tag 标签: 远传燃气表

相关博文
  • 热度 23
    2012-12-5 09:09
    2062 次阅读|
    0 个评论
    无线收发器RF69H在无线抄表设备上的应用 概述:        无线抄表来源于90年代成立的有线抄表工作组,最初工作组专注于在仪表系统中有线抄表的研究,后来有线抄表成为了欧洲标准EN1434的一部分。 随着无线抄表的引入,标准化工作被转移到了技术委员会(TC)294,TC294创建了新的欧洲标准EN13757-Communication system for meters and remote reading of meters。这个标准当前由以下部分组成: EN13757-1:2002 数据交换 EN13757-2:2004 物理层和数据链路层 EN13757-3:2004 应用层 EN13757-4:2005 无线读表器 prEN13757-5:2007 中继 prEN13757-6:2007 数据交换 其中第4部分EN13757-4为无线读表器,专注仪表和无线读表器之间的通信。 1 无线抄表基础 一般的无线抄表系统主要包括两大类设备,如图1所示,一类是仪表(如水表、气表和电表等),另一类是其他(如读表器或集中器等)。 如果您对我们的方案感兴趣,请联系我,电话:0755-82973805-859,QQ:332857102 图1:无线抄表系统 仪表(气表、水表等)通常不能直接连接到主供电系统,一般采用电池供电,因此它们获得的能量是有限的。为了尽量降低功耗,大多数时间里仪表处于休眠模式,仅在很短的时隙中醒来发射数据;而读表器也从来不主动发送数据给处于休眠状态的仪表。双向通信是可行的,一般仪表在发送时隙完成后,进入接收时隙,这时读表器可以传送信息给仪表。更换仪表的成本相当高,因此为仪表供电的电池一般需要提供几年的能量,不同的国家可能有不同的要求。 无线抄表的寻址模式来源于有线抄表,仅仪表设备有地址,并且收发数据采用相同的地址。因此,读表器必须有一个仪表设备地址表,记录需要处理的所有仪表地址,这个过程一般在系统安装阶段进行。 通常无线抄表系统(图2d)可以完全替代有线抄表系统(图2a),但是两种系统也能组合在一起,形成一个新系统(图2b,图2c)。 图2:不同的抄表与/或无线抄表系统   另一种常见的有线与无线抄表结合的模式,如图3所示。 2 与无线抄表组合模式图 无线抄表标准(EN13757-4:2005)专注仪表和远程无线读表器之间的通信,利用ISM频段868-870MHz进行无线数据传输。 RF69H无线收发器 RF69H无线收发器是深圳市惠贻华普电子有限公司RF产品线中的一款非常有代表性的芯片,支持频率范围240-960MHz,输出功率最大为+20dBm,灵敏度达-120dBm。该芯片具有成本低、体积小、工作稳定、产品一致性好等特点 3 RF69H 控制接口 RF69H与主机MCU之间的通信是通过SPI总线实现的,主要涉及SCLK、SDI、SDO和nSEL四个引脚。通常一个SPI总线读写操作由以下几部分组成:读写标志(1bit),地址(7bit)和数据(8bit)。读写标志位指示当前操作是读还是写;7位地址指示操作对象,可寻址128个8位控制寄存器中的任意一个;数据域包含写入或读出的RF69H内部寄存器的内容。在每8个时钟信号后,RF69H锁存地址或数据域中的内容。RF69中SCLK串行时钟信号的速率可灵活设定,最大可达10MHz。 SPI总线时序图,如图4所示。 图4:SPI时序 SPI串行接口的时序参数,如表2所示。 表2:SPI串行接口时序参数表   对于读操作,主机MCU发送16位读操作内容(读写标志位应设定为0,7位地址设定为要读取的寄存器地址,这时8位数据被忽略)后。在接下来的8个时钟信号周期中,每个周期的低电平阶段,被选择的寄存器内容中的各位被依次锁存到SDO总线上(高位在前,低位在后)。 