塞贝克在1822年发现了热电偶原理。热电偶是一种简单的温度测量装置,由两种不同金属(金属1和金属2)组成(图1)。塞贝克发现不同的金属将产生不同的、与温度梯度有关的电势。如果这些金属焊接在一起构成温度传感器结(TJUNC,也称为温度结),另一端未连接的差分结(TCOLD,作为恒温参考端)上将呈现出电压,VOUT,该电压与焊接结的温度成正比。从而使热电偶输出随温度变化的电压/电荷,无需任……
  • 所需E币: 3
    时间: 2019-12-24 22:50
    大小: 97.05KB
    上传者: 二不过三
    HighTemperatureBehaviorofISL3178AEHighTemperatureBehaviorofISL3178AEApplicationNoteJuly7,2009AN1475.0Descriptionsettoprovideaburstmodeoffivepulsesatabitrateof10Mbps.TheRXdevicewaswiredupwithtwoTheISL3178AEisa3.3VbasedRS-485MILtemperaturethermocouplesone……
  • 所需E币: 3
    时间: 2019-12-24 22:47
    大小: 385.68KB
    上传者: 16245458_qq.com
    摘要:许多工业和医学应用需要±1°C甚至更高精度的温度测量,并且成本合理,可覆盖宽温范围(-270°C至+1750°C),这些系统往往还要求低功耗性能。经过正确选择和标准化处理,利用高分辨率ADC数据采集系统(DAS)和新型热电偶,能够覆盖这一温度范围,即使在恶劣的工业环境下,亦可确保精确测量。利用先进的热电偶和高分辨率Σ-ΔADC实现高精度温度测量JosephShtargot,应用工程师SohailMirza,应用经理Mar04,2012摘要:许多工业和医学应用需要±1°C甚至更高精度的温度测量,并且成本合理,可覆盖宽温范围(-270°C至+1750°C),这些系统往往还要求低功耗性能。经过正确选择和标准化处理,利用高分辨率ADC数据采集系统(DAS)和新型热电偶,能够覆盖这一温度范围,即使在恶劣的工业环境下,亦可确保精确测量。类似文章于2011年6月22日发表在EETimes杂志。引言热电偶广泛用于各种温度检测。热电偶设计的最新进展,以及新标准和算法的出现,大大扩展了工作温度范围和精度。目前,温度检测可以在-270°C至+1750°C宽范围内达到±0.1°C的精度。为充分发挥新型热电偶能力,需要高分辨率热电偶温度测量系统。能够分辨极小电压的低噪声、24位、Σ-Δ模/数转换器(ADC)非常适合这项任务。数据采集系统(DAS)采用24位ADC评估(EV)板,热电偶能够在很宽的温度范围内实现温度测量。热电偶、铂电阻温度检测器(PRTD)和ADC相结合,可构成高性能温度测量系统。采用低成本、低功耗ADC的DAS系统,可理想满足便携式检测的应用需求。热电偶入门托马斯塞贝克在1822年发现了热电偶原理。热电偶是一种简单的温度测量装置,由两种不同金属(金属1和金属2)组成(图1)。塞贝克发现不同的金属将产生不同的、与温度梯度有关的电势。如果这些金属焊接在一起构成温度传感器结(TJUNC,也称为温度结),另一端未连接的差分结(TCOLD,作为恒温参考端)上将呈现出电压,VOUT,该电压与焊接结的温度成正比。从而使热电偶输出随温度变化的电压/电荷,无需任……