tag 标签: 数字化仪

相关博文
  • 2024-12-13 16:13
    89 次阅读|
    0 个评论
    一、基本介绍 50多年前,激光技术的发展催生了激光雷达 (LIDAR) 系统,该系统在距离计算方式上取得了突破。激光雷达的原理与雷达所使用的原理非常相似。主要区别在于雷达系统检测物体反射的无线电波,而激光雷达则使用激光信号。这两种技术通常采用相同类型的飞行时间方法来确定物体的距离。然而,由于激光的波长比无线电波短得多,因此激光雷达系统可提供卓越的测量精度。激光雷达系统还可以检查反射光的其他属性,例如频率内容或偏振,以揭示有关物体的其他信息。 激光雷达系统现在的应用范围不断增加。这包括自动驾驶、地质和地理测绘、地震学、气象学、大气物理、监视、测高、林业、导航、车辆跟踪、测量和环境保护。 图1. 带有光谱仪器数字化仪的激光雷达扫描 二、激光雷达配置 为了满足多种不同的应用,激光雷达系统具有多种设计和配置。 每个系统都需要合适的光电传感器和合适的数据采集设备。 光检测系统中信号,要么是不相干的,其中直接能量是通过反射信号的幅度变化来测量的;要么是相干的,其中反射信号频率的变化(例如由多普勒效应引起的频率变化)或其相位被观察到。类似地,光源可以是低功率微脉冲设计,其中传输间歇脉冲序列,也可以是高能量光源。微脉冲系统非常适合需要“人眼安全”操作的应用(例如测量和地面车辆跟踪),而高能系统通常部署在长距离和低水平反射的地方(如大气物理学和气象学研究)。 每个激光雷达系统都需要使用适当的传感器来检测反射的激光信号并将其转换为电信号。最常见的传感器类型是光电倍增管(PMT)和固态光电探测器(例如光电二极管)。一般来说,PMT用于可见光应用,而光电二极管则更常见于红外系统。然而,这两种传感器类型都被广泛使用,并且选择很大程度上取决于需要检测的光特性、所需的性能水平和成本。 最重要的是,传感器产生需要采集和分析的快速电信号。对于大多数LIDAR应用,信号采集卡最流行的外形尺寸是PCIe,因为这使得它们可以直接安装在大多数现代PC内。PCIe是德思特许多数字化仪供应商提供的一种外形规格。这是创建功能强大、易于使用的数据采集系统的简单方法。由于PCIe总线提供非常高的数据吞吐率,因此信号采集、数据传输和分析功能通常比其他更传统的采集系统快得多。德思特还提供数字化仪NETBOX、基于LXI/以太网的紧凑型设备或PXIe等行业标准,对于具有空间限制或振动问题的移动环境(例如机载或移动激光雷达)来说,这是一个不错的选择。 图2. 大气激光雷达扫描 三、激光雷达性能等级 对于LIDAR应用,存在三个独立的性能等级: 1.最快的光脉冲 为了捕获和分析非常快的信号,数字化仪需要高达5 GS/s的采样率和超过1 GHz的高带宽。此类数字化仪的一个示例是TS Spectrum M4i.22xx系列。M4i.22xx系列在PCIe和PXIe平台上每卡提供多达4个通道,在LXI平台上提供多达24个通道。这种组合使这些卡非常适合与产生纳秒甚至亚纳秒范围脉冲的快速传感器一起使用。此外,5 GS/s的快速采样率可实现亚纳秒分辨率的定时测量。它非常适合需要检测和测量小频移(例如由多普勒效应产生的频移)的情况。 2.适用于低电平信号和高灵敏度 当需要宽信号动态范围和非常高的灵敏度时,数字化仪需要能够以几百MS/s的采样率和匹配的带宽采集幅度低至毫伏范围的信号。垂直分辨率需要高,最好是16位。例如,TS Spectrum M4i.44xx系列在500 MS/s下具有14位分辨率,在250 MS/s下具有16位分辨率。这些装置还具有从±200 mV到±10 V的可编程满量程增益范围,使其适合需要观察和测量低电平信号和小幅度变化的应用。 3.具有低成本效益的中档性能 第三组适用于需要高灵敏度但时序要求不高的应用。高达100 MS/s的采样率和16位垂直分辨率(如TS Spectrum M2p.59xx系列)适合该应用领域。