tag 标签: 光模块

相关帖子
相关博文
  • 2024-8-14 17:29
    408 次阅读|
    0 个评论
    随着数据通信技术的不断发展,人们对更快、更高传输速率的需求也在不断增加。光模块技术作为现代数据传输的核心,正在不断进步以满足这一需求。一个显著的进展是网络速率从400G提升到800G,并且未来将向1.6T发展。让我们深入了解这些技术的演变过程,探讨每一代技术是如何在前一代的基础上不断改进和发展的。 400G光模块 400G光模块是现代数据通信领域的重要技术之一。它主要用于数据中心和电信网络,能够提供高速的数据传输。400G光模块采用了多种先进的技术,如PAM4(四电平脉冲幅度调制),以提高数据传输速率。相比于之前的100G和200G光模块,400G光模块在带宽和效率上都有了显著提升。它不仅能够支持更高的传输速率,还能够在更低的功耗下工作,从而满足了现代数据通信对高性能和高效能的需求。随着技术的不断进步,400G光模块将继续在数据通信领域发挥重要作用。 ADOP 400G光模块亮点 ADOP 400G光模块在数据通信领域中具有许多亮点,以下是一些主要特点: 多种型号: ADOP提供多种400G光模块类型,包括QSDP-DD、OSFP和QSFP112等,以满足不同设备接口和传输需求。 先进的调制技术: 这些400G模块采用PAM4(脉冲幅度调制)等高效调制技术,在现有光纤基础设施上实现更高的数据速率,同时提高信号质量。 低功耗设计: ADOP 400G模块注重降低运营成本和环境影响,采用低功耗设计,在提供高速传输的同时保持能源效率。 兼容性和互操作性: ADOP 400G模块通常设计为与多种供应商的设备兼容,包括主流交换机、路由器和服务器,具有良好的互操作性。 远距离传输能力: 根据具体的光模块,ADOP 400G可以支持从100米到40公里的各种传输距离,允许客户根据自己的需求选择合适的模块。 多通道设计: 部分400G模块采用多通道设计,将8个通道组合在一起,每个通道50 Gbps,以实现完整的400 Gbps数据速率,有效提高光纤利用效率。 800G光模块 借鉴400G光模块的成功经验,行业积极推动800G光模块的发展,以满足对不断增长的更高带宽需求。通过集成电路技术和信号处理算法的创新,800G光模块实现了传输速率的突破和数据容量的翻倍,同时引入增强光谱效率实现了对网络资源的优化。 800G光模块是数据通信领域的又一重要突破。相比于400G光模块,800G光模块在传输速率和带宽方面有了显著提升。以下是800G光模块的一些主要特点: 更高的传输速率: 800G光模块通过增加通道数或提高每个通道的传输速率,实现了更高的带宽。通常采用PAM4(四电平脉冲幅度调制)等先进的调制技术,以支持更高的数据速率。 低功耗设计: 尽管传输速率更高,800G光模块仍然注重降低功耗,以提高能源效率并减少运营成本。 高集成度: 800G光模块采用更高集成度的设计,将更多的功能集成到一个模块中,从而减少了体积和成本,提高了性能和可靠性。 远距离传输能力: 800G光模块支持更长的传输距离,适用于数据中心之间的长距离连接和电信网络中的骨干传输。 兼容性和互操作性: 800G光模块通常设计为与现有的网络设备兼容,具有良好的互操作性,便于网络升级和扩展。 高可靠性: 800G光模块采用先进的制造工艺和高质量的材料,确保在高负荷和复杂环境下的稳定运行。 800G数据中心的关键技术 800G数据中心的关键技术包括以下几个方面: 先进的光模块技术: 800G光模块是实现高带宽传输的核心组件。它们采用PAM4(四电平脉冲幅度调制)等先进调制技术,以支持更高的数据速率和更高效的信号传输。 高效的交换和路由技术: 为了处理800G的高数据流量,数据中心需要采用高效的交换机和路由器。这些设备需要具备更高的处理能力和更低的延迟,以确保数据的快速传输和处理。 光纤基础设施: 800G数据中心需要高质量的光纤基础设施,以支持高速数据传输。多模光纤和单模光纤的选择和部署对于实现高效的数据传输至关重要。 低功耗设计: 随着数据传输速率的提高,功耗问题变得更加突出。800G数据中心需要采用低功耗设计,以减少能源消耗和运营成本。这包括使用高效的电源管理技术和散热解决方案。 高集成度芯片: 高集成度芯片是实现800G数据中心的关键。这些芯片需要具备更高的处理能力和更低的功耗,以支持高速数据传输和处理。 网络虚拟化和自动化: 为了提高数据中心的灵活性和管理效率,网络虚拟化和自动化技术变得越来越重要。这些技术可以帮助数据中心更好地管理资源,优化网络性能,并快速响应业务需求。 安全性和可靠性: 800G数据中心需要具备高水平的安全性和可靠性。这包括采用先进的加密技术、冗余设计和故障恢复机制,以确保数据的安全和系统的稳定运行。 ADOP 800G光模块亮点 ADOP 800G光模块采用多种封装,如QSFP-DD和OSFP,以适配不同的网络设备和需求。它们采用先进的调制方案和相干光学技术,即使在长距离传输时也能确保强大的性能。凭借先进的技术, ADOP 800G光模块通过光纤跳线处理超高带宽,具有更高的实用性和可靠性。以下是 ADOP 800G光模块的亮点。 先进光子技术:ADOP 800G光模块采用先进光子技术,包括相干光学和先进的DSP(数字信号处理)算法,以处理与更高速率数据传输相关的复杂问题。 低功耗: 800G光模块采用CPO(相干可插拔)通信技术,有效利用光纤跳线的带宽,实现节能,从而降低功耗。 低延迟: 800G光模块采用光子集成电路(PIC),降低了800G链路延迟,非常适用于实时应用和高频交互,例如金融交易、云计算和大型数据中心。 多信道设计: 800G光模块采用8信道设计,每个信道的传输速率为100Gbps或200Gbps。多信道设计增加了传输带宽,提供更高的数据吞吐量。例如,QDD-DR8-800G是一款支持2x400G/8x100G分线的800G光模块,可实现更高的端口密度。 