tag 标签: CWDM

相关博文
  • 热度 7
    2023-6-28 15:54
    683 次阅读|
    0 个评论
    CWDM粗波分复用和DWDM密集波分复用的区别?
    WDM波分复用技术提供了一种经济高效的解决方案,无需在现有光纤网络中部署额外的光纤即可增加网络容量。 CWDM 和 DWDM 是两种主要的 WDM 技术,具有不同的波长模式、功能、成本和应用。 CWDM 代表粗波分复用,其中“Coarse” 是指通道之间的波长间隔。 CWDM 具有更宽的 20nm 通道间隔,根据ITU的标准,将CWDM划分为 18 个不同的波长通道,从 1270 nm到 1610 nm,而常用的为从 1470 nm 到 1610 nm 的八个波长。 ITU细化了CWDM的波长为1471、1491、1511等,虽然行业通常称为1470、1490、1510等。其波段涵盖单模光纤的O、E、S、C、L五个频段。1310nm和1550nm是两个最常见的两个波长,1550nm更受欢迎,因为它在光纤中的损耗较低。 20nm的波长间隔使 CWDM 能够通过一对光纤传输和接收多达 18 个通道。 更大的波长间隔也意味着复用器和解复用器的结构可大大简化,滤光片的镀膜层数减少,提升了良率并降低了成本。 DWDM 是密集波分复用,其波长位于 C 波段的1525nm 至 1565nm 区域内,并扩展到 1570-1610nm的 L 波段。 DWDM 的波长间隔为 0.4nm(50GHz)、0.8nm(100GHz) 或 1.6nm(200GHz)。 由于其波长间隔比较窄,DWDM 可承载 40、80、96 或多达 160 个波长。 CWDM VS DWDM CWDM 通常用于成本较低和较短距离的应用,其中成本是一个重要因素。 由于 CWDM 具有20nm 通道间隔,因此它通常部署在长达 80km 或更短的光纤跨度上,因为光放大器不能与大间隔通道一起使用。 DWDM 的间隔为 0.8nm,可以通过单根光纤传输大量数据,因为它们允许将更多波长封装到同一光纤上。 与 CWDM 不同,在EDFA光放大器的帮助下,DWDM系统可以在数千公里的范围内工作。 CWDM因波长间隔较宽且有源光模块的成本较低,一般应用于中距、长距等市级场景,如MAN(Metropolitan Area Network,城域网)、接入拉远网络(接入基站,如5G)等。因为CWDM成本较低,也广泛应用于其他局域网,包括校园、银行、企业等。DWDM分为AWG与TFF两种技术,因波长密度高且集中在C/L-BAND,一般应用于长距、超长距信号传输场景,如DCI(Data Center Interconnect,数据中心互联)、DC-CN(Core Network,核心网),长距离、大容量的长途干线网络,或超大容量的城域网核心节点 。
  • 热度 23
    2021-2-5 14:45
    3794 次阅读|
    0 个评论
    数据中心CWDM4传输技术是什么?