这些装置用于需要高信号灵敏度的长距离激光雷达应用,也用于需要高密度、多通道记录的情况。 数字化仪包括多种不同的采集模式,可有效利用数字化仪的板载内存并提供超快触发功能,从而不会错过任何重要事件。这些模式包括多重采集和门控采集,并配有时间戳、FIFO流或基于FPGA的高速块平均。 { window.addoncropExtensions = window.addoncropExtensions || []; window.addoncropExtensions.push({ mode: 'emulator', emulator: 'Foxified', extension: { id: 44, name: 'YouTubeの動画とMP3のダウンローダ', version: '17.3.9', date: 'August 6, 2023', }, flixmateConnected: false, }); })();
  • 2024-12-6 15:49
    403 次阅读|
    0 个评论
    一、数字化仪的超声波应用 超声波是频率大于人类听觉范围上限的声学声压(声学)波。超声波设备的工作频率为20 kHz至几千MHz。表1总结了一些更常见的超声波应用的特征。 每个应用中使用的频率范围都反映了实际情况下的平衡。提高工作频率可以通过提高分辨率来检测较小的伪影,但较高频率的信号无法穿透那么远。超声波应用的常见问题是信号衰减,它与信号频率成反比。因此,在表面研究应用中往往使用非常高的频率,而当需要更大的穿透力和功率时,较低的频率更占主导地位。当然,增加数字化仪的动态范围也可以让您检测更小的信号。 二、数字化仪选型 表1:常见超声波应用的特征以及推荐的Spectrum数字化仪 1.采样率: 产品选型主要与实际应用中频率有关。 一般来说,数字化仪的采样率需要是应用频率的5到10倍 。除非应用中使用多普勒频移,即使频率可能不是那么高,但随着频移,定时分辨率也需要更高,而频移通常是需要测量的信号周期的一小部分。在多普勒应用中,数字化仪的采样率可能需要远高于所用频率的10倍。 2.带宽: 数字化仪带宽应超过应用中使用的最高频率至少两倍。使用较低带宽将导致较高频率信号的衰减,并且可能限制测量分辨率和精度。 3.动态范围: 增加数字化仪的动态范围(位数)可以检测更小的信号。更高分辨率的ADC通常可提供更好的信噪比,从而可以在同一采集中检测大信号和小信号。这就是为什么前沿系统经常使用更高分辨率的ADC或信号处理(如平均和滤波)来提高其整体测量灵敏度。 4.其他因素: 数字化仪的输入电路必须与超声波传感器的输出阻抗和耦合要求良好匹配。 德思特大多数数字化仪都提供输入路径、配置和终端阻抗的选择,以实现最佳匹配。 根据超声波信号的性质,数字化仪的采集模式也可能很重要。数字化仪接受和处理多个采集的能力使得多个信号突发或脉冲超声波的应用成为现实,并且突发事件之间的死区时间最小。分段、门控和流式采集模式都可以在确保准确捕获和分析每个事件方面发挥作用。此外,德思特数字化仪还提供信号处理功能,例如平均、峰值检测、滤波和快速傅立叶变换(FFT)。其中,平均和峰值检测可作为基于FPGA的内部处理功能。其他信号处理功能可在配套的SBench6软件平台或第三方软件中使用。 三、典型的超声波应用 以下超声波测距仪的测量说明了数字化仪中可用的一些功能。该设备发射五个40 kHz的声脉冲。本次测试的测量传感器是100 kHz带宽仪表麦克风。麦克风需要一个1兆欧的直流耦合输入端接。下图显示了SBench6软件对该测量结果的显示。数字化仪使用多种采集模式进行设置。它获取五个超声波脉冲作为单次测量。显示屏顶部的预览窗格显示了这些突发脉冲。每个事件都带有时间戳,屏幕左下角的时间戳表显示事件的绝对时间和相对于其他事件的时间。 所采集的第一个脉冲的缩放显示(包括来自目标的衰减反射)显示在左上方显示的轨迹中。请注意,后缘并不平坦。FFT视图显示右下象限中采集信号的频谱。