800G QSFP-DD光模块 QDD-DR8-800G QDD-SR8-800G QDD800-PLR8-B1 中心波长 1310nm 850nm 1311nm 接口 MTP/MPO-16 MTP/MPO-16 MTP/MPO-16 最大传输距离 500m@单模 30m@OM3/50@OM4 10km 调制 8x106.25G PAM4 8x106.25G PAM4 8x106.25G PAM4 发射器类型 EML VCSEL EML 芯片 Broadcom 7nm DSP Broadcom 7nm DSP Broadcom 7nm DSP 功耗 ≤16.5W ≤13W ≤18W 应用 以太网、数据中心、800G到2x400G分线、800G到8x100G分线 以太网、数据中心 以太网、数据中心、800G到2x400G分线、800G到8x100G分线 800G OSFP光模块 OSFP-2FR4-800G OSFP-DR8-800G OSFP800-2LR4-A2 OSFP800-PLR8-B1 OSFP800-PLR8-B2 OSFP-SR8-800G 中心波长 1271nm, 1291nm, 1311nm和1331nm 1310nm 1271nm, 1291nm, 1311nm和1331nm 1310nm 1310nm 850nm 接口 双LC双工 双MTP/MPO-12 双LC双工 MTP/MPO-16 双MTP/MPO-12 双MTP/MPO-12 最大传输距离 2km 500m@单模 10km 10km 10km 50m 调制 8x106.25G PAM4 8x106.25G PAM4 8x106.25G PAM4 8x106.25G PAM4 8x106.25G PAM4 8x106.25G PAM4 发射器类型 EML EML EML EML EML VCSEL 芯片 Broadcom 7nm DSP Broadcom 7nm DSP Broadcom 7nm DSP Broadcom 7nm DSP Broadcom 7nm DSP Broadcom 7nm DSP 功耗 ≤16.5W ≤13W ≤18W ≤16.5W ≤16.5W ≤14W 应用 以太网、数据中心、800G到2x400G分线 以太网、数据中心、800G到2x400G分线、800G到8x100G分线 以太网、数据中心、800G到2x400G分线 以太网、数据中心、800G到2x400G分线、800G到8x100G分线 以太网、数据中心、800G到2x400G分线、800G到8x100G分线 以太网、数据中心、800G到2x400G分线 未来的1.6T光模块 这款1.6T OSFP光模块设计为提供八个信道,每个信道传输速率为200Gbps,依赖单一的OSFP接口提供1.6Tbps的总带宽。针对各种应用场景进行优化,尤其是在光纤领域内,该光模块采用PAM4调制方案,有效地将每个通道的电信号强度从50G提升至100G。 QSFP-XD技术概述 虽然OSFP1600支持未来搭载200G电信道的交换芯片,但1.6T光模块与100G电信道结合也备受关注。为满足这一需求,OSFP-XD封装被研发出来,通过将电信道数量由原有的8条增加到16条,OSFP-XD光模块提供了16个100G信道的1.6T密度,并在未来将提供16个200G信道的3.2T密度。 QSFP-XD光模块优势 出色的系统性能: 该光模块是当前市场上最密集的可插拔光学解决方案,支持16个电信道,每个电信道可实现100G或200G的传输速率,从而实现1.6T或3.2T的总数据速率。其封装与OSFP(八通道小型可插拔)相同,但采用了更高密度的连接器和光纤跳线组件。该光模块可与800G OSFP光模块进行堆叠或组合使用,满足未来芯片密度增长需求,提高了系统吞吐量和效率。 技术兼容性强: QSFP-XD光模块可支持不同的光学技术,包括100G Lambda、200G Lambda和相干技术。广泛适用于各种传输需求和应用场景,支持在0~70°C范围内实现长达2km的传输距离。其低于23W的功耗能够实现高速、高效和高度可靠的数据传输,成为数据中心、云计算等应用的理想选择。 多功能和以客户为中心: 该光模块具备所有可插拔光模块的优势,包括可配置性、可维护性、技术灵活性等。同时保留了成熟的供应链业务模式,使客户能够从众多品牌中选择合适的产品和服务。 总结 1.6T光模块代表了未来超大规模数据传输和高效能量传输的需求,这些需求将通过技术的不断进步得以满足。这些光模块将在PAM4、数字信号处理(DSP)和硅光子学等基础技术上不断创新,并探索新的调制技术,如相干光学或更高阶的PAM方案。然而,光模块技术的发展并不会止步于1.6T。未来,行业展望着更高的3.2T甚至更高速率的发展。这是一个持续创新的过程,每一次技术的飞跃都将推动数据通信行业的蓬勃发展。
  • 热度 16
    2022-12-19 14:40
    679 次阅读|
    0 个评论
    应用于高速收发模块的并行光学&WDM波分光学技术