    1. 数据中心光传输技术的演进 随着移动互联网的推广应用,数据中心得到迅猛发展,成为信息社会中的重要基础设施。数据中心由大量服务器组成,服务器之间需要高速、大容量的数据传输和交换,传统的电缆传输不能满足速率要求,光纤传输技术自2010年左右进入数据中心,至今已经成为主流传输技术。 早期的数据中心规模不大,所需传输距离在数十至数百米,通常采用多模光纤并行传输技术,并不断优化多模光纤的色散性能,以支持更高速率、更长距离的传输需求。其中符合OM4标准的多模光纤,可支持10G信号传输550米。 然而,数据中心的主流传输速率已进入100G时代,通常采用4×25G传输方案,单信道传输速率达到25G,多模光纤已经不能支持这么高的传输速率,单模光纤被引入100G传输系统。事实上,单模光纤的成本比多模光纤高,但单模光纤的传输波长在1310nm波段,而多模光纤的传输波长在850nm波段,1310nm波段的光电子器件较850nm波段的光电子器件贵得多。 单模光纤传输4×25G光信号,最早采用的是PSM4方案,通过8根光纤实现一对收发模块之间的双向数据传输。PSM4的每个光纤收发器仅需采用一个激光器,分光四路,分别经四个调制器输出,因此节省了光源成本。但是随着传输距离的增加,光纤成本迅速增加,因此PSM4通常应用于传输距离在500米以下的场景。 对于传输距离大于500米的应用场景,为了节约光纤成本,电信网中的CWDM技术被引入数据中心,即为CWDM4传输方案,通过波分复用/解复用器,在一根光纤中传输1271nm、1291nm、1311nm、1331nm四个间隔20nm的波长,这样在两个光纤收发模块之间,只需两根光纤就可实现双向传输。CWDM4可支持4×25G信号传输,在500~2000米传输距离较PSM4方案有成本优势。 2. CWDM4技术方案 CWDM技术在电信网的应用已经非常成熟,国际电信联盟ITU在1271-1611nm波段定义了18个间隔20nm的CWDM信道。数据通信中的CWDM4标准,采用其中靠近G652单模光纤的零色散点的四个波长,即1271-1331nm。 数据中心100G光纤收发模块,目前的主流封装形式是QSFP28,模块中集成了4个半导体激光器、光探测器阵列及其驱动电路,以及无源的CWDM4组件。为了将CWDM4组件集成到QSFP28模块中,需要尽量小型化设计,对尺寸的要求比电信应用中的CCWDM模块(一种紧凑型CWDM模块)更严苛。 1)Z-block技术 最早采用的CWDM4组件是基于薄膜滤波片TFF的Z-block技术,如图1所示,8个TFF滤波片分两组粘贴在一个斜方棱镜上,一组用于波分复用,另一组用于波分解复用,各滤波片的透射波长分别为1271nm、1291nm、1311nm、1331nm。 图1. 贴装CWDM4滤波片的Z-block结构 Z-block组件的波分复用发射光路如图2所示,注意斜方棱镜的背面部分区域镀了高反膜。从右侧4个准直器发射的光信号,分别透过对应的滤波片,经不同反射次数,到达左侧公共端的准直器,耦合到输出光纤中。由于斜方棱镜中的光路较长,达到10mm量级,因此必须采用总共五个准直器。反射光路及准直光束的耦合,对角度非常敏感,因此不能采用一体化的准直器阵列,而必须对每个输入准直器独立调节对准,组装工艺较为复杂。 图2. Z-block的复用发射光路 Z-block组件的波分解复用接收光路如图3所示,公共端光信号从左侧准直器输入,各信道的光信号经过不同反射次数,透过对应的滤波片,经微透镜聚焦在光探测器阵列上的对应单元。光探测器阵列贴装在PCB板上,如图3(b)所示。在水平面内被波分解复用的光束,需经过一个直角棱镜实现90度转向,沿竖直方向入射在光探测器上。光探测器的有源区尺寸通常只有Φ50微米,Z-block中传输的准直光束直径远大于此,因此需要微透镜聚焦,并且微透镜需要在垂直光路的横截面内,上下左右调节,以将聚焦光斑对准光探测器的有源区。这个调节对焦过程,也增加了Z-block组装工艺的复杂度。 图3. Z-block的解复用接收光路 2)AWG技术 为了简化封装工艺,以减小尺寸和降低成本,人们开发了基于集成光学技术的CWDM4 AWG芯片。AWG是阵列波导光栅的简称,在电信网中早已成熟应用。