tag 标签: 噪声

相关帖子
相关博文
  • 热度 4
    2024-7-5 14:12
    671 次阅读|
    0 个评论
    随着电动汽车的迅猛发展,汽车制造商正面临越来越严苛的声学要求。传统的被动和主动阻尼系统尽管能在一定程度上抑制噪声和振动,但其成本高昂,并且无法充分利用车辆内已有的电动系统。MdynamiX与慕尼黑应用科技大学合作,开发了一项革命性的技术,通过利用现有的电动机实现主动降噪(ANC)和主动声音生成(ASG),从而为汽车制造商提供了一种高效且经济的解决方案。 一、主动声音生成(ASG) 1. 技术背景与优势 现代电动汽车中,通常配备多达40个电动驱动系统,例如车窗升降器、滑动车顶、电动助力转向等。然而,这些电动系统大部分时间处于闲置状态。MdynamiX公司提出了一个创新理念,即利用这些闲置的电动机产生声音和振动,从而优化车内声学环境。 这种方法的主要优势包括: 生成多样声音:利用现有电机,可以生成几乎任何类型的声音,包括合成的发动机声音、音乐、警报声音等。 降低成本:无需额外硬件投入,从而减少了验证、采购、安装和保修成本。 节能环保:该方法能耗低,仅需最少的能量输入即可实现。 2. 技术实现 ASG技术通过控制电动机的三相交流电流,将其转换为等效的两相坐标系统,以独立控制转矩和磁通。这种方法允许对径向力和切向力进行精细操控,从而生成所需的声音和振动。 3. 应用实例 在实际应用中,ASG技术可以通过下列视频展示其效果。视频为MdynamiX和慕尼黑应用科技大学合作的主动声音生成项目的技术实现和效果展示。 二、主动降噪(ANC) 1. 技术背景与优势 电动汽车中的噪声和振动主要来源于电动助力转向(EPS)电机等部件。这些噪声会通过车体结构传递到车内,影响乘客的乘坐舒适性。ANC技术通过实时适配相位和振幅,利用现有的电动机主动抵消这些噪声,实现对车内声学环境的优化。 这种方法的主要优势包括: 显著降噪:能够显著减少电动驱动系统产生的干扰噪声。 保持性能:不影响电动机的性能,且与控制系统解耦。 经济高效:无需额外硬件投入,从而降低了成本,同时该方法能耗低。 2. 技术实现 ANC技术通过在线适配滤波器,实时调整电动机输出的声音和振动,以最小化误差传感器处的瞬时平方误差。这种实时调整允许系统在不同的噪声环境中自动优化降噪效果。 3. 应用实例 在实验中,通过对170Hz频率干扰信号的抑制,ANC技术展示了其有效性。例如,通过适配滤波器,可以实现对目标信号的破坏性干涉,显著减少驾驶员耳部的噪声。通过以下视频观看MdynamiX的DC电机和PMSM电机主动降噪项目,进一步了解该技术的实际应用效果。 三、实验结果与总结 在多个实验中,ASG和ANC技术均展示了其卓越的性能和实际应用价值。例如,通过对170Hz频率干扰信号的有效抑制,这些技术显著改善了车内的声学环境,提高了乘坐舒适性。此外,这些技术还展示了其在实际驾驶环境中的有效性,能够在不增加硬件成本的情况下,显著提高车辆的NVH(噪声、振动与声振粗糙度)性能。 主要结论包括: - 利用现有电动机可生成几乎任何类型的声音,而无需额外的硬件投入。 - 通过主动降噪技术,可显著减少电动机产生的干扰噪声,提高车内声学环境。 - 这些技术的应用无需增加额外硬件成本,且能耗低,是一种经济高效的解决方案。 三、结 语 经过本篇文章的介绍,相信读者已经对MdynamiX的电动机主动降噪(ANC)及主动声音生成(ASG)有了大概的了解,欢迎垂询北汇信息,了解更多。 MdynamiX 是⼀家富有多年经验、国际化的公司。坐落于德国慕尼⿊和贝宁根,致⼒于为⻋辆动⼒学、舒适性和NVH技术提供最先进的解决⽅案。同时也是各个OEM和供应商⾼级驾驶辅助系统和⾃动驾驶⽅⾯的专业开发合作伙伴。 北汇信息作为汽车电子测试全产品服务商,在国内是MdynamiX的重要合作伙伴,始终专注于为客户提供专业、高效的底盘、声学、⾼级驾驶辅助及车辆动力学等测试解决方案。