    光模块的传输距离分为短距、中距、长距。通常短距离传输是指2km以下的传输距离,中距为10-20km。≥30km的则为长距离传输。根据不同的传输距离,光模块类型分为SR(100m)、DR(500m)、FR(2km)、LR(10 km)、ER(40 km)、ZR(80 km)几种。 其中,SR, LR, ER是由IEEE规范的标准统一光模块的结构封装和相关接口,而DR,FR是由MSA组织统一定义的。在100G及以下速率的数据中心,SR(Short Range)短距离光模块多采用多模并行技术。DR短距PSM4(Parallel Single Mode 4 channels)是500米传输,采用的是1310nm波长,使用单模并行。FR短距CWDM 4光模块则很好的填补了LR在2km以下成本过高的空白,是LR在500m到2km范围下的替代产品,采用的是波分复用技术。LR(Long Range)在单模光纤上支持的距离最远为10km,使用CWDM或LWDM波长激光。ER表示扩展可达(Extended Reach),在单模光纤上支持长达40km的距离,使用LWDM波长激光。 ZR也并不是IEEE标准,可以通过单模光纤传输达到80公里的距离,使用DWDM波长激光。 光模块提升带宽的方法有两种:1)提高每个通道的比特速率,如直接提升波特率,或者保持波特率不变,使用复杂的调制解调方式(如PAM4);2)增加通道数,如提升并行光纤数量,或采用波分复用(CWDM、DWDM)。在数据中心光模块就产生了两种传输方案—并行和波分。在当前100G以及以下速率的数据中心,短距离光模块使用的更多是并行技术。 什么是并行光学技术?并行光学技术是一种特殊的光通信技术,在链路两端发射并接收信号,通常采用并行光学收发光模块来实现两端的高速信号传输。传统的光纤收发模块无法满足日益增长的高速传输需求,而并行光学技术可以成为 4×50G,8×50Gbps传输的经济高效的解决方案。 在并行光学的信号传输中,链路两端的并行光模块中含有多个发射器和接收器,采用多条光纤,信号通过多条路径传输和接收,并行传输利用可支持每秒 10 至 100 Gigabit 数据速率的多个通道。如下图所示,8路同时并行传输,这样数量传输速率大大提高。也就是说A端以4个Tx端通过四根光纤以每路50Gbps的速率传输到B端 Rx端接收,达到总和200Gbps的传输速率。 在长距离传输中,光模块一般采用的是WDM波分复用技术。波分复用技术可以实现单根光纤对多个波长信号的传输,这会成倍提升光纤的传输容量,已经被广泛应用在光通讯的中长距离传输和数据中心的互联中。 在光收发器中,为了实现波分复用(mux)和解复用(demux),最核心的光器件就是mux和demux光组件,mux和demux都属于无源器件。目前光模块的波分复用组件主要有两种实现技术:基于空间光学的TFF(薄膜滤波器Thin-Film Filters),基于PLC(集成平面光波导 Planar Light Circuit )的阵列波导光栅(ArrayedWaveguide Grating,AWG)、刻蚀衍射光栅(Echelle Diffraction Grating,EDG)、级联MZI阵列(Mach-Zehnder interferometer, MZI)等。 TFF(Thin Film Filter)薄膜滤光片技术,在光模块里所用的TFF技术主要采用Z-block方法来实现。利用自由空间光学(Free Space Optics)设计,结合准直器,用4个CWDM波长的滤光片通过微光学的方式进行合波和分波。最早采用的CWDM4组件是基于薄膜滤波片TFF的Z-block技术,如图所示,8个TFF滤波片分两组粘贴在一个斜方棱镜上,一组用于波分复用,另一组用于波分解复用,各滤波片的透射波长分别为1271nm、1291nm、1311nm、1331nm。 为了简化封装工艺,以减小尺寸和降低成本,人们开发了基于集成光学技术的CWDM4 AWG芯片。AWG是阵列波导光栅的简称,在电信网中早已成熟应用。AWG和Z-block都是高速光模块大量应用的光学组件。Z-block技术在一定程序上优于AWG,性能更好,链路损耗更小,能够传输更远距离。但是对耦合要求比较高,组装比较复杂,对于空间要求较高,不利于更多通道数的应用。相比于 TFF 技术,AWG 的集成度更高,一个 AWG 芯片可完成多个波长的复用及解复用功能, 减少复杂组装工艺,利于降低封装成本,通道数目多,插入损耗较小。在未来更高集成应用上,如果AWG在波长稳定以及制作工艺上进行优化升级,可能会更具优势。 电信传输网中的AWG被用于复用/解复用DWDM光信号,与CWDM4 AWG有些区别,其通道数一般为32/40/48通道,其通道间隔通常为200G或者100G(对应波长间隔1.6nm或者0.8nm),应用场景主要是电信网的骨干网,典型的结构如图所示,它包括一个输入波导、一个输入星形耦合器(图中自由传输区域FPR)、一组阵列波导、一个输出星形耦合器和数十根输出波导。 Z-block技术具有损耗低和信道质量好的优点,基于Z-block技术的CWDM4模块,能支持100G或更高速率的信号传输10公里及以上。在应用趋势上,AWG多应用于传统光模块接收端,具备极佳的成本优势和封装优势。发射端,AWG和TFF方案都有应用,而由于TFF在性能上更优,早起TFF应用更多,但综合考虑成本和性能,AWG性能也能大致满足,在传统方案中占比有一定提升。
  • 热度 7
    2022-3-4 10:27
    1513 次阅读|
    0 个评论
    光模块制作工艺,激光焊锡工艺的研究
    我们都知道焊接是将两个分开的物件拼接在一起的技术,在焊接的过程中很产生很高的热量,在生活中我们最常见的焊接都是发生在金属上,以至于让我们以为这就是我们认识的全部焊接工艺。其实不然,焊接工艺技术有很多种,而激光焊锡工艺 作为一种新型的焊接技术,常常被应用在PCB&FPC电路板等电子材料的焊接上。就连现在与我们密不可分的光通讯在焊接上都采用激光焊锡技术。 激光自动焊锡工艺适用于光模块的PCB电路板和FPC之间的焊锡。例如光器件的封装应用及单个焊点或引脚、单排和引脚可以进行激光焊锡工艺,最好的焊锡产品是锡膏激光焊锡设备,如100G光模块TOSA同轴FPC和PCBA。焊膏针以程序设定的速度和角度在TOSA轴上移动焊锡,以达到最佳焊锡质量。 焊接工艺研究 a. 焊点分布:可同时焊接 3 枪,圆周方向 9 个位置的焊点 ( 穿透焊与平焊焊点分布相同)。另外,可自修改程序更改焊点分布情况。 b. 可同时做平焊和穿透焊,要求平焊与穿透焊直径、熔深参数一致。 c. 具有补焊功能,即焊接时不良可直接补焊(设备有这个功能,但使用可选可不选)。 d. 焊接完后,功率偏差在 5% 以内的直通率要求 90% 以上,老化测试后的直通率要求不变化。 e. 焊点直径大小 0.4 ~ 0.7mm ;焊点熔深大小 0.3 ~ 0.6mm ;剪切力≥ 42Kg 。 f. 通过调整焊接机的能量、焊枪的入射角及精细变焦等工艺参数,观察火花的明亮程度和听激光打在器件上的声音,来初步判断焊接的效果。最终,通过测试器件焊斑大小、熔深的的大小来判断器件是否满足要求。 从焊接工艺性的角度看,激光焊接技术在光通讯器件封装上的应用相对比较成熟,再加上光通讯器件对焊接设备精度和激光焊接工艺要求越来越高,就要求设备更加精量化,更加稳定可靠易操作。为满足市场需求,基于此,紫宸激光精密焊接研发部在激光焊接及自动化控制技术领域有着领先优势,我们自主研制了一款高速自动耦合的 激光焊锡系统 ,以此应对光通讯行业的激光加工装备需求。
