tag 标签: results

相关资源
  • 所需E币: 1
    时间: 2022-8-19 16:21
    大小: 474KB
    NewresultsonthesynthesisofFO-PIDcontrollers
  • 所需E币: 1
    时间: 2022-8-19 16:24
    大小: 428.33KB
    NewresultsonthesynthesisofPIDcontrollers(ShankarP.Bhattacharyya)
  • 所需E币: 1
    时间: 2022-8-19 16:26
    大小: 739.54KB
    NewresultsonVRFTdesignofPIDcontroller
  • 所需E币: 1
    时间: 2022-5-31 09:59
    大小: 1.88MB
    FurtherresultsonthesynthesisofPIDcontrollers
  • 所需E币: 3
    时间: 2019-12-25 15:00
    大小: 26KB
    上传者: 238112554_qq
    CPU速度测试结果MicroprocessorBenchmarkResultsRabbitSemiconductor5Feb.20001.DescriptionofBenchmarkTestsAbenchmarkprogramwasdevisedtotestthefloatingpointperformanceoftheRabbit2000againstanumberofpopular8-bitmicroprocessors.Inordertoensurethatthecom-parisonwasbasedonpracticalmicroprocessorsystemsthefollowinggroundruleswereapplied.Thesystemmustbeabletogeneratestandardbaudrates.Thisrestrictstheclockfre-quenciesthatcanbeused.Thesystemmustbeabletooperateusing55nSaccesstimeflashmemorytostorethecode.Thisavoidssystemthatmustuseimpracticaloroverlyexpensivememorytostorecode.Inmostcasestheactualtestswererunusingavailableequipmentandinonecaseasoft-war……
  • 所需E币: 4
    时间: 2019-12-25 15:01
    大小: 471.94KB
    上传者: 2iot
    TraditionalDSPisbasedonalgorithms,changingdatafromoneformtoanotherthroughstep-bystepprocedures.Mostofthesetechniquesalsoneedparameterstooperate.Forexample:recursivefiltersuserecursioncoefficients,featuredetectioncanbeimplementedbycorrelationandthresholds,animagedisplaydependsonthebrightnessandcontrastsettings,etc.Algorithmsdescribewhatistobedone,whileparametersprovideabenchmarktojudgethedata.Theproperselectionofparametersisoftenmoreimportantthanthealgorithmitself.Neuralnetworkstakethisideatotheextremebyusingverysimplealgorithms,butmanyhighlyoptimizedparameters.Thisisarevolutionarydeparturefromthetraditionalmainstaysofscienceandengineering:mathematicallogicandtheorizingfollowedbyexperimentation.Neuralnetworksreplacetheseproblemsolvingstrategieswithtrial&error,pragmaticsolutions,anda"thisworksbetterthanthat"methodology.ThischapterpresentsavarietyofissuesregardingparameterselectioninbothneuralnetworksandmoretraditionalDSPalgorithms.CHAPTERNeuralNetworks(andmore!)26TraditionalDSPisbasedonalgorithms,changingdatafromoneformtoanotherthroughstep-by-stepprocedures.Mostofthesetechniquesalsoneedparameterstooperate.Forexample:recursivefiltersuserecursioncoefficients,featuredetectioncanbeimplementedbycorrelationandthresholds,animagedisplaydependsonthebrightnessandcontrastsettings,etc.Algorithmsdescribewhatistobedone,whileparametersprovideabenchmarktojudgethedata.Theproperselectionofparametersisoftenmoreimportantthanthealgorithmitself.Neuralnetworkstakethisideatotheextremebyusingverysimplealgorithms,butmanyhighlyoptimizedparameters.Thisisarevolutionarydeparturefromthetraditionalmai……