  • 热度 8
    2023-9-14 20:01
    613 次阅读|
    0 个评论
    噪声:对于电子线路中所标称的噪声,可以概括地认为,它是对目的信号以外的所有信号的一个总称。最初人们把造成收音机这类音响设备所发出噪声的那些电子信号,称为噪声。但是,一些非目的的电子信号对电子线路造成的后果并非都和声音有关,因而,后来人们逐步扩大了噪声概念。例如,把造成视屏幕有白斑条纹的那些电子信号也称为噪声。可能以说,电路中除目的的信号以外的一切信号,不管它对电路是否造成影响,都可称为噪声。例如,电源电压中的纹波或自激振荡,可对电路造成不良影响,使音响装置发出交流声或导致电路误动作,但有时也许并不导致上述后果。对于这种纹波或振荡,都应称为电路的一种噪声。又有某一频率的无线电波信号,对需要接收这种信号的接收机来讲,它是正常的目的信号,而对另一接收机它就是一种非目的信号,即是噪声。在电子学中常使用干扰这个术语,有时会与噪声的概念相混淆,其实,是有区别的。噪声是一种电子信号,而干扰是指的某种效应,是由于噪声原因对电路造成的一种不良反应。而电路中存在着噪声,却不一定就有干扰。在数字电路中。往往可以用示波器观察到在正常的脉冲信号上混有一些小的尖峰脉冲是所不期望的,而是一种噪声。但由于电路特性关系,这些小尖峰脉冲还不致于使数字电路的逻辑受到影响而发生混乱,所以可以认为是没有干扰。 当一个噪声电压大到足以使电路受到干扰时,该噪声电压就称为干扰电压。而一个电路或一个器件,当它还能保持正常工作时所加的最大噪声电压,称为该电路或器件的抗干扰容限或抗扰度。一般说来,噪声很难消除,但可以设法降低噪声的强度或提高电路的抗扰度,以使噪声不致于形成干扰。
  • 热度 4
    2023-7-4 11:13
    925 次阅读|
    0 个评论
    干货|减小开关电源的纹波和噪声都有哪些措施?
    关注电源完整性的小伙伴都知道,电源完整性有的时候仅仅依靠板级是无法解决所有问题的,还需要理解清楚电源系统,厘清电源问题的来龙去脉。 开关电源(包括AC/DC转换器、DC/DC转换器、AC/DC模块和DC/DC模块)与线性电源相比较,最突出的优点是转换效率高,一般可达80%~85%,高的可达90%~97%;其次,开关电源采用高频变压器替代了笨重的工频变压器,不仅重量减轻,体积也减小了,因此应用范围越来越广。但开关电源的缺点是由于其开关管工作于高频开关状态,输出的纹波和噪声电压较大,一般为输出电压的1%左右(低的为输出电压的0.5%左右),最好产品的纹波和噪声电压也有几十mV;而线性电源的调整管工作于线性状态,无纹波电压,输出的噪声电压也较小,其单位是μV。 本文简单地介绍开关电源产生纹波和噪声的原因和测量方法、测量装置、测量标准及减小纹波和噪声的措施。 一、纹波和噪声产生的原因: 开关电源输出的不是纯正的直流电压,里面有些交流成分,这就是纹波和噪声造成的。纹波是输出直流电压的波动,与开关电源的开关动作有关。每一个开、关过程,电能从输入端被“泵到”输出端,形成一个充电和放电的过程,从而造成输出电压的波动,波动频率与开关的频率相同。