SPI读模式下的时序,如图5所示。 图5:SPI读模式时序图 RF69H中SPI接口也支持一种连续读/写模式,这种模式下不需要重新发送寄存器地址。当nSEL为低电平时,不断的发送SCLK时钟信号,SPI接口将自动增加寄存器地址,寄存器中的内容被连续读出或写入,直到nSEL变为高电平为止。 连续写模式时序,如图6所示。 图6:SPI接口连续写模式 连续读模式时序,如图7所示。 图7:SPI接口连续读模式 4 RF69H 状态与操作模式 RF69H主要存在于四中状态之一,这四种状态为:SHUTDOWN、IDLE、TX和RX(如图8所示)。在SHUTDOWN状态下功耗最低。有5中不同的IDLE模式,用户可以根据不同的应用灵活选择。这些状态或模式可以通过操作模式和功能控制寄存器07H设定。通过在寄存器07H中设定txon/rxon控制位可以从IDLE状态中的任一模式自动转移到TX/RX状态。不同模式/状态下转换需要的时间和功耗,见图9所示。 图8:四种状态 图9:模式/状态转换时序及功耗及频率控制 为了设定所需的调谐频率,需要设定不同的内部寄存器,这可以通过手工计算每一个寄存器的设定值,也可以通过华普提供的WDS工具或Excel计算器辅助计算。下面说明RF69H如何进行调制模式、载波频率、调谐频率等参数设置。 主要进行5个步骤的设定: 第1步:选择或设定调制类型,曼彻斯特编码,晶体精度,数据率,频率离差。 第2步:设定载波频率,对于跳频应用,需要设定信道宽度和信号编号。 第3步:调制设定,对于GFSK/FSK,需要选择禁止或使能AFC,接收最大错误率;对于OOK,需要设定RX带宽。 第4步:根据需要选择FIFO模式设定或PH+FIFO模式设定。 第5步:在寄存器汇总页中,得到寄存器设定值。 RF69H支持3中不同的调制类型:GFSK、FSK和OOK,也可以设定为不调制,从而获得一个不调制的载波。如图10所示。 高斯移频键控调制GFSK(推荐):Gaussian Frequency Shift Keying 移频键控调制FSK:Frequency Shift Keying 开关调制OOK:On-Off Keying 不调制 图10:调制模式设定 RF69H可以配置要调制的数据的来源有三种:FIFO模式,Direct模式和PN9模式。在Direct模式,TX调制数据可以来自GPIO引脚或SDI引脚。如图12所示。 12:调制数据的来源 根据上面的介绍,RF69H完全可以满足无线抄表标准对频率(868-870MHz)、速率(4.8kb/s、32.768kb/s和100kb/s)等参数的要求,可以用来实现无线抄表设备产品。 5 无线抄表设备的实现 源于90年代的无线抄表工作组,对户表数据的自动化抄送具有非常重大的意义。传统的手工抄表费时、费力,准确性和及时性得不到可靠的保障,这导致了相关营销和企业管理类软件不能获得足够详细和准确的原始数据。无线抄表系统可以摆脱人工抄表的办法,利用数据通讯协议传输数据。为了灵活配置不同的控制平台,一般无线抄表设备可分成两部分设计,一部分是无线收发模块(RF69),另一部分是控制模式(单片机)。 图14:参考设计   6 无线抄表设备软件设计 采用华普公司提供的集成开发环境IDE,即可完成该系统所有软件开发。软件开发部分主要包括主控程序、数据通讯程序、时钟程序、自检程序等。为保证抄表系统的低功耗要求,软件设计过程应始终贯穿考虑如何降低功耗。我们可以使主程序大部分时间处于睡眠状态,每隔一段时间来处理一下任务,并关掉未使用的模块等措施来降低系统功耗。 7 总结 由于采用了华普公司高性能的RF69H,可以完全实现满足无线抄表要求的仪表或读表器等设备,并对产品的可靠性、抗干扰、低功耗等方面进行了考虑,在开发板和相关文档资源及多种辅助设计工具的支持下,可快速开发出符合要求的无线抄表设备。  
  • 热度 22