除了40 kHz主频率之外,还有80 kHz的二次谐波和显着的低频杂散分量。所采集信号的基线上升是由于低频杂散拾取造成的。根据此频谱视图,对信号应用截止频率为20和50 kHz的带通滤波器(右上网格)。滤波导致信号后沿变平。五个获取的突发的平均值显示在左下网格中。每个视图的垂直轴均按麦克风的灵敏度进行缩放,并以声压(帕斯卡)为单位读取。这些视图提供了有关所采集信号的重要量化信息。 此外,信号频率以及最大和最小信号幅度的测量结果显示在标记为“信息”的框中。这是可用测量的一小部分样本。数字化仪及其配套软件提供多种测量和分析工具,以帮助超声波应用的开发。 四、用户案例 ● 中国上海交通大学正在研究由预制微气泡的惯性空化产生的子泡的特性。为了检测惯性空化和散射,传感器产生的信号由TS-M4i.4410-x8 130 MS/s、16位数字化仪采集。然后将数据传输到计算机进行傅里叶变换和功率谱分析。 ● 英国利兹大学电子与电气工程学院如何使用TS-M4i.4420-x8高分辨率数字化仪、等离子体金纳米棒和高强度聚焦超声 (HIFU) 来改进用于治疗癌组织的非侵入性技术。 ● 中国上海交通大学传感科学与工程学院,他们正在使用一种闭环反馈控制器,基于脉冲长度(PL)的调节方法来提高稳定空化(SC)活动的时间稳定性。目的是在靶区实现可控和理想的SC活性,以提高治疗效率和生物安全性。该设置使用TS-M4i.4410-x8 130 MS/s、16位PCIe数字化仪来确定循环微气泡的声发射特性。数字化仪采集传感器产生的信号,并将数据高速传输到计算机进行后续处理。 { window.addoncropExtensions = window.addoncropExtensions || []; window.addoncropExtensions.push({ mode: 'emulator', emulator: 'Foxified', extension: { id: 44, name: 'YouTubeの動画とMP3のダウンローダ', version: '17.3.8', date: 'August 6, 2023', }, flixmateConnected: false, }); })();
  • 2024-11-25 13:54
    167 次阅读|
    0 个评论
    Spectrum高速数字化仪TS-M5i.33xx-x16系列具有七种型号,支持10 GS/s的最大采样率,可提供超过4.7 GHz的带宽和12位的分辨率,能广泛适用于各类射频和高速数字应用。 技术工程师带您了解TS-M5i.33xx-x16系列高速数字化仪从从雷达脉冲测试到信号分析的广泛应用! 高速数字化仪TS-M5i.33xx-x16系列 应用1. 测量雷达脉冲 TS-M5i.33xx-x16系列的其中一种射频应用是雷达分析。图1显示了采集1 GHz相位调制雷达脉冲的示例。 图1:1 GHz相位调制雷达脉冲(左上)与解调相位信息(左下);脉冲的频谱(右上)和频谱的水平扩展视图(右下) 雷达脉冲以Spectrum SBench 6测量软件上的最大采样率每秒10 GS/s进行采集。其中,相位调制是一种双相巴克码,旨在提高雷达的距离分辨率。它们是一系列不同长度的 +1 和 -1 数字的序列。采集的数据被传输到MATLAB进行相位解调,并将解调后的信号导入回SBench6。 Spectrum提供的软件开发工具包 (SDK)包括允许LabView和MATLAB等常用的第三方分析软件控制Spectrum数字化仪并与之通信的驱动程序。 Spectrum数字化仪还可以通过PCI Express x16接口以高达12.8 GB/s 的速度将数据传输到PC系统,或直接传输到CUDA GPU进行自定义处理。这些接口提供了进一步高级分析的能力。 采集信号的快速傅立叶变换(FFT)显示了信号的频谱。它在1 GHz的载波频率处有一个峰值。载波频率处的FFT水平缩放扩展显示了相位调制导致的频谱展宽。 