热度 16
2012-4-25 10:16
1685 次阅读|
3 个评论
上接: 探讨功率路径实现方案的折衷权衡 (上) 作者:飞兆半导体Peter Khairolomour 为满足诸多系统需求,在系统设计人员和充电器IC供货商中正掀起一股充电器IC的热潮。本文提到的充电器IC是指智慧手机/平板计算机等设备中的充电器 IC,用于把AC/DC适配器 (或USB) 的功率转换为适合于电池充电的形式。最近,充电器IC的受关注焦点是高效开关式充电器日益流行,并迅速取代基于线性或脉冲方法的现有充电器解决方案。 (续上篇) 实例2:700mAh 电池 (电池的1C最大充电电流能力 为700mA),输入电源为5V /900mA 的AC/DC 适配器,或 5V/900mA的USB 3.0 情况A) 在 3.6V和系统负载400mA接通的情况下,部分充电的电池。 在系统负载接通之前,充电器会处于 CC 模式。由于电池电压为3.6V,故有5V/3.6V•900mA• 91%=1138mA的电流可用于电池充电。然而,电池存在700mA的最大1C充电电流的限制,因此充电器设置为700mA充电。相比实例1,实例2的 独特之处在于:在1C放电速度的条件下,输入电源能够提供的功率比电池能够接受的更大。当系统负载接通时,400mA转向系统,只剩下300mA为电池充 电。 有些设计人员可能感到这一点并不合意,因为输入电源没有充分被利用,达到电池和系统负载能够接受的总和的程度。一种解决方案是把系统负载与 CSIN 连接,如图5所示。 图5. 系统负载与CSIN相连接的应用电路 系统负载与 CSIN 相连接使得 AC/DC 适配器或 USB 电源甚至能够以比电池的1C级更高的最大功率级来提供电流。在这种配置中,在负载接通之前,电池以 700mA 的1C最大充电能力进行充电。当 400mA的系统负载接通时,整个400mA的系统负载由充电器供电,电池继续在 700mA的电流下充电。 这种配置的一个缺点是在电池与系统负载之间的路径上始终存在一个68m的耗能串联组件。这类似于图1所示的功率路径实现方案中的情况,不过,FAN5400中的68m大大低于某些带功率路径的产品中的180m。 情况B) 在 3.6V和系统负载 2000mA接通的情况下,部分充电的电池。 在系统负载接通之前,充电器会处于 CC 模式,并以700mA的电流为电池充电,与情况 A 类似。当系统负载接通时,如果使用图3中的配置,由充电器为系统负载提供700mA的电流,其余1300mA 由电池提供。 如果使用图5中的配置,由充电器为系统负载提供 1138mA 的电流,而其余 862mA 由电池提供。 这两种配置都相当于功率控制;但在图5的配置中,所有输入功率都被使用。这里需要权衡的是电池和系统负载之间的68m串联组件。在两种配置中,一旦系统负载关断,700mA都流向电池。 情况C) 在 4.2V和系统负载 400mA 接通的情况下,完全充电的电池。 在系统负载接通之前,充电器是关断的。当负载接通时,系统功率首先来自于电池。只要V BAT V OREG - V RCH ,充电器就会启动,V RCH 是 再充电阈值,为120mV。由于输入电源为5V 900mA,充电器能提供的最大可用电流为 5V/4V•900mA•92%=1035mA (这里假设电池电压降至为4V)。充电器启动时,充电器试图以 700mA的充电电流为电池充电。不过,由于系统负载仍然存在,故若采用图3中的配置,实际上只剩下300mA为电池充电。 如果采用图5中的配置,当负载接通时,635mA的电流流向电池,由充电器为系统负载提供400mA的电流。而充电器输出电流共为1035mA,故这是很 好理解的。一旦系统负载关断,全部700mA电流流向电池直到电池进入CV模式;这时,充电电流减小。需要权衡的是电池和系统负载之间的68m串联组 件。 情况D) 在 4.2V和系统负载 2000mA接通的情况下,完全充电的电池。 在系统负载接通之前,充电器是关断的。当负载接通时,若采用图3的配置,功率首先来自于电池,而电池充电器几乎立即启动,并进入CC模式。这是因为锂离子电池一般都有一个150m的输出阻抗,该阻抗几乎立刻使 V BAT V OREG - V RCH 。就如情况C一样,充电器试图以700mA的电流为电池充电。但由于系统负载为2000mA,因此 700mA的电流从充电器流向负载,剩余1300mA的系统负载电流由电池提供。 如果采用图5的配置,当负载接通时,1035mA的电流从充电器流向负载,剩余965mA的电流由电池提供。当系统负载关断时,700mA电流流向电池,直到电池进入CV模式,这时,充电电流开始减小。同样的,这里需要权衡的是电池和系统负载之间的 68m串联组件。 为无电池或深度放电的系统供电 在VBUS POR之后,FAN5402 和 FAN5405 利用缺省参数继续充电,把V BAT 调节至3.54V,直到主处理器发出命令或15分钟的看门狗定时器到时限。采用这种方法,FAN5402/05 在无电池下也能够启动系统。 不过,在电池深度放电的情况下,电池电压低于系统负载所需的供电电压,图3和图5的功率路径实现方案无法启动系统。 相反,即使在电池电压大大低于系统负载工作所需电压时,图1中实现的功率路径仍然能够为系统供电。这是图1电路与FAN5400相比的主要优势。不过,很重要的一点是,放电周期内的曲线斜度必需极为陡峭,这意味着在数秒内电池电压就能够上升到满足最小系统负载要求的水平。 图6所示为充电的周期行为,为一个普通电池充电至稳定的 3.4V 所需的时间为 40 秒钟。这个过程的解释如下。 (A) 当V BAT 3.4V时,处理器被唤醒,这种情况在 V BUS 插入大约 15 秒钟后出现。 (B) 在处理器对 IC 程序设计以获得更大充电电流后约 1 秒钟,电池保护 FET 关断。这会造成 V BAT 下降 (不再有 FET 体二极管与 V BAT 串联)。 图6. 深度放电电池的电荷特性 总结 在电池电量极低或深度放电时,图 2 所示的 FAN540X 部分功率路径虽然也会出现无法立即为系统负载供电的情况,但对普通手机电池来说这只是 40秒而已。在这一缺点与 FAN540X 提供的优势之间进行权衡是很重要的。本文详细讨论了这种优势,结果显示如图 3 所配置的 FAN5400在电池和系统负载之间没有耗能串联组件,而且能够提供两个更重要的动态功率路由优点:系统与电池之间功率共享;以及为无电池的系统供电。