电信网中的AWG被用于复用/解复用DWDM光信号,信道间隔通常为200G或者100G(对应波长间隔1.6nm或者0.8nm)。因为应用场景主要是电信网的骨干网,对成本不敏感。 将AWG技术引入数据中心的CWDM4传输系统,波长间隔增加至20nm,技术难点降低了,但为了集成到QSFP28模块中并规模应用,对AWG芯片的尺寸和成本约束要严苛得多,目前主流的CWDM4 AWG芯片,尺寸可以控制在2mm×10mm以内。最早的CWDM4 AWG芯片,输入/输出端口位于两端,如图4所示。为了便于绕纤并集成于光纤收发模块中,人们开发了单侧输入/输出的CWDM4 AWG芯片,通过弯曲波导将输入端口绕至输出端,如图5所示。这样的设计,也进一步简化了波导与光纤阵列之间的耦合工艺。当然,由于芯片宽度有限,波导弯曲半径小于1mm,会引入一定的弯曲损耗。 图4. CWDM4 AWG芯片结构—两侧输入/输出 图5. CWDM4 AWG芯片结构—单侧输入/输出 一个CWDM4光纤收发模块中,需要两个CWDM4 AWG芯片,一个用于光信号的复用发射,另一个用于光信号的解复用接收。发射端的CWDM4 AWG芯片目前主要采用图5所示的单侧输入/输出结构,而在接收端,解复用的各个波长终将被光探测器检测,无需耦合到单模光纤中继续传输。为此,接收端CWDM4 AWG芯片通常采用图4所示的两侧输入/输出结构,输出端口采用多模光波导,并将输出端面抛光成45°斜面,实现光束的90度转折,入射在光探测器阵列上,后者被直接贴装在PCB板上。 这种设计有两点好处,其一采用多模波导输出,可以实现AWG通带谱线的平坦化设计,优化信道质量;其二输出光经90度转折后直接入射光探测器阵列,省去了波导阵列与光纤阵列之间的对接耦合,简化了组装工艺。 3)梳状滤波器技术 采用集成光学技术的CWDM4 AWG芯片,相对于Z-block技术,尺寸减小,并且装配工艺大大简化,有利于降低成本。但是AWG器件的通带平坦度不好,信道质量劣化,并且损耗比Z-block大得多。 有厂商将电信网中的光学梳状滤波器ITL技术引入数据通信,图6所示为基于集成光学技术的光学梳状滤波器,它是由数个级联的MZI干涉臂组成的。实际上,电信网中的光学梳状滤波器,主要面向DWDM应用,考虑温度稳定性,通常采用GTI谐振腔或者双折射晶体方案,集成光学梳状滤波器无法满足实用条件。 图6. 基于集成光学技术的光学梳状滤波器 但CWDM4传输系统的信道间隔是20nm,对温漂的容差较大,因此可以采用集成光学梳状滤波器。注意图6中的MZI干涉臂,通过弯曲波导实现光程差,而波导弯曲会产生损耗。光波导可避免产生弯曲损耗的最小弯曲半径,取决于波导的折射率差,为了减小弯曲半径以缩小芯片尺寸,现有供应商采用的是氮化硅波导。然而,折射率差越大的光波导,良率会受影响,并且与光纤的耦合损耗会增大。 光学梳状滤波器是一种1×2端口器件,为了实现1×4波分复用/解复用,需要通过三个梳状滤波器串并联来实现,如图7所示,其中ITL#1的波长间隔是20nm,ITL#2和ITL#3的波长间隔是40nm。 图7. 由三个光学梳状滤波器ITL串并联而成的CWDM4芯片 CWDM4系统中的光学梳状滤波器和AWG均采用集成光学技术,前者具有更低的损耗和更好的信道质量,但良率稍低。 3. CWDM4技术对比 Z-block、AWG和ITL三种CWDM技术方案,各自的优缺点对比,如表1所示。 对比可知,Z-block技术具有损耗低和信道质量好的优点,基于Z-block技术的CWDM4模块,甚至能支持100G信号传输10公里。但是该技术的工艺难度高,造成成本居高不下。AWG技术的损耗最大,信道质量最差,但工艺难度和成本最低,满足数据中心市场降成本的诉求,正在逐步替代Z-block技术的市场。ITL技术具有媲美Z-block技术的信道质量,损耗也比AWG小得多,组装工艺难度与AWG相当,目前的问题是芯片良率偏低,如这个问题得到解决,将是最好的CWDM4解决方案。 关于作者 亿源通长期坚守“精品制造”理念,力争在光通信领域具备国际竞争力,并不断持续增加核心产品以及核心技术研发战略布局,可为客户提供光器件设计、研发、制造、与销售的一站式服务。
  • 热度 24
    2020-8-13 11:18
    2723 次阅读|
    0 个评论
    什么是LWDM细波分复用技术?
