本文将介绍基于米尔电子MYD-LR3576开发板(米尔基于瑞芯微RK3576开发板)的创建机器学习环境的开发测试。 摘自优秀创作者-lulugl 米尔基于瑞芯微RK3576开发板 【前言】 【米尔-瑞芯微RK3576核心板及开发板】具有6TpsNPU以及GPU,因此是学习机器学习的好环境,为此结合《深度学习的数学——使用Python语言》 1、使用vscode 连接远程开发板 2、使用conda新建虚拟环境: root @myd -lr3576x-debian: /home/m yir/pro_learn # conda create --name myenv python=3.9 执行结果如下: root@myd-lr3576x-debian:/home/myir/pro_learn# conda create --name myenv python= 3 . 9 Channels: - defaults Platform: linux-aarch64 Collecting package metadata (repodata.json): done Solving environment: done ## Package Plan ## environment location: /root/miniconda3/envs/myenv added / updated specs: - python= 3 . 9 The following packages will be downloaded: package | build ---------------------------|----------------- _libgcc_mutex- 0 . 1 | main 2 KB defaults _openmp_mutex- 5 . 1 | 51 _gnu 1 . 4 MB defaults ca-certificates- 2024.11.26 | hd43f75c_0 131 KB defaults ld_impl_linux-aarch64- 2 . 40 | h48e3ba3_0 848 KB defaults libffi- 3 . 4 . 4 | h419075a_1 140 KB defaults libgcc-ng- 11 . 2 . 0 | h 1234567_1 1 . 3 MB defaults libgomp- 11 . 2 . 0 | h 1234567_1 466 KB defaults libstdcxx-ng- 11 . 2 . 0 | h 1234567_1 779 KB defaults ncurses- 6 . 4 | h419075a_0 1 . 1 MB defaults openssl- 3 . 0 . 15 | h 998d150_0 5 . 2 MB defaults pip- 24 . 2 | py39hd43f75c_0 2 . 2 MB defaults python- 3 . 9 . 20 | h4bb2201_1 24 . 7 MB defaults readline- 8 . 2 | h 998d150_0 381 KB defaults setuptools- 75 . 1 . 0 | py39hd43f75c_0 1 . 6 MB defaults sqlite- 3 . 45 . 3 | h 998d150_0 1 . 5 MB defaults tk- 8 . 6 . 14 | h987d8db_0 3 . 5 MB defaults tzdata- 2024 b | h 04d1e81_0 115 KB defaults wheel- 0 . 44 . 0 | py39hd43f75c_0 111 KB defaults xz- 5 . 4 . 6 | h 998d150_1 662 KB defaults zlib- 1 . 2 . 13 | h 998d150_1 113 KB defaults ------------------------------------------------------------ Total: 46 . 2 MB The following NEW packages will be INSTALLED: _libgcc_mutex anaconda/pkgs/main/linux-aarch 64:: _libgcc_mutex- 0 . 1 -main _openmp_mutex anaconda/pkgs/main/linux-aarch 64:: _openmp_mutex- 5 . 1 - 51 _gnu ca-certificates anaconda/pkgs/main/linux-aarch 64::ca -certificates- 2024.11.26 -hd43f75c_0 ld_impl_linux-aar~ anaconda/pkgs/main/linux-aarch 64:: ld_impl_linux-aarch64- 2 . 40 -h48e3ba3_0 libffi anaconda/pkgs/main/linux-aarch 64:: libffi- 3 . 4 . 4 -h419075a_1 libgcc-ng anaconda/pkgs/main/linux-aarch 64:: libgcc-ng- 11 . 2 . 0 -h 1234567_1 libgomp anaconda/pkgs/main/linux-aarch 64:: libgomp- 11 . 2 . 0 -h 1234567_1 libstdcxx-ng anaconda/pkgs/main/linux-aarch 64:: libstdcxx-ng- 11 . 2 . 0 -h 1234567_1 ncurses anaconda/pkgs/main/linux-aarch 64:: ncurses- 6 . 4 -h419075a_0 openssl anaconda/pkgs/main/linux-aarch 64:: openssl- 3 . 0 . 15 -h 998d150_0 pip anaconda/pkgs/main/linux-aarch 64:: pip- 24 . 2 -py39hd43f75c_0 python anaconda/pkgs/main/linux-aarch 64:: python- 3 . 9 . 20 -h4bb2201_1 readline anaconda/pkgs/main/linux-aarch 64:: readline- 8 . 2 -h 998d150_0 setuptools anaconda/pkgs/main/linux-aarch 64:: setuptools- 75 . 1 . 0 -py39hd43f75c_0 sqlite anaconda/pkgs/main/linux-aarch 64:: sqlite- 3 . 45 . 3 -h 998d150_0 tk anaconda/pkgs/main/linux-aarch 64:: tk- 8 . 6 . 14 -h987d8db_0 tzdata anaconda/pkgs/main/noarch :: tzdata- 2024 b-h 04d1e81_0 wheel anaconda/pkgs/main/linux-aarch 64:: wheel- 0 . 44 . 0 -py39hd43f75c_0 xz anaconda/pkgs/main/linux-aarch 64:: xz- 5 . 4 . 6 -h 998d150_1 zlib anaconda/pkgs/main/linux-aarch 64:: zlib- 1 . 2 . 13 -h 998d150_1 Proceed ( /n)? y Downloading and Extracting Packages: Preparing transaction: done Verifying transaction: done Executing transaction: done # # To activate this environment, use # # $ conda activate myenv # # To deactivate an active environment, use # # $ conda deactivate root@myd-lr3576x-debian:/home/myir/pro_learn# 然后再激活环境: root @myd -lr3576x-debian: /home/m yir/pro_learn # conda activate myenv (myenv) root @myd -lr3576x-debian: /home/m yir/pro_learn # 2、查看python版本号: (myenv) root @myd -lr3576x-debian: /home/m yir/pro_learn # python --version Python 3.9 .20 3、使用conda install numpy等来安装组件,安装好后用pip list查看 编写测试代码: import numpy as np from sklearn.datasets import load_digits from sklearn.neural_network import MLPClassifier d = load_digits() digits = d labels = d N = 200 idx = np.argsort(np.random.random( len (labels))) xtest, ytest = digits ], labels ] xtrain, ytrain = digits ], labels ] clf = MLPClassifier(hidden_layer_sizes=( 128 , )) clf.fit(xtrain, ytrain) score = clf.score(xtest, ytest) pred = clf.predict(xtest) err = np.where(pred != ytest) print ( "score:" , score) print ( "err:" , err) print ( "actual:" , ytest ) print ( "predicted:" , pred ) 在代码中,使用MLPClassifier对象进行建模,训练测试,训练数据集非常快,训练4次后可以达到0.99: 【总结】 米尔的这款开发板,搭载3576这颗强大的芯片,搭建了深度学习的环境,进行了基础的数据集训练,效果非常好!在书中记录训练要几分钟,但是这在这款开发板上测试,只要几秒钟就训练完毕,书中说总体准确率为0.97,但是我在这款开发板上有0.99的良好效果!