纹波电压是纹波的波峰与波谷之间的峰峰值,其大小与开关电源的输入电容和输出电容的容量及品质有关。 噪声的产生原因有两种,一种是开关电源自身产生的;另一种是外界电磁场的干扰(EMI),它能通过辐射进入开关电源或者通过电源线输入开关电源。开关电源自身产生的噪声是一种高频的脉冲串,由发生在开关导通与截止瞬间产生的尖脉冲所造成,也称为开关噪声。噪声脉冲串的频率比开关频率高得多,噪声电压是其峰峰值。噪声电压的振幅很大程度上与开关电源的拓扑、电路中的寄生状态及PCB的设计有关。 二、减小纹波和噪声电压的措施: 开关电源除开关噪声外,在AC/DC转换器中输入的市电经全波整流及电容滤波,电流波形为脉冲,如图17所示(图a是全波整流、滤波电路,b是电压及电流波形)。电流波形中有高次谐波,它会增加噪声输出。良好的开关电源(AC/DC转换器)在电路增加了功率因数校正(PFC)电路,使输出电流近似正弦波,降低高次谐波,功率因数提高到0.95左右,减小了对电网的污染。电路图如图1所示。 开关电源或模块的输出纹波和噪声电压的大小与其电源的拓扑,各部分电路的设计及PCB设计有关。例如,采用多相输出结构,可有效地降低纹波输出。现在的开关电源的开关频率越来越高;低的是几十kHz,一般是几百kHz,而高的可达1MHz以上。因此产生的纹波电压及噪声电压的频率都很高,要减小纹波和噪声最简单的办法是在电源电路中加无源低通滤波器。 1、减少EMI的措施 可以采用金属外壳做屏蔽减小外界电磁场辐射干扰。为减少从电源线输入的电磁干扰,在电源输入端加EMI滤波器,如图3所示(EMI滤波器也称为电源滤波器)。 2 、在输出端采用高频性能好、ESR低的电容 采用高分子聚合物固态电解质的铝或钽电解电容作输出电容是最佳的,其特点是尺寸小而电容量大,高频下ESR阻抗低,允许纹波电流大。它最适用于高效率、低电压、大电流降压式DC/DC转换器及DC/DC模块电源作输出电容。例如,一种高分子聚合物钽固态电解电容为68μF,其在20℃、100kHz时的等效串联电阻(ESR)最大值为25mΩ,最大的允许纹波电流(在100kHz时)为2400mArms,其尺寸为:7.3mm(长)×4.3mm(宽)×1.8mm(高),其型号为10TPE68M(贴片或封装)。纹波电压ΔVOUT为: ΔVOUT=ΔIOUT×ESR (1) 若ΔIOUT=0.5A,ESR=25mΩ,则ΔVOUT=12.5mV。 若采用普通的铝电解电容作输出电容,额定电压10V、额定电容量100μF,在20℃、120Hz时的等效串联电阻为5.0Ω,最大纹波电流为70mA。它只能工作于10kHz左右,无法在高频(100kHz以上的频率)下工作,再增加电容量也无效,因为超过10kHz时,它已成电感特性了。 某些开关频率在100kHz到几百kHz之间的电源,采用多层陶电容(MLCC)或钽电解电容作输出电容的效果也不错,其价位要比高分子聚合物固态电解质电容要低得多。 3 、采用与产品系统的频率同步 为减小输出噪声,电源的开关频率应与系统中的频率同步,即开关电源采用外同步输入系统的频率,使开关的频率与系统的频率相同(不知道原作者这一方式的原因,仅供参考)。 4、避免多个模块电源之间相互干扰 在同一块PCB上可能有多个模块电源一起工作。若模块电源是不屏蔽的、并且靠的很近,则可能相互干扰使输出噪声电压增加。为避免这种相互干扰可采用屏蔽措施或将其适当远离,减少其相互影响的干扰。 例如,用两个K7805-500开关型模块组成±5V输出电源时,若两个模块靠的很近,输出电容C4、C2未采用低ESR电容,且焊接处离输出端较远,则有可能输出的纹波和噪声电压受到相互干扰而增加,如图4所示。 