    2012-12-5 09:07
    1829 次阅读|
    0 个评论
    基于超低功耗无线模块RFM64的无线远传水表、远传电表、远传燃气表、远传热量表设计方案 概述:     随着社会和经济的进步,住宅商品化发展迅速,住宅水、电、气、热表的抄表和收费问题日益突出。如何有效解决入户抄表收费的技术问题,提供一个合理、完整、系统的实施管理方案,需要企业、科研和公用事业管理部门共同努力。目前,住宅水、电、气、热表远程抄表系统形式多样,但市场比较混乱,技术上尚不成熟,没有一个被市场认可的完整系统实施管理方案。传统的有线抄表系统布线复杂、可靠性差、维护困难,难以实现管理升级,不能满足旧楼系统改造的市场要求;而新兴GPRS、短信GSM网络抄表方式使用成本昂贵,不适宜大面积推广。     RFM64是华普推出的一款超低功耗高性能的无线收发模块,SPI接口,超小尺寸20x16x2.5mm,可工作在315/433MHz ISM的频点(RFM63工作在868/915M Hz),故无需申请。RFM64经过优化具有非常低的接收功耗,典型接收电流为2.6mA, 远小于同类收发器的接收电流。工作电压为2.1-3.6V,最大发射功率+12.5dBm, RFM64集成度非常高,其包含了射频功能和逻辑控制功能的集成电路,内部集成压控振荡器、锁相环电路、功率放大电路、低噪声放大电路、调制解调电路、变频器、中放电路等。此外它整合了基带调制解调器的数据传输速率高达150Kbps数据处理功能包括一个64字节的FIFO,包处理,自动CRC生成和数据白化。它的高度集成的架构允许最少的外部元件数量,同时保持设计的灵活性。所有主要的射频通讯参数可编程,其中多数可动态设置。 RFM64 如果您对我们的方案感兴趣,请联系我,电话:0755-82973805-859,QQ:332857102 基于超低功耗无线模块RFM64的设计,其具有传输距离相对远,接收的灵敏度较高,工作功耗低等诸多优点,所以它适用于无线远传水表、无线远传电表、无线远传燃气表、无线远传热量表无线遥控系统、无线传感器网络、无线温度压力数据采集、机器人控制等需要用电池长期工作的领域。 系统电路设计 系统主要由一个MCU和RFM64组成。MCU选用了ST公司的低功耗单片机STM8L101F3,  RFM64与单片机通讯采用SPI接口,与外部终端通信采用UART接口。由于高度集成化RFM64外围零件已经很少,所以设计的关键是RF前端的匹配电路的设计。另外高频部分的走线尽量的短粗,元器件参数要根据线路板的实际情况作出适当的调节,以抵消分布参数的影响。一般的RF芯片发射与接收端口的阻抗并不是标准的50Ω阻抗,要达到最佳的接收效果必须将输入阻抗通过外围器件的补偿使之与50Ω的天线匹配。 图一:RFM64内部结构图   工作模式设计 典型的无线收发机编码如下图。 前导码为“1010”交替码,其作用是使目的接收机时钟与发射机同步,正常模式下前导码长度一般为32bit即可,如工作在省电模式时序下,前导码还有唤醒接收机的功能,此时发射机必须发送较长的前导码将省电模式下的接收机唤醒进入正常的工作状态。如设置接收机1秒钟唤醒一次,那么接收机每间隔1秒钟唤醒一次搜索前导码(tw),持续长度一般为16bit。而发射机首先发射1秒以上的前导码再发射后面得同步码等,这意味着接收机在唤醒的周期,只要信道中发现前导码,在正常情况下都能够可成功检测到并唤醒接收,示意图见图二。 这里我们设计了四种工作模式,见表一,这四种工作模式是利用MCU的SET_A和SET_B脚转换的,四种模式均可以相互转换。 表一:四种工作模式说明 图二:发射处于模式2状态,接收处于模式3状态示意图 休眠模式是通过用软件方式实现的,这样休眠时系统的接口均保持相应的电平,并且能快速切换各种状态,由于MCU主时钟是通过RC振荡器产生的,起振时间仅仅需要4uS,  实测从休眠至唤醒加上唤醒初始化的时间仅仅需要20uS,这意味模块在休眠状态时,置低SET_A脚后20uS就可以通过UART口输入数据至模块。