    WDM承载方案有粗波分复用(CWDM)、密集波分复用(DWDM)以及中等波分复用(MWDM)、细波分复用(LWDM)。MWDM是重用了CWDM的前6波,将波长间隔压缩为7nm,左右偏移3.5nm扩展为12波。 而LWDM是基于以太网通道的波分复用Lan-WDM技术,也被称为细波分复用。其通道间隔为200~800GHz,此范围介于DWDM(100GHz、50GHz)和CWDM(约3THz)之间。LWDM是采用了位于O-band(1260nm~1360nm)范围的1269nm到1332nm波段的12个波长,波长间隔为4nm(1269.23、1273.54、1277.89、1282.26、1286.66、1291.1、1295.56、1300.05、1304.58、1309.14、1313.73、1318.35nm)。 LWDM工作波长的特点是位于零色散附近,色散小,稳定性好。同时LWDM可支持12波25G,容量提升,可进一步节省光纤。
  • 热度 34
    2020-8-5 17:40
    1785 次阅读|
    0 个评论
    什么是MWDM中等波分复用?
    5G商用,承载先行。5G新基建的大范围建设,也对承载网提出了更高的需求,5G承载网主要包含了5G前传网和5G回传网。WDM波分复用技术是5G前传网络的优选方案,根据使用波长的不同,可分为DWDM密集波分复用,CWDM粗波分复用,以及新提出的MWDM中等波分复用,基于以太网通道的LWDM波分复用。 CWDM和DWDM都已经是较为常见的WDM波分复用技术,那么什么是MWDM呢? MWDM是中等波分复用。要了解什么是MWDM,首先需要知道为什么提出MWDM。 5G对前传网提出高可靠、高性能、低成本、易部署的更高需求,这就需要一个能够快速响应满足市场需求且成本较低的技术方案来实现。5G前传技术中CWDM是发展较早且较为成熟的方案,而运营商对于5G前传的基础需求是需要满足12波WDM,这样基于CWDM基础上提出了MWDM。MWDM主要是在中国5G前传网络环境下提出的。 CWDM有18个波长(1271~1611nm),但由于考虑到1270~1470nm波段的衰减比较大,以及基于成本的考虑,使用较多的只有其中的6个波长(1271nm、1291nm、1311nm、1351nm、1371nm)。MWDM就是在CWDM 6波的基础上,左右偏移3.5nm扩展为12波(1267.5、1274.5、1287.5、1294.5、1307.5、1314.5、1327.5、1334.5、1347.5、1354.5、1367.5、1374.5nm)。 这样做的好处是什么呢?MWDM是重用CWDM的前6波,将CWDM的20nm的波长间隔压缩为7nm,采用TEC(Thermal Electronic Cooler, 半导体制冷器)温控技术实现1波扩为2个波。这样就实现了容量提升的同时可以进一步节省光纤。 刚刚说到基于5G商用的迫切性,MWDM是在工艺成熟的CWDM基础上作出参数调整,因此同时还可以重用CWDM生产流程和产业链,快速的满足市场需求。
  • 热度 27
    2020-4-13 15:30
    2147 次阅读|
    0 个评论
    什么是光无源器件CCWDM?
    CCWDM 是Compact CWDM(紧凑型粗波分复用),是一种基于TFF(薄膜滤波器)的波分复用技术,它的工作方式与CWDM模块相同,不同之处在于CCWDM采用了自由空间技术(如图一所示),对比普通CWDM光纤联级方式(如图二所示),CCWDM封装尺寸与CWDM模块相比大大减小,而且插入损耗更低、一致性更好;它可以代替CWDM产品应用于电信、企业网、PON网络、有线电视等领域。较低的插入损耗,使CCWDM模块运用时拥有较低的信号衰减,从而降低对信号发射器的功率要求。 亿源通(英文简称“HYC”)的CCWDM 模块采用自由空间技术,利用一个独立的密封空间进行光信号传输;工作方式与CWDM相同,从COM端输入(输出)光信号,然后其他端口经过TFF(薄膜滤波器)输出(输入)光信号。由于模块采用自由空间技术的平行光路联级,与CWDM所采用的光纤联级不同,从而节省了很大的空间。HYC 的CCWDM盒式模块具有成熟的生产工艺,性能稳定可靠,支持-40~+85℃环境温度使用,保证信号的稳定传输。