  • 热度 16
    2021-9-26 14:38
    1883 次阅读|
    0 个评论
    高速模块内连接组件满足400G高密度应用需求
    随着100G以太网的发展成为趋势,100G光模块应用也随之持续增长,现已成为使用最广泛,速度最快的以太网连接。数据中心和网络中100G连接的广泛部署,也同时驱动着400G解决方案需求的快速增长。为了开发更低成本的100G解决方案,光模块和器件厂商都在寻求具有竞争力的100G光模块和组件,同时向400G、800G速度扩充。 更高密度、更高速率的连接需求,对光模块内部的空间要求也更严苛。MT插芯和光纤组件作为高性能、高密度连接组件被广泛应用于高速光模块内连接。利用MT插芯的小体积、多通道来实现多路光的并行传输,在高速光模块中作为对外的光接口非常易于使用。 凭借着在精密模组件领域的深厚制造能力,亿源通目前已具备丰富的高速模块内连接组件的批量生产能力,丰富的产品线。 应用于高速光模块内的MT短跳线有多种形态,其中以下几种是较为常见: 1. MT-MT短跳线 MT-MT跳线被用于一种平行光技术的模块(QSFP+SR4),这种模块用来连接光学透镜和外部端口。 2.MT- 2 Mini MT短跳线 由于一些光模块内部结构紧凑,连接空间较小,常规的MT插芯体积无法满足插入收发器内。针对这种需要微小空间连接的情况,Mini MT插芯因其比常规MT插芯体积缩小一半以上,可以满足光模块内只有微小空间连接的情况。 3.MT-Jumper短跳线 Jumper插芯可以满足0°和8°两个规格,产品长度公差可定制,最低可满足±0.15mm,因此能在模块内很小的空间实现连接。 亿源通凭借着超精密组件装配的技术优势和丰富的经验积累,快速布局高速光组件器件产品,现已具备成熟的高精度玻璃切割、光纤阵列FA设计、表面光学镀膜设计、FA贴合、凸纤研磨加工能力,可为客户提供全系列高速模块内连接组件,如AOC跳线、MT短跳线、FA器件、CWDM4产品等。
  • 热度 3
    2020-3-9 17:27
    3720 次阅读|
    0 个评论
    【深度】一文读懂:光模块市场现状及未来
    光模块作为一种重要的有源光器件,在发送端和接收端分别实现信号的电-光转换和光-电转换。由于通信信号的传输主要以光纤作为介质,而产生端、转发端、处理端、接收端处理的是电信号,光模块具有广泛和不断增长的市场空间。光模块的上游主要为光 芯片和无源光器件,下游客户主要为电信主设备商、运营商以及互联网&云计算企业。 光模块遵循芯片—组件(OSA)—模块的封装顺序。激光器芯片和探测器芯片通过传统的TO封装形成TOSA及ROSA,同时将配套电芯片贴装在 PCB,再通过精密耦合连接光通道和光纤,最终封装成为一个完整的光模块。新兴的主要应用于短距多模的COB采用混合集成方法,通过特殊的键合焊接工艺将芯片贴装在PCB上,采用非气密性封装。 光模块下游主要应用于电信承载网、接入网、数据中心及以太网三大场景。电信承载网和接入网同属于电信运营商市场,其中波分复用(xWDM)光模块主要用于中长距电信承载网,光互联(Opitcal interconnects)主要用于骨干网核心网长距大容量传输, 而接入网市场是运营商到用户的“最后一公里”,包括光纤到户无源光网络(FTTH PON)、 无线前传(Wireless)等应用场景。数据中心及以太网市场主要包括数据中心内部互联、 数据中心互联(DCI)、企业以太网(Ethernet)等场景。 根据 LightCounting预测,2018年全球光模块市场规模约60亿美元,其中电信承载网市场规模17亿美元,每年以15%的速度增长,接入网市场规模约12亿美元,年增长率约 11%,而数据中心和以太网市场规模已达30亿美元,未来5年复合增长率达19%。 欧美日:行业不断并购整合,专注于高端产品和芯片研发 全球光模块产业链分工明确,欧美日技术起步较早,专注于芯片和产品研发。中国在产业链中游优势明显:劳动力成本、市场规模以及电信设备商的扶持,我们经过多年发展已成为全球光模块制造基地,从OEM、ODM发展为多个全球市占率领先的光模块品牌。产业链分工有效利用了全球优势生产要素,并避免了重复研发,有利于全球产业链高效 运转但中国难以分享上游的巨大价值。 由于低端产品价格透明,许多海外企业无法接受过低的毛利率进而剥离光模块业务专注于芯片或保留高端产品。如剑桥科技去年5月和今年3月分别收购Macom Japan和Oclaro Japan光模块资产;博创科技今年3月收购Kaiam PLC业务涉及相关部分资产。 另一方面,光通信巨头也经历了一系列并购整合,以增强对整个产业链的垂直协同, 增强规模优势,提高议价能力,如去年5月和11月,Lumentum 和II-VI分别宣布收购Oclaro和Finisar。 中国:从全球工厂到高端智造 工程师红利开始替代劳动力红利。中国的制造业劳动力成本相比美国的优势正在快速减弱,根据Wind和美国劳工部发布数据统计,美国制造业平均年薪/中国制造业平均年薪从 2013 年的8.15快速减少为2018年的5.01。