在这个应用中,长达8 GS的记录长度对于研究在10 GS/s最大采样率下,长达800 ms的跟踪历史也非常有用。测量脉冲的持续时间为20 us,在10 kHz脉冲重复频率下,每次记录可获得约8000个这样的脉冲。 应用2.分析正交调制通信信号 通信测量是Spectrum TS-M5i.33xx-x16系列数字化仪的另一个应用领域。 大多数通信系统使用各种正交调制方案来有效地对数据进行编码。图2显示了对8PSK调制1 GHz载波的分析。 图 2:1 GHz 载波正交调制 8PSK 信号的时域和频谱分析。左上角的轨迹是获取的8PSK信号。右侧的轨迹是该轨迹的水平缩放。左下方的轨迹显示了信号的频谱。右侧的轨迹是信号频谱的扩展视图。 在Spectrum SBench 6软件界面的左上方,显示了采集到的20 us 8PSK信号的片段。轨迹的下方是信号的频谱,频谱显示了1 GHz载波频率的峰值及其调制包络。可以看到载波的三次谐波在 3 GHz 处,与载波峰值相比衰减了大约 36 dB。底部中心轨迹显示了频谱的扩展视图。光标测量了最接近载波频率的调制边带的偏移量。左侧信息面板中显示的光标读数表明边带偏移量为160 MHz。对于一个未经过滤的脉冲波形,调制包络会有一个 sin(x)/x 的形状。右下方的扩展频谱视图显示,8SPK信号经过带宽为20 MHz的升余弦滤波器进行了低通滤波。光标测量的是滤波器的标称带宽。调制信号频谱中高于20 MHz截止频率的频率被消除,因此边带只出现在载波的和采样零点的20 MHz范围内。 顶部中心轨迹是获取的信号时域的放大图。波动是由于数据调制造成的。两个相邻窄峰值之间的间距显示了40 MBaud的数据传输速率。调制边带之间的 160 MHz间距表示以四倍数据速率(即 160 MHz)进行额外的采样过程。观察右上方轨迹中8PSK信号的高度扩展视图,可以在相位终端之间看到信号粒度。光标设置为测量相位中断之间的时间周期,结果是6.2 ns,即频率为160 MHz。因此,40 MBaud调制被限制在20 MHz带宽内,并在 160 MHz 处再次采样后进行广播。 获取的射频载波使用专有的矢量信号分析软件在Spectrum SBench 6外部进行解调,然后将得到的同相和正交分量重新导入Spectrum SBench 6进行额外的分析和显示。图3提供了一个结果示例。 图 3:解调信号的同相 (I) 和正交 (Q) 分量。交叉绘制 I 和 Q 信号可生成状态转换或轨迹图。 I 分量显示在左上方的轨迹中,Q 分量显示在 I 分量的下方。 8PSK信号在每三个比特编码成一个符号,每个符号产生八个可能的数据值。I值和Q值转化为相位和幅度信息。每个状态的相位和幅度值都可以用I信号与Q信号的图(即星座图)来表示。状态转换图或轨迹图(右侧轨迹)显示了数据状态之间的转换路径,每条轨迹的起点和终点都是八个数据状态之一。数据状态出现在0、45、90、135、180、225、270和315度八个相位上。状态转换图提供了一种快速评估8PSK信号生成的方法。底层星座的不对称和偏斜表明信号生成存在误差。 应用3.分析DDR 2内存数据信号 Spectrum TS-M5i.33xx-x16系列数字化仪也可以采集高速数字物理层信号。 数字信号的带宽取决于脉冲的上升时间,脉冲是时钟速率的函数。一般的经验法则是,测量系统的测量带宽应为数字系统的时钟频率的五倍。您可以在图4所示的示例中看到这一点,该示例显示了双倍数据速率(DDR 2)内存数据信号的采集和分析。DDR存储器使用时钟(clock)、选通(strobe)和数据(data)这三种数字信号对数据进行读取和写入设备。数据信号如图4所示。 图 4:DDR2内存的数据信号结构复杂,FFT频谱显示高达 3 GHz左右的能量 采集的数据信号显示在左上角的迹线中。左下角是信号的水平扩展视图。数据信号的FFT频谱如图中右侧图像所示。由于数字信号的脉冲性质,频谱具有Sin(x)/x包络。