这里我们设计了系统在接收或发送过程中,即使设置工作在模式3或4,模块也要将接收或发送过程执行完毕再进入省电模式或休眠模式,其中在接收或发送过程中AUX脚将被置低。利用这个特点,当模块处于模式3或模块4状态,下位机用户在置低SET_A脚使模块唤醒并输入数据后,若需休眠可立刻置高SET_A脚,而不必等到模块将数据无线发送完毕,模块在数据发送结束后会自动检测SET_A脚,如为高则进入休眠,数据是否发送结束用户可以通过查询AUX脚获得。 图三:模块与下位机的连接图 在电池供电的电路中,正常可将从模块(如水气表)设置在模式3上,当主模块(如采集器或收抄机)在模式2下发送数据,从模块唤醒后接收数据,完成后利用AUX脚将下位机MCU唤醒,再将数据输出,MCU接收到数据后,可将从模块切换至模式1,应答主模块.如主模块收到应答后也可被切换至模式1,这时主从模块均处于正常模式下,可以实现高速数据传输。如主模块收到应答后,后续无数据交换可将从机再次切换至模式3处于省电模式下,等待下一次的唤醒,而主模块可以切换至模式4休眠状态。 因为省电是通过周期性唤醒休眠再唤醒实现的,所以在省电模式下的功耗与唤醒周期和每次唤醒搜索前导码的时间(tw),以及休眠的静态功耗有关。唤醒周期用户可以在线设置范围是50ms至5s. 每次搜索前导码时间与射频传输的速率有关,射频传输的速率也是可设的,在10Kbps速率的速率下唤醒搜索前导码时间平均约为4.5ms. 在省电模式下电池的使用寿命可以通过以下公式算出: 例如:电池是 3.6V/3.6A ER18505锂亚电池,模块包括MCU接收电流为3.2mA,休眠电流1.5uA.射频传输速率10Kbps,唤醒周期为1SEC,那么电池使用寿命是:   考虑到电池的自放电,不同电流下的容量差异,温度以及客户端MCU的休眠功耗和每月几次的使用,1节3.6V/3.6A ER18505锂亚电池正常情况下有超过10年的使用寿命。 省电模式的工作方式非常适合水气热表,集装箱信息管理,数据采集系统等使用不是太频繁但要求用电池长期工作的场合 总结: 在一些无线收发的应用中,如需电池供电,又要长期处于接收状态已保证实时响应,只有用定时唤醒接收的方式。在电池容量不变的情况下,若想延长工作时间,只能降低占空比和提高无线收发速率。但是降低占空比会直接影响到响应 实时性,而无线接收每提高一倍的速率灵敏度一般会下降2-3dBm, .直接影响到通讯距离,现在市场上常见的单芯片无线IC接收电流一般都有15-20mA ,如应用于像无线水汽表需要电池工作6-10年的系统,各种参数像距离,工作寿命,响应时间很难取舍。而深圳市惠贻华普电子有限公司推出的RFM64创新的将电流降低到2.6mA,同时接收灵敏度,抗干扰,邻道选择性等指标仍然具有较高的指标。 目前这款基于RFM64无线模块已由圳市惠贻华普电子有限公司开发完成,并成功应用于无线水气表的采集,实测在开阔地无线设置在10Kbps下距离约有500米,2Kbps下距离约有600米,1SEC打开一次的情况下,用手抄机不到2SEC即可完成一次水气表数据采集,若与采集器配合可以实现全自动抄表,手抄机如再加上GPS即可实现无需人工输入命令,自动发现周边的水气表从而进一步提高抄表速度。而相比传统的人工抄表每人每月只能抄3-4K住户,并且燃气表大多还要在晚上上门抄表,大大的提高了效率。 通过对无线远传智能水表进行的供电参数、无线电性能、信号输出测试、控制功能测试、水表性能测试,其主要参数全部达标,实现了设计时要求的技术指标和性能。本系统方案采用无线数据传输方式,可方便实现户内仪表的数据出户、集中及统一管理,系统成本低、可靠性高、易于扩展、方便实现网络化管理,有效地解决了住宅水、电、气、热表的抄表和收费问题,具有很高的经济和社会效益。