而与此同时,中美IT技术人员的平均年薪在缓慢缩小,美国IT技术平均年薪/中国IT技术平均年薪由2013年的 5.89减少为2018的4.46。中国的工程师红利正在替代劳动力红利成为驱动光模块行业发展的新动能。 中国在全球价值链地位提升。长期以来我国光模块企业在上游芯片和下游主设备商 的“夹击”下利润空间被严重限定,但长期坚持研发正在助力国内光模块企业向价值链更高的高端光模块和光电芯片领域渗透。我们以电信光模块为主业的光迅科技、昂纳科 技、新易盛作为样本,三家企业研发支出总额2014-2018 保持着年均20%的增长速度, 研发支出占营收比例保持在 10%以上。而从三家企业的收入合计占运营商资本开支的比例来看,2014-2018 增长了 1.79pct。光模块企业通过研发投入带动产品竞争力不断增 强,有望在全球产业链中分享更多的价值。 上游芯片仍是短板,自主可控必将加速 光芯片和电芯片是光模块的核心部件,成本占比最高 光芯片是光模块中完成光电信号转换的直接芯片,又分为激光器芯片和探测器芯片。 激光器芯片发光基于激光的受激辐射原理,按发光类型,分为面发射与边发射:面发射 类型主要为 VCSEL(垂直腔面发射激光器),适用于短距多模场景;边发射类型主要为 FP(法布里-珀罗激光器)、DFB(分布式反馈激光器)以及 EML(电吸收调制激光器), FP 适用于 10G 以下中短距场景,DFB 及 EML 适用于中长距高速率场景。 EML 通过在 DFB 的基础上增加电吸收片(EAM)作为外调制器,目前是实现 50G 及以上单通道速 率的主要光源。 探测器芯片主要有 PIN(PN 二极管探测器)和 APD(雪崩二极管探测 器)两种类型,前者灵敏度相对较低,应用于中短距,后者灵敏度高,应用于中长距。 电芯片一方面实现对光芯片工作的配套支撑,如 LD(激光驱动器)、TIA(跨阻放大 器)、CDR(时钟和数据恢复电路),一方面实现电信号的功率调节,如MA(主放),另 一方面实现一些复杂的数字信号处理,如调制、相干信号控制、串并/并串转换等。还有 一些光模块拥有 DDM(数字诊断功能),相应的带有 MCU 和 EEPROM。电芯片通常配 套使用,主流芯片厂商一般都会推出针对某种型号光模块的套片产品。 发射端,电信号通过 CDR、LD 等信号处理芯片完成信号内调制或外调制,驱动激 光器芯片完成电光转换;接收端,光信号通过探测器芯片转化为电脉冲,然后通过 TIA、 MA 等功率处理芯片调幅,最终输出终端可以处理的连续电信号。光芯片和电芯片配合 工作实现了对传输速率、消光比、发射光功率等主要性能指标的实现,是决定光模块性 能表现的最重要器件。通过眼图分析可以衡量光模块的主要性能指标,包括幅度稳定度、 码间干扰、消光比、抖动过冲和噪声等。 光模块芯片具有极高的技术壁垒和复杂的工艺流程,因而是光模块 BOM成本结构 中占比最大的部分。光芯片的成本占比通常在40%-60%,电芯片的成本占比通常在10%-30%之间,越高速、高端的光模块电芯片成本占比越高,但规模优势可以增加采购的议价能力。 高速芯片国产率亟待提升,芯片产业链薄弱环节需逐步解决 高速芯片国产化率亟待提升。光芯片方面,我国在10G及以下光芯片具备替代的能力,但仍有很大市场空间。商业级25G的DFB、EML、APD、PIN 部分厂商已在客户验证阶段,成本降低和良率提升仍有很长的路要走。50GEML、窄线宽波长可调激光器芯片、100G 及以上相干集成光收发芯片等面向5G的关键芯片几乎全部由国外厂商提供, 海思、光迅等研发走在前列的企业目标基本是实现自给。电芯片方面,我国25G/100G多模光模块配套 IC 基本实现替代能力,但产能远远不足。25G/100G 单模和更高速率自给率估计仅有1%,高速 TIA、CDR、DSP 等基本和国外存在 1-2 代的技术差距。 光芯片国内 Foundry 能力严重不足制约流片进度。光芯片产业链环节包括芯片设计、基板制造、泵晶生长、晶粒制造等多重步骤,工艺流程较为复杂。(1)芯片设计是上游核心环节,也是Fabless模式芯片企业能够独立把控的部分。当前我国多数光芯片 企业为Fabless模式,如华为海思、飞昂光电。(2)基板制造是光芯片上游衬底基板的 规模制造环节,能实现高纯度单晶体衬底批量生产的全球仅有少数几家企业,如住友、 AXT。(3)磊晶生长利用基板和有机金属气体在 MOCVD/MBE 设备里长晶,制成外延片(wafer)。专门从事外延片生长的厂商又叫 Foundry,集中于台湾、新加坡、日本、美 国等地。(4)在晶粒制造环节,对外延片进行光刻等系列处理,最后封装成拥有完整光 电性能的光芯片。台湾是全球光芯片封测产业集中地区。一枚光芯片的诞生需要经过设 计、流片、定型、量产等多道环节,完整流程在一年半到两年之间,由于我国 Foundry 产能严重不足或工艺落后,我国大量芯片企业流片进度严重受制于国外。 电芯片需要补齐整个半导体产业链短板。电芯片产业链环节包括 IC 设计、晶圆制造 及加工、封装及测试环节,同样拥有复杂的工序和工艺,国产替代仍旧任重道远。 (1) 上游设计是知识密集型行业,需要经验丰富的尖端人才。 (2)中游晶圆制造及加工设备 投入巨大,进入门槛极高,并且镀膜、光刻、刻蚀等关键设备由少数国际巨头把控。 (3) 光模块电芯片属专用芯片市场,市场相对较小,需要光模块厂商的长期配套扶持。 国产替代空间巨大,自主可控意义更大 贸易战加速芯片自主可控。2018年4月,美国以违反对伊朗的出口禁令为由重启对中兴通讯的出口制裁,禁止本国企业向中兴提供任何销售服务。由于在电芯片、射频 前端芯片、高端光模块和光器件上严重依赖美国企业,中兴通讯陷入两个月的“休克” 状态,中兴供应商遭受了严重的订单和存货损失。今年5月,美国商务部正式把华为列 入“实体名单”,随即断供一切美国芯片、器件、软件系统、技术支持等。华为随即曝光 “备胎计划”,但在x86芯片、DSP、FPGA、射频前端、模拟芯片、存储芯片等领域仍然很难找到合适的国产替代方案。 