如果在同一块PCB上有能产生噪声干扰的电路,则在设计PCB时要采取相似的措施以减少干扰电路对开关电源的相互干扰影响。 5 、增加LC滤波器 为减小模块电源的纹波和噪声,可以在DC/DC模块的输入和输出端加LC滤波器,如图5所示。图5左图是单输出,图21右图是双输出。 在表1及表2中列出1W DC/DC模块的VIN端和VOUT端在不同输出电压时的电容值。要注意的是,电容量不能过大而造起动问题,LC的谐振频率必须与开关频率要错开以避免相互干扰,L采用μH极的,其直流电阻要低,以免影响输出电压精度。 有些小电流,负载相对比较恒定的场景,我们增加“RC滤波”。LC滤波要注意,避免谐振。 6 、增加LDO 在开关电源或模块电源输出后再加一个低压差线性稳压器(LDO)能大幅度地降低输出噪声,以满足对噪声特别有要求的电路需要(见图),输出噪声可达μV级。 由于LDO的压差(输入与输出电压的差值)仅几百mV,则在开关电源的输出略高于LDO几百mV就可以输出标准电压了,并且其损耗也不大。 7、增加有源EMI滤波器及有源输出纹波衰减器 有源EMI滤波器可在150kHz~30MHz间衰减共模和差模噪声,并且对衰减低频噪声特别有效。在250kHz时,可衰减60dB共模噪声及80dB差模噪声,在满载时效率可达99%。输出纹波衰减器可在1~500kHz范围内减低电源输出纹波和噪声30dB以上,并且能改善动态响应及减小输出电容。 关注公众号“优特美尔商城”,获取更多电子元器件知识、电路讲解、型号资料、电子资讯,欢迎留言讨论。
  • 热度 8
    2023-6-18 16:22
    777 次阅读|
    0 个评论
    降低电源纹波噪声的方法与实例 在应用电源模块常见的问题中,降低负载端的纹波噪声是大多数用户都关心的。下文结合纹波噪声的波形、测试方式,从电源设计及外围电路的角度出发,阐述几种有效降低输出纹波噪声的方法。 纹波噪声的测试方法 对于中小微功率模块电源的纹波噪声测试,业内主要采用平行线测试法和靠接法两种。其中,平行线测试法用于引脚间距相对较大的产品,靠测法用于模块引脚间距小的产品。但不管用平行线测试法还是靠测法,都需要限制 示波器 的带宽为20MHz。 具体如图1和图2所示。 图1 平行线测试法 注1:C1为高频 电容 ,容量为1μF;C2为 钽电容 ,容量为10μF。 注2:两平行铜箔带之间的距离为2.5mm,两平行铜箔带的电压降之和应小于输出电压的2%。 图2 靠接测试法 去除地线夹测试的区别 测试纹波噪声需要把地线夹去掉,主要是由于示波器的地线夹会吸收各种高频噪声,不能真实反映电源的输出纹波噪声,影响测量结果。下面的图3和图4分别展示了对同一个产品,使用地线夹及取下地线夹测试的巨大差异。 图3 使用地线夹测试-示波器垂直分辨率200mv/div 图4 去除地线夹测试-示波器垂直分辨率50mv/div 输出滤波电容的影响 输出滤波电容的容值、ESR对模块输出的纹波噪声也有直接影响。对比同一个产品在外围是否增加电容对纹波噪声影响。不加外接电容时,测试输出的纹波噪声,如图5所示,约为100mV。同样的输入、负载条件下,电源的输出端加226的MLCC,实测电源输出的纹波噪声降到不到40mV。 图5 无外接电容 图6 外加226电容 实际应用时,电容除容量、ESR外,建议负载端的电容在回到电源之前,先汇集到输出电容,经过电容滤波后,再回到电源,从而有效降低纹波噪声对电路的影响。 