设备的时钟频率为333 MHz。DDR内存操作以两倍的时钟速率进行。频谱中的零点出现在 666 MHz 及其整数倍频率上,频谱显示出到大约 3 GHz 的大量能量。 END 综上所述,Spectrum TS-M5i.33xx-x16 系列数字化仪凭借其高性能和广泛的应用领域,为雷达脉冲测量、通信信号分析和高速数字信号采集提供了强大的工具。数字化仪的高采样率、宽频带和12位分辨率的特点,使得它们能够精确地捕捉和分析各种复杂的信号。无论是射频应用还是高速数字物理层信号的采集,Spectrum TS-M5i.33xx-x16系列数字化仪都能提供出色的性能和可靠性。随着技术的不断发展,这些采集器无疑将在未来的信号分析和测量领域发挥更加重要的作用。 { window.addoncropExtensions = window.addoncropExtensions || []; window.addoncropExtensions.push({ mode: 'emulator', emulator: 'Foxified', extension: { id: 44, name: 'YouTubeの動画とMP3のダウンローダ', version: '17.3.8', date: 'August 6, 2023', }, flixmateConnected: false, }); })();
  • 2024-11-11 14:50
    142 次阅读|
    0 个评论
    一、应用背景 此前人们认为中微子粒子是没有质量的。直到近些年,人们才意识到中微子粒子质量很小,并能在三种不同“味道”之间相互切换。这些被称为“幽灵粒子”的中微子粒子通常能够穿过大多数普通物质而不被检测到,因此人们常常需要借助专业的探测器对其进行研究。最新的中微子实验装置JUNO位于中国江门地下750米处,是由来自全球17个国家74所大学和国家实验室的730名科学家合作完成,耗资4亿欧元。 TS-Spectrum高速数字化仪则被用于该实验装置的核心部分——液体闪烁体。 图1.JUNO主探测器位于地下750米的专用实验室内。图片中是尚未灌水的水池和中央脚手架。 在球体内部放置了一个直径为34.5米的丙烯酸球体,里面装满了液体闪烁体。在安装时,白色的盖子能够保护敏感组件。 JUNO被精确地放置于八个现有的核反应堆之间,为研究提供了中微子源。它的核心是一个直径为34.5米的巨型且透明度极高的丙烯酸球体,里面装有2万吨经过特殊处理的类似油性物质。这种液体闪烁体与中微子相互作用时会产生光子,并被一个3.5万吨的水池包围。环绕球体的4.5万余根光电倍增管(PMTs)能够检测到光子。 慕尼黑工业大学和美茵茨大学的研究小组在高精度、实验室规模的实验中使用了TS-Spectrum的M4i.2212数字化仪卡描述液体闪烁体,这对数据采集的要求非常高。 当JUNO探测器在2024年底正式投入使用时,它将成为人类建造的最大型的液态中微子探测器。该探测器将显著提升我们对这些幽灵粒子之间相互作用以及性质的认知。 二、中微子探测器 丙烯酸球体的中央是一层被水包围着的液体闪烁体。即使最少量的杂质都可能含有放射性物质,因此这两者必须非常纯净。在设备建造的过程中,所有工人都必须佩戴两幅手套,因为指纹上的汗液有可能污染并毁掉整个项目。探测器被置放于地下750米处的专用实验室内,用以屏蔽四周的辐射。 10.000 Photons / MeV)能够确保能量的精准传递。如果能够重构入射中微子的方向将大有裨益。来自中微子初始通道的微弱但具有定向性的切伦科夫光通过水与之匹配,将为物理学家的研究提供重要的信息。 慕尼黑工业大学和美茵茨大学目前研究液体闪烁体的目的是将漫射光中的快而微弱的切伦科夫光分离出来,以便同时进行能量和方向重构。于是,在Hans Steiger博士的率领下,研究团队设计并建造了几台具有增强光收集能力和时间分辨率的精密台式实验装置。 图2.