光模块方面,中国企业在华为高端光模块和相干光模块的占有率不足20%,25G及以上光芯片和电芯片除了海思自研几乎没有国产替代方案。基于光芯片/电芯片的平均成 本占比以及 LightCounting 对全球光模块市场规模的预测,我们预计2018年光芯片和电芯片的市场规模分别在21亿美元、8亿美元,2023年将分别达到52亿美元、20亿美元。我国是全球光模块最大的市场之一,预计到2023 年光芯片和电芯片国产替代空间 分别在13亿美元、6亿美元。 以史为鉴,华为未雨绸缪意义重大。华为光通信设备全球领先,不畏美国打压,很 大程度上由于对长期研发的“备胎”信心。华为海思成立于 2004 年,自成立以来光网络解决方案芯片受到极高的战略重视。华为于 2012 年收购英国光子集成公司 CIP 并于 2013 年收购比利时硅光子公司 Caliopa,不断增强设计能力,今年初宣布在英国剑桥投 资光芯片工厂,未来目标是实现下游流片、封测的自主化。当前中美贸易谈判结果仍有 很大的不确定性,但从中兴到华为,自主可控已成为国内光模块企业的普遍共识。 产业发展两个逻辑:产品快速迭代,价格快速下降 产品迭代周期短,研发布局要快 多种因素导致产品迭代周期短 光模块数通市场产平均每 3-4 年完成一轮产品迭代,当前北美数据中心已进入25G/100G和100G/400G的过渡阶段,国内数据中心部署进度落后1到2年。电信市 场产品更迭相对缓慢一些,但在工业级温度下要求光模块的稳定工作时间在5年以上。 (1)流量加速爆发,交换机和服务器快速迭代。思科预测2016-2021 全球流量年 复合增长率 25%,这意味着流量每三年翻一番,5G 到来单位流量价格下降将带来更快 的流量增长。流量的爆发导致服务器和交换机的升级需求,带来光模块的配套升级。 (2)光模块产品种类繁多,非主流产品迅速退出市场。光模块的场景和性能属性繁 多,不同的封装方式、传输速率、传输距离、光纤类型、通道数、光源波长等相互组合 形成庞大的产品型号体系,以满足不同场景、不同性能、不同预算的解决方案。新一代 产品往往有各厂商主导的多种型号供客户选择,但通常某些成为主流,其他的则退出市场。 (3)客户追求更高性价比,高速率产品替代低速率产品。光模块的发展趋势是更小、 更便宜、更节能,光模块单位速率成本2016-2019平均每年下降 38%,2024 年单位带 宽成本有望接近 1 美元/Gb,客户使用高速率产品替换低速率产品将有效降低单位成本。 应对方式一:快速推出新品取得先发优势 客户认证周期长,先发优势重要。每一款新品进入光模块客户供应商名单往往需要 半年到一年的认证周期,而一旦进入,除非出现严重质量问题,后期份额出现重大变动 的可能性不大。其次,每一款新品推出往往不同供应商会给出不同解决方案,产品推出 较早的供应商被客户采纳为主流方案的可能性更大。例如,IEEE 及 MSA 为 100G 定义 的产品标准超过十种,但最终 100G CWDM4 由于既满足 2km 以内的传输需要又节省光 纤,成为数据中心客户的主流选择。旭创进入 100G CWDM4 较早占据了较高的市场份 额,随后推出的产品,如英特尔的 100G PSM4 硅光方案,很难明显撼动其份额。 高速率产品门槛提高,考验研发能力。从产品设计上来说,光模块实现更高的速率 只有提高光源速率、提高通道数以及高阶调制三种解决方案。提高光源速率面临着III-V族半导体激光器性能瓶颈,目前 Oclaro、AAOI 推出的 50G 光源解决方案均为外调制的 EML。提高并行通道数面临着体积、功耗、散热等设计封装难点,并且增加了客户的光 纤资源成本。高阶调制主要有PAM4或相干调制两种,PAM4 是目前传统方案下 400G 光模块最常用提高单通道速率的方法,较 NRZ 调制速率提高 2 倍,但相应增加了 DSP 和 CDR 芯片成本。 利用 PAM4 调制技术,配合 25G VCSEL*8、25G EML*8 或 50G EML*4,国内光 模块厂商已经陆续推出了 SR8、FR8、FR4 光模块,能够实现 100 米到 2 千米的传输 距离、低于 10W 的功耗、0 到 70 度的温宽,服务于超级数据中心和云服务商的 400G 交换机。 应对方式二:市场集中策略 专注特定市场能取得先发优势。首先,光模块产品型号和技术路线的复杂性导致多 产品线的厂商要在测试仪器、贴片设备、封装产线等重复投入,专注于特定市场可以集 中研发实力,有助于领先竞争对手推出新品。其次,光模块客户集中度较高,专注于特 定市场有助于和客户建立长期稳定的供货关系,并可以参与新品联合研发从而最早进入 客户的供应商体系并增强绑定。 案例:苏州旭创、光迅科技、美国Acacia专注细分打造龙头。 (1)苏州旭创以SDH电信光模块起家,2012 年战略重点转移数据中心市场,2016年,公司发布100G产品,其100GCWDM4迅速成为北美市场“爆款”。2018 年,公司推出400G QSFP-DD和400G OSFP,在全球数通光模块领域出货量第一。 (2)光迅科技自成立之初专注于电信 市场,推出了 OTN、FTTH、PON 各场景的光模块产品组合,成为华为、中兴等电信设备商的主要供应商,2018年公司电信光器件和光模块销售额稳居国内第一位,全球第四位。 (3)Acacia 成立于 2009年,是全球相干光模块的领军企业,通过硅光子解决方案 和专有DSP芯片的研发,Acacia 不断巩固在相干市场的领先地位。 价格迅速下降,成本降低要快 价格快速下降:上下游承压,议价能力弱 中低端市场竞争激烈,上下游承压。从产业链结构的角度上,国内光模块产业链呈 现“纺锤形”,光模块企业处在上下游挤压下,议价能力弱;下游来看,国内电信市场客户主要为四大设备商,最终客户为三大运营商,数通市场客户主要为有实力建设超大规模数据中心的云计算、互联网内容供应商;上游来看,欧美日主流芯片供应商不超过10家。