电感对纹波噪声的影响 电感的感量及寄生电容对纹波噪声的影响同样显著。一般地,感量大时对纹波抑制作用明显,寄生电容小的电感对噪声抑制效果好。以对纹波抑制为例,测试对电源输出纹波的影响,我们先人为的把产品内部的滤波电感短路,只用电容滤波,测得纹波噪声如图7所示,纹波峰峰值约50mV。 图7 人为短路内部滤波电感的纹波噪声图 下一步,在电源外部增加一个LC电路,在相同输入、负载条件下,重测纹波噪声图,如图8所示,纹波已接近直线,非常小。 图8 外加LC的纹波噪声图 非纹波的震荡处理 前面介绍了纹波是与开关电源的工作频率相关,但是还有另外一种震荡是与负载的工作频率相关的,如图9所示。 图9 负载工作周期大约1.1s DC-DC电源模块 给 MCU 、晶振、 WiFi 模块、4G/5G模块等电路同时供电,WIFI模块会继续周期性的扫描,扫描开启时, 电源模块 电流会增加,使得模块输出电压瞬间会有一个下降;同理扫描关断时,模块输出电压会上升突变。 这种模块输出电压的突变,并不是产品本身的纹波噪声,而是由于负载电流的突变,释放了电容电压。减小这类纹波的最好办法,是在负载前端增加π 滤波器 或大电容。 在4G/5G模块正常工作时会有2~3A的瞬态负载电流,可以在4G/5G模块前端增加大电容减小供电电压的纹波。 选择产品型号时,可以特别关注产品的瞬态性能。买电子元器件现货上唯样商城。如下图所示,E-U HB CS-6W、E-UHBDD-6W、E-UHBDD-10W、E-UHBD-20W系列产品的瞬态性能指标。负载50%~75%阶跃变化时,输出电压波动为±5%,可以通过增加输出滤波电容,减小输出电压的波动。 图10 瞬态性能指标 E-UHBCS-6W、E-UHBDD-6W、E-UHBDD-10W、E-UHBD-20W系列产品输出纹波噪声的典型值为50mV,输出电压小,输出纹波值也越小。 小结 以上简单从纹波噪声的图例、测试方法开始,描述从电源设计、外部电路应用出发,结合实际测试比较几种降低纹波噪声的方法。实际的工程应用中还需考虑电容、电感的负载效应、自激影响等,需再做深究。
  • 热度 5
    2023-5-29 23:57
    824 次阅读|
    0 个评论
    噪声 (1) 识别噪声 理想的 LDO 将生成没有交流元件的电压轨。可惜的是, LDO 本身也会向其他电子器件一样产生噪声。 从不同曲线中可以看到,输出噪声(以每平方根赫兹的微伏数表示 )集中在频谱的低频端。此噪声主要来自内部基准电压,但也有一部分来自误差放大器、场效应晶体管 (FET) 和电阻分压器。 (2) 降噪电容器 降噪电容器 CNR/CSS TI 产品组合中的许多低噪声 LDO 都具有名为 “NR/SS” 的特殊引脚,如图 3 所示。 此引脚具有双重功能:可用于过滤内部电压基准产生的噪声并能降低 LDO 启动或使能期间的转换率。 在此引脚上添加电容器 (CNR/SS) 将形成具有内部电阻的阻容 (RC) 滤波器,帮助分流由电压基准生成的不需要的噪声。由于电压基准是生成噪声的主要因素,增大电容有助于将此低通滤波器的截止频率左移。图 4 显示了此电容器对输出噪声产生的影响。 CNR/SS 的值越大,降噪效果越好。但是,在某些点上,增大电容不会再降低噪声。 增大 CNR/SS 值也会延长启动时间,从而防止浪涌电流出现尖峰,并且可能会触发电流限制事件。 前馈电容器 CFF 通过使用不同的 CFF 值,可以降低 TPS7A91 的噪声。 本人学习笔记公众号,将在上面分享学习记录与心得 公众号名称:硬件之路学习笔记
相关资源