tag 标签: isi

相关博文
  • 热度 26
    2015-3-4 09:08
    3443 次阅读|
    0 个评论
        既然传输通道的ISI的影响可以通过事先对传输通道的特性进行精确测量而预测出来,那么就有可能对其进行修正。发送端的预加重和接收端的均衡电路就是两种最常见的对通道传输的影响进行补偿的方法。传输通道最明显的影响是其低通的特性,即会对高频信号进行比较大的衰减。对于一个方波信号来说,其高次谐波对于信号形状的影响很大,如果所有高次谐波全部被衰减掉了,方波看起来就象个正弦波了。       预加重(Pre-emphasis)是一种在发送端事先对发送信号的高频分量进行补偿的方法。这种方法是增大信号跳变边沿后第一个bit(跳变bit)的幅度(预加重)。比如对于一个00111的序列来说,做完预加重后序列里第一个1的幅度会比第二个和第三个1的幅度大。由于跳变bit代表了信号里的高频分量,所以这种方法有助于提高发送信号里的高频分量。在实际实现时,有时并不是增加跳变bit的幅度,而是相应减小非跳变bit的幅度,这种方法有时又叫去加重(De-emphasis)。         对于预加重技术来说,其对信号改善的效果取决于其预加重的幅度的大小,预加重的幅度是指经过预加重后跳变比特相对于非跳变比特幅度的变化。预加重幅度的计算公式如图2.30所示。数字总线中经常使用的预加重有3.5dB、6dB、9.5dB等。对于6dB的预加重来说,相当于在发送端看,跳变比特的电压幅度是非跳变比特电压幅度的2倍。       简单的预加重对信号的频谱改善并不是完美的,比如其频率响应曲线并不一定和实际的传输通道的损耗曲线相匹配,所以高速率的总线会采用阶数更高、更复杂的预加重技术。如下图所示是一个3阶的预加重,其除了对跳变沿后面的第1个比特进行预加重处理外,跳变沿之后的第2个比特的幅度也有变化。跳变沿后第1个比特的幅度变化有时也叫Post Cursor1,跳变沿后的第2个比特的幅度变化有时也叫Post Cursor2。有些总线如PCI-E3.0,会对跳变沿前面的1个比特的幅度也进行调整,叫做Pre Cursor1,有时也称为PreShoot。       由于真正的预加重电路在实现的时候需要有相应的放大电路来增加跳变比特的幅度,电路比较复杂而且增加系统功耗,所以在实际应用时更多采用的是去加重的方式(De-Emphasis)。去加重技术不是增大跳变比特的幅度,而是减小非跳变比特的幅度,从而得到和预加重类似的信号波形。下图是对一个10Gbps的信号进行-3.5dB的去加重后对频谱的影响。可以看到,去加重主要是通过压缩信号的直流和低频分量(长0或者长1的比特流),从而改善其在传输过程中可能造成的对短的0或者短1比特的影响。       最简单的去加重实现方法是把输出信号延时一个或多个比特后乘以一个加权系数并和原信号相加。去加重方法实际上压缩了信号直流电平的幅度,去加重的比例越大,信号直流电平被压缩得越厉害,因此去加重的幅度在实际应用中一般很少超过-9.5dB,极端情况下也就用到-12db左右。
  • 热度 18
    2015-1-16 14:54
    2171 次阅读|
    0 个评论
      通过前面的研究我们知道数字信号的频谱是分布很宽的,其最高的频率分量范围主要取决于信号的上升时间而不仅仅是数据速率。当这样高带宽的数字信号在传输时,所面临的第一个挑战就是传输通道的影响。    真正的传输通道如PCB、电缆、背板、连接器等的带宽都是有限的,这就会把原始信号里的高频成分销弱或完全滤掉,高频成分丢失后在波形上的表现就是信号的边沿变缓、信号上出现过冲或者震荡等。     另外,根据法拉第定律,变化的信号跳变会在导体内产生涡流以抵消电流的变化。电流的变化速率越快(对数字信号来说相当于信号的上升或下降时间越短),导体内的涡流越强烈。当数据速率达到约1Gb/s以上时,导体内信号的电流和感应的电流基本完全抵消,净电流仅被限制在导体的表面上流动,这就是趋肤效应。趋肤效应会增大损耗并改变电路阻抗,阻抗的改变会改变信号的各次谐波的相位关系,从而造成信号的失真。    除此以外,最常用来制造电路板的FR-4介质是玻璃纤维编织成的,其均匀性和对称性都比较差,同时FR-4材料的介电常数还和信号频率有关,所以信号中不同频率分量的传输速度也不一样。传输速度的不同会进一步改变信号中各个谐波成分的相位关系,从而使信号更加恶化。     因此,当高速的数字信号在PCB上传输时,信号的高频分量由于损耗会被销弱,各个不同的频率成分会以不同的速度传输并在接收端再叠加在一起,同时又有一部分能量在阻抗不连续点如过孔、连接器或线宽变化的地方产生多次反射,这些效应的组合都会严重改变波形的形状。要对这么复杂的问题进行分析是一个很大的挑战。    值得注意的一点是,信号的幅度衰减、上升/下降时间的改变、传输时延的改变等很多因素都和频率分量有关,不同频率分量受到的影响是不一样的。而对数字信号来说,其频率分量又和信号中传输的数字符号有关(比如0101的码流和0011的码流所代表的频率分量就不一样),所以不同的数字码流在传输中受到的影响都不一样,这就是码间干扰ISI(inter-symbol interference ISI)。   注:关于传输通道影响以及ISI的概念也可以参考本人刚出版的《高速数字接口原理与测试指南》一书。
  • 热度 22
    2012-8-30 15:16
    2746 次阅读|
    0 个评论
        无线信号在空间传播时,多径反射、折射的一个后果是时延扩展(delay spread)。如果时延扩展小于符号持续时间,一个符号的多径分量就会对之前或者之后的符号产生干扰,这叫做符号间干扰(ISI,Intersymbol Interference)。     CDMA系统,从IS-95、IS-2000到EVDO,符号速率都是1.2288 Msps,也就是说每个符号的持续时间是0.81微秒。CDMA系统解决符号间干扰的主要方法是接收分集(或者叫rake接收机)。Rake接收机能够识别多径分量,并且将多径分量的功率累积起来,组合成最终的接收信号。但是,CDMA rake接收机不能识别和累加时延扩展小于0.82us且功率很小的多径分量。而这正是密集市区无线环境(比如上海)的场景,那里多径分量的时延扩展往往小于0.81us,而且由于基站密度很高,往往需要调低基站发射功率。     这就是为什么WCDMA觉得有必要将符号速率提高到3.84 Msps,这样理论上WCDMA rake接收机可以处理时延扩展大于0.26us的多径分量。     OFDM则用另一种策略对付ISI,它通过子载波,降低了符号速率,因此拉长了符号持续时间,因此大大消除了ISI对符号的干扰。