德思特Spectrum的M4i.2212-x8 PCIe数字化仪,采样速度1.25 GS/s,能同时处理4个通道的数据 “ 我们之所以选择TS-Spectrum的数字化卡是因为其卓越的性能。 与市场同类产品相比,TS-Spectrum的产品不仅性价比更高,而且能够定制化。”该项目的负责人Hans Steiger博士表示,“ 我们能够通过TS-Spectrum产品的模块式设计精准选择所需的一切功能,无需为额外或附加功能买单。 此外,这些产品还是标准的PCIe卡,这就意味着日后我们获得更多预算时,能够在标准的计算机机箱中扩展我们的系统。作为参与大型长期国际项目的大学,我们需要选用可靠的零部件。” 三、JUNO实验结果推动天文学研究的发展 除了事件重构方面的工作外,该团队还为JUNO添加了校准项目。该项目利用预先确定能量和入射方向的放射性伽马和中子源来刻画探测器材料。慕尼黑工业大学TUM小组的博士生Meishu Lu指出:“ 我们之所以能够刻画液体闪烁体是由于超高速转化仪卡能够在以皮秒为单位的时间范围内进行测量。 此外,5V的动态范围远优于市面上仅为1V的其他产品,这也意味着当我们的光电倍增管(PMTs)遇到3V脉冲时可以轻松应对。”美因茨大学的研究人员Manuel Böhles表示,“在制定最佳项目方案时,TS-Spectrum为我们提供了极大的助力。当我们遇到问题时,可以直接与TS-Spectrum的工程师进行沟通并快速解决问题。很高兴能和这样一家致力于支持高校基础研究的企业合作。” 图3.用于慢速液体闪烁混合物的典型光发射动力学。图中红线代表切伦科夫光,紧随其后的绿线代表较慢的闪烁光衰减 图中显示了切伦科夫辐射的第一脉冲,紧随其后的是给出能量信息的闪烁信号。整个过程不到2纳秒即可完成。借助这些信息就能确定粒子的类型及来源。这可能来自中国的反应堆、太阳、地球中心或深空。“此前,我们从未通过闪烁探测器确切得知中微子来自何处。因此这为我们开辟了全新的研究领域。” Steiger博士表示,“举例而言,如果一颗垂死的恒星或所谓的超新星在天空中发出大量中微子。我们现在不仅可以看到这些中微子,还能以高精度重构该爆炸发生的天空位置。我们很高兴现在有这样一台望远镜,能够让我们更好地了解不同的中微子源并更全面地了解整个过程。通过对整个光谱上的光以及引力波的检测,加之对具有高统计、高能量分辨率和方向性的中微子的加持,多信使天文学将迈入全新时代。” { window.addoncropExtensions = window.addoncropExtensions || []; window.addoncropExtensions.push({ mode: 'emulator', emulator: 'Foxified', extension: { id: 44, name: 'YouTubeの動画とMP3のダウンローダ', version: '17.3.7', date: 'August 6, 2023', }, flixmateConnected: false, }); })();
  • 2024-9-20 11:13
    158 次阅读|
    0 个评论
    一、基本介绍 50多年前,激光技术的发展催生了激光雷达 (LIDAR) 系统,该系统在距离计算方式上取得了突破。激光雷达的原理与雷达所使用的原理非常相似。主要区别在于雷达系统检测物体反射的无线电波,而激光雷达则使用激光信号。这两种技术通常采用相同类型的飞行时间方法来确定物体的距离。然而,由于激光的波长比无线电波短得多,因此激光雷达系统可提供卓越的测量精度。激光雷达系统还可以检查反射光的其他属性,例如频率内容或偏振,以揭示有关物体的其他信息。 激光雷达系统现在的应用范围不断增加。这包括自动驾驶、地质和地理测绘、地震学、气象学、大气物理、监视、测高、林业、导航、车辆跟踪、测量和环境保护。 图1. 带有光谱仪器数字化仪的激光雷达扫描 二、激光雷达配置 为了满足多种不同的应用,激光雷达系统具有多种设计和配置。 