从竞争结构的角度上,国内中低端市场竞争极为激烈:2018年全球光模块CR8为54%,属于垄断竞争市场,其中高端市场被 Finisar 等企业牢牢把控,而这些企业近年来的并购整合更增加了高端市场的垄断能力。中低端市场,国内市场格局较为分散,光迅、 旭创、海信等企业占据着头部份额,但面临着不断进入的竞争者挑战。 在上下游挤压和激烈竞争下,光模块市场呈现出年均15%-25%的降价幅度。每一代新产品推出时,市场降价幅度有所缓和,随着竞争者大量进入,产品降价幅度大幅增加, 之后随着新品推出又进入下一个生命周期。大型竞争者的进入也会迅速拉低市场价格, 例如 Intel 2018 年推出 100G 硅光产品,采用低价策略迅速占领市场份额。 毛利率在产品进入成熟期后迅速下降。从光模块产品生命周期来看,在产品推出早 期,客户对于公司前期发生的研发支出会通过较高的销售价格给予一定“补偿”,市场竞 争者少,故毛利较高。进入批量生产初期后,开发阶段的补偿结束,而良率和工艺水平 尚待优化,产品的毛利率出现短暂下降趋势。随着产量规模不断扩大,生产工艺改进导 致良率明显提高,生产流程的优化安排也显著降低管理费用,毛利恢复到较高的稳定水 平。步入成熟后期,大量竞争者进入,产品价格下降快于成本下降,毛利率逐步降低直 至降价趋于平缓。 应对方式一:规模优势 规模优势可以有效提升光模块毛利率:(1)大批量采购对供应商具有更强的议价能力,在产品价格下降时能更好的消化成本;(2)大规模量产适合 COB 等自动化程度较 高的生产线,有效降低人工和流水线管理成本;(3)规模优势分摊了固定成本,从而享受更高边际利润率;(4)规模优势可以积累更丰富的产线调试和工艺经验,从而实现更 高的良率。国内光模块企业通过产能扩充不断发挥规模优势,以更好抵御市场价格快速 下降的冲击,国外企业的并购整合,也在一定程度上巩固了规模优势。 应对方式二:整合芯片 芯片是光模块成本占比最高的部分,同时也是毛利率最高的环节。通过整合芯片, 光模块厂商可以显著降低成本、减少供应链管理成本并保证极端情况下的供应链安全。 对比国外具有垂直整合能力的光模块企业,如 Finisar、Lumentum、AAOI、Acacia,国 内光模块企业毛利率显著偏低。 近年来包括国内企业在内的光模块企业纷纷通过投资收购的方式快速获取芯片能力。如光迅科技收购法国 Almae、昂纳科技收购法国 3SP、中际旭创设立光电芯片产业基金、 亨通光电参股英国 Rockley、思科陆续收购 Lightwire、Luxtera、Acacia。另外一种方式 是通过大量采购保证优先供货权,建立和芯片企业的绑定关系,这种方式适用于对一些 技术还不成熟的芯片创业企业的扶持。 应对方式三:新技术路线 COB在封装层面实现自动化规模制造优势。传统的 TO-CAN 同轴封装在 40G/100G 多路平行封装上遭遇器件的体积密度瓶颈,近年来以旭创为代表的数通光模块厂商将 COB推广到光模块的封装生产线上。 硅光方案在芯片层面实现混合集成,未来大有可为。目前传统分立器件方案最大的 问题是在未来多通道时如何解决激光器成本高昂和整体功耗及体积问题。硅光集成方案 希望将波导、波分复用、调制器、光源、探测器集成在一块硅衬底上,实现光信号处理 和电信号处理的深度融合,是一种芯片层面和封装层面的双重创新技术。 硅光集成技术将遵循光子集成到光电集成的发展路线,并最终实现芯片内部的光互 联。光子集成技术从制造工艺上分为单片集成和混合集成,单片集成将无源器件在无源 光器件在硅衬底上阵列化,如光波导、光复用/解复用、光纤耦合等,在无源器件的生产 中已广泛使用。混合集成将光源 III-V 族半导体键合在硅衬底,采用 DSV-BCB 紫外胶键 合、低温氧分子等离子键合等集成技术。 硅光集成方案成为未来超 400G 光模块和相干光模块降低成本的有力选择。首先,硅光方案采用间接调制,解决了传统方案多通道带来的功耗、温飘等性能瓶颈并降低了 激光器成本。其次,硅光集成方案 BOM 清单器件数量较传统方案减半,减少了生产线 环节,降低了封装和供应链管理成本。再次,硅光更容易实现标准化大规模生产。 当前, 由于良率和损耗问题,硅光方案优势尚不明显,但在超 400G 短距场景、相干光场景, 硅光可能会成为主流。 应用的三个市场:电信和接入市场迎来5G,数通市场 流量与云驱动 电信网市场:5G 承载网新需求,光模块量价齐升 运营商资本开支迎来上升通道,光模块景气度有望提升。5G 元年开启,当前政策提速信号明显,建站预期规模不断提高,运营商资本开支将迎来上升通道。我们预计,三大运营商 2019-2022资本开支总规模有望分别增长9%、12%、14%、12%。每一代移动通信网络的建设往往遵循“先铺路再应用”的逻辑,运营商在建网前中期的资本开支 侧重于“大传输”(包括承载网光设备、光纤光缆、PON 设备、无源器件等)的比例会高一些。“大传输”内部,未来2年主要驱动将来自5G光传送网(OTN)的建设,高速光端口的增加将带来光模块需求。 5G承载网结构变化,光模块价量齐升。5G 引入了大带宽和低时延应用,承载网的 架构、带宽、时延、同步精度等需求发生很大变化,基于OTN的光承载网解决方案将成 为主流。5G 将原 4G 无线接入网功能模块重新拆分为 AAU、DU、CU,AAU 与 DU 之 间构成前传,DU 与 CU 之间构成中传,CU 与核心网之间构成回传。各级光传输节点之 间光端口速率提升明显:前传光模块向 25G 以及更高升级,中回传光模块向 50G 及更 高升级,回传和 DCI 需要 100G 及更高,核心层需要200G及更高。网络转发流量上, 由原来流向确定的南北向流量变化为南北向流量为主,东西向流量为辅。 光模块数量增加:(1)5G 更高频段带来建站密度的提高,预计建站规模将是 4G 的 1.5 到 2 倍,光模块用量大大增加,室内小基站规模部署后,光模块用量还将更多。(2) 5G 初期采用NSA架构与 4G 共享资源节点,只需要实现 AAU 以及前传光模块的升级, 但随着网络步入大规模成熟部署期,中传、回传以及东西向流量的增加需要更多光模块。 