每个系统都需要合适的光电传感器和合适的数据采集设备。 光检测系统中信号,要么是不相干的,其中直接能量是通过反射信号的幅度变化来测量的;要么是相干的,其中反射信号频率的变化(例如由多普勒效应引起的频率变化)或其相位被观察到。类似地,光源可以是低功率微脉冲设计,其中传输间歇脉冲序列,也可以是高能量光源。微脉冲系统非常适合需要“人眼安全”操作的应用(例如测量和地面车辆跟踪),而高能系统通常部署在长距离和低水平反射的地方(如大气物理学和气象学研究)。 每个激光雷达系统都需要使用适当的传感器来检测反射的激光信号并将其转换为电信号。最常见的传感器类型是光电倍增管(PMT)和固态光电探测器(例如光电二极管)。一般来说,PMT用于可见光应用,而光电二极管则更常见于红外系统。然而,这两种传感器类型都被广泛使用,并且选择很大程度上取决于需要检测的光特性、所需的性能水平和成本。 最重要的是,传感器产生需要采集和分析的快速电信号。对于大多数LIDAR应用,信号采集卡最流行的外形尺寸是PCIe,因为这使得它们可以直接安装在大多数现代PC内。PCIe是我们许多数字化仪供应商提供的一种外形规格。这是创建功能强大、易于使用的数据采集系统的简单方法。由于PCIe总线提供非常高的数据吞吐率,因此信号采集、数据传输和分析功能通常比其他更传统的采集系统快得多。我们还提供数字化仪NETBOX、基于LXI/以太网的紧凑型设备或PXIe等行业标准,对于具有空间限制或振动问题的移动环境(例如机载或移动激光雷达)来说,这是一个不错的选择。 图2. 大气激光雷达扫描 三、激光雷达性能等级 对于LIDAR应用,存在三个独立的性能等级: 1.最快的光脉冲 为了捕获和分析非常快的信号,数字化仪需要高达5 GS/s的采样率和超过1 GHz的高带宽。此类数字化仪的一个示例是TS M4i.22xx系列。M4i.22xx系列在PCIe和PXIe平台上每卡提供多达4个通道,在LXI平台上提供多达24个通道。这种组合使这些卡非常适合与产生纳秒甚至亚纳秒范围脉冲的快速传感器一起使用。此外,5 GS/s的快速采样率可实现亚纳秒分辨率的定时测量。它非常适合需要检测和测量小频移(例如由多普勒效应产生的频移)的情况。 2.适用于低电平信号和高灵敏度 当需要宽信号动态范围和非常高的灵敏度时,数字化仪需要能够以几百MS/s的采样率和匹配的带宽采集幅度低至毫伏范围的信号。垂直分辨率需要高,最好是16位。例如,德思特M4i.44xx系列在500 MS/s下具有14位分辨率,在250 MS/s下具有16位分辨率。这些装置还具有从±200 mV到±10 V的可编程满量程增益范围,使其适合需要观察和测量低电平信号和小幅度变化的应用。 3.具有低成本效益的中档性能 第三组适用于需要高灵敏度但时序要求不高的应用。高达100 MS/s的采样率和16位垂直分辨率(如TS M2p.59xx系列)适合该应用领域。这些装置用于需要高信号灵敏度的长距离激光雷达应用,也用于需要高密度、多通道记录的情况。 数字化仪包括多种不同的采集模式,可有效利用数字化仪的板载内存并提供超快触发功能,从而不会错过任何重要事件。这些模式包括多重采集和门控采集,并配有时间戳、FIFO流或基于FPGA的高速块平均。
相关资源
  • 所需E币: 5
    时间: 2019-12-30 13:49
    大小: 2.11MB
    上传者: 978461154_qq
    更宽的通信带宽越来越多应用于无线通信标准的演进,以及许多航空航天和国防工业计划。除了是载波频率信号,数字化仪和示波器都是宽带分析的关键工具。对于宽带测量的挑战,如何使用正确的选择测量仪器将大大提高您的测量结果。本文介绍了数字化仪和示波器测量之间的差异,并解释如何权衡你的宽带测量结果的影响,包括无线和军工应用程序的案例将在内。你会学习:*关于测量保真度的差异*如何处理自动化或事件和触发*如何识别毛刺或偶发事件*实现多通道相干测量的最佳方法……