光模块价格提升: 5G部署前期,前传25G SR的价格达到30美元,前传25G LR的价格达到50美元,而规模商用期,中传使用的 ER、ZR 模块价格将在 100 美元以上, 回传和核心层使用的相干模块价格在1000美元以上,均较4G时期大幅提高。 我们假设5G国内建站规模为4G的1.5倍,即700万站。网络收敛比,接入层: 汇聚层:区域核心层:核心层=8:4:2:1。前传全部使用25G(短距长距比例 60%:40%), 中传使用50G、100G数量比=3:1,回传使用100G、200G 数量比=2:1,核心层使用200G、400G 数量比=2:1。可以初步估计 5G 共产生各种光模块需求5400万只,对应 市场规模约68亿美元。 可调谐和高速相干模块国产替代机会较大。目前前传 25G 300m/10km、100G DWDM4 10km,中回传 50G PAM4 10km/40km、100G FR4/LR4/ER4 等均实现批量出货,产品价格也较刚推出时大幅下降。由于 5G 波分下沉或成为前传部署主要方案,对于波长可调谐(Tunable)光模块的需求将大幅增加。目前推出前传可调谐光模块解决方 案的主要为 Finisar等欧美厂商,国产替代空间较大。而未来应用于回传和核心层的相干 光模块,性能和稳定性要求“双高”,是光模块的尖端产品,我国仅有 100G/200G 的小 批量出货,同样具有广阔市场。 接入网市场:10G PON 大规模升级,短期高增长 接入网市场介绍。接入网市场连接运营商到用户的“最后一公里”,包括无线接入网 和 FTTH。无线接入网作为前传在 5G 建设中和承载网一起规划建设,因此通常意义上 接入网市场主要为 FTTH PON 市场。PON 光网络包括安装于中心控制站的光线路终端(OLT),以及一批配套的安装于用户场所的光网络单元(ONU)(直接安装于用户家庭 的 ONU 叫做 ONT)。 应用价值广阔,我国加速步入 10G PON 时代。我国目前已经进入以 10G PON 光 纤接入技术为基础的千兆接入时代。《2019 年政府工作报告》明确“加快 5G 商用步伐”, 5 月 22 日召开的国务院常务会议要求2019年实现光纤到户接入端口占比超过 90%,在 300 个以上城市部署千兆宽带接入网络。10G PON 接入技术和相关产业已成熟,主流厂 商 10G PON 核心处理芯片、光模块已具备批量生产和规模发货能力,满足运营商规模 部署、提速降费的要求。 10G PON 千兆宽带网络在带宽、用户体验和联接容量均有飞跃式发展,将带来基于 带宽的商业模式,如 VR、智慧家庭、云游戏、云桌面等;基于联接的商业模式,如智慧 城市;基于配套解决方案的商业模式,如企业上云、在线教育、远程医疗等。根据信通 院《千兆宽带网络白皮书》预测,中国10G PON 2023 年应用市场空间将达3.03万亿人民币,复合增长率 16%。 运营商规模部署已开启,PON 光模块迎来边际改善。从中国电信近三年 PON 设备 集采结构规模变化可以看出,中国电信 10G PON OLT 和 ONU 设备 2018 年起集采端口 大规模增加。2019 年,中国电信集采 10G EPON OLT 端口 88 万,中国联通计划年底 10GPON OLT 端口达到 25 万,中国移动集采 10GPON 家庭网关 200 万台。结合业内 预测和我们的判断,中国 PON 光模块市场 2018 年起开始进入快速增长期,2018-2020 年复合增长率可能在 25%以上,之后由于产品价格快速下降市场规模呈缓慢下降趋势。随着运营商“双千兆之城”建设的规模开展,我们认为短期有望为盈利底部的PON光模 块企业带来显著边际改善。 数据中心市场:流量和上云驱动,产品迭代周期短 全球数据中心东西流量快速增长。随着移动通信技术的进步、互联网应用层出不穷,全球移动互联网流量快速爆发,三大运营商DOU(移动用户月均流量)每年增长150%以上。另一方面,企业上云成为确定趋势,全球云流量暴涨。根据思科统计,2018年, 全球云数据中心承载的工作流和计算任务2.5亿端,占比 87%,2021 年将达到 4.9 亿 端,占比达到 94%。全球数据中心 IP 流量将从 2016 年的每年 6.8ZB 上升到 2021 年的 20.6ZB,其中数据中心内部流量(东西流量)占比 74%,这意味着数据中心运营商的主要投资将位于数据中心东西流量的转发和处理。 超大规模数据中心增加,高速率叶脊架构是主流。超大规模数据中心具有更低的 PUE 和更先进的 NFV 管理架构,将成为未来大型云数据中心的主流。根据 Cisco 预测, 到2021年全球将有628 个超大规模数据中心,是 2016年的近1.9倍,占据近50%的数据中心服务器份额。扁平化的叶脊架构(Leaf-Spine)成为新建的超大规模数据中心 主流架构,叶脊架构里每个叶交换机都要跟脊交换机连接,带动了数据中心内东西向流 量的交换机的数量上升,也带动了交换机端口速率的上升,从而对于叶脊架构的数据中 心而言,整个高端光模块的使用数量是传统架构的数十倍。 数据中心光模块平均3-4年完成一次产品迭代。2012-2014,10G/40G 架构是数据中心的主流;2015-2018,北美云巨头大规模建设 25G/100G 数据中心,应用于中短距场景且性价比高的100G CWDM4 成为主流产品;2019年,400G产品开始在亚马逊、 谷歌等客户小规模出货并在2020年迅速崛起,到2022年全球400G市场规模有望达到12亿美元,三年复合增长率达70%。100G-400G数据中心里面,服务器到叶交换机由 25G AOC 升级为 100G AOC,叶交换机到脊交换机由 100G SR4 升级为 400G SR8/SR4, 脊交换机到边交换机由 100G CWDM4 升级为 400G FR4/LR4,将全面启动数通市场的 新一轮景气。 (内容源自德邦证券)
相关资源