tag 标签: 电的

相关资源
  • 所需E币: 5
    时间: 2020-1-13 12:50
    大小: 46KB
    上传者: 二不过三
    手机锂电池充电的基本知识关于手机锂电池充电的知识|[pic]返回页首楼层:1||[pic]第1页:手机锂离子电池基本概念目前的手机基本上所配电池都是锂离子电池,所以我下面所讲的是针对锂离子电池的充电知识。镍氢电池有所不同,这里不谈。1、锂离子电池标称电压3.7V(3.6V),充电截止电压4.2V(4.1V,根据电芯的厂牌有不同的设计)。(锂离子电芯规范的说法是:锂离子二次电池)2、对锂离子电池充电要求(GB/T182872000规范):首先恒流充电,即电流一定,而电池电压随着充电过程逐步升高,当电池端电压达到4.2V(4.1V),改恒流充电为恒压充电,即电压一定,电流根据电芯的饱和程度,随着充电过程的继续逐步减小,当减小到0.01C时,认为充电终止。(C是以电池标称容量对照电流的一种表示方法,如电池是1000mAh的容量,1C就是充电电流1000mA,注意是mA而不是mAh,0.01C就是10mA。)当然,规范的表示方式是0.01C5A,我这里简化了。3、为什么认为0.01C为充电结束:这是国家标准GB/T18287-2000所规定的,也是讨论得出的。以前大家普遍以20mA为结束,邮电部行业标准YD/T998-1999也是这样规定的,即不管电池容量多大,停止电流都是20mA。国标规定的0.01C有助于充电更饱满,对厂家一方通过鉴定有利。另外,国标规定了充电时间不超过8小时,就是说即使还没有达到0.01C,8小时到了,也认为充电结束。(质量没问题的电池,都应在8小时内达到0.01C,质量不好的电池,等下去也无意义)4、怎样区别电池是4.1V还是4.2V:消费者是无法区分的,这要看电芯生产厂家的产品规格书。有些牌子的电芯是4.1V和4.2V通用的,比如A&TB(东芝),国内厂家基本是4.2V,但也有例外,比如天津力神是4.1V……
  • 所需E币: 3
    时间: 2020-1-13 13:20
    大小: 144.5KB
    上传者: 16245458_qq.com
    便携式产品开关电源供电的电感选择,便携式产品开关电源供电的电感选择……
  • 所需E币: 5
    时间: 2020-1-13 13:54
    大小: 154.5KB
    上传者: 16245458_qq.com
    HD无线电的数据与音频处理技术HD无线电的数据与音频处理技术“是在接收设备存在之前广播公司就制作内容,还是在提供广播内容之前接收设备就存在?”,这个类似于传统的“鸡与蛋”的问题对于美国的地面数字广播来说并不存在。美国的卫星广播以及英国的数字音频广播(DAB)这两个系统的经验证明只有数字广播电台能提供内容,并且这些内容得到有效地宣传,才可能出现一个特定的市场。如果没有建立易于得到的内容基础,消费者是不会在数字广播设备上进行投入的,即使产品价格可接受而且产品很吸引人。这些观念可以应用在HD无线电广播方面,有助于提高用户的接受度并加快盈利,其中一些观念是从DAB部署中得来的。HD无线电技术模拟广播使用调频(FM)或者调幅(AM),这两种调制方法都是将信号调制到载波的某些特性:FM是对正弦载波的频率调制,而AM是对幅度进行调制。在射频发射后,承载信息的信号被接收、解调,并从发送信号中提取。当前AM和FM的波段分别在540~1,700kHz和88~108MHz之间。这些波段包含各种语音和音乐格式。不过,除了无线广播数据系统(RBDS)和其它小受众的数据副载波业务的有限使用之外,这两个频段都没有用于数据广播。HD无线技术不需要新的频谱,因为它可利用现有的AM和FM频段。在HD无线广播业内,存在混合与全数字两种形式。混合模式是在两个邻近边频带上传输数字信号,在两个频带之间播送模拟信号。全数字模式消除了模拟信道,采用全数字传输。与FM和AM信号获取相比,在接收这种信号时涉及到大量的数字信号处理。对于数字边频带,去除邻近的模拟信道是必需的(图1),更复杂的调制方案涉及到正交频分复用(OFDM)。[pic]图1:混合与全数字干扰除了去隔行处理和误码校……
  • 所需E币: 4
    时间: 2020-1-15 12:20
    大小: 95.5KB
    上传者: 微风DS
    TDSCDMA多媒体终端省电的解决方法TDSCDMA多媒体终端省电的解决方法摘要省电技术是移动终端设计的一项关键技术,目前的研究多数是针对待机模式下的省电技术。本文结合TD-SCDMA系统及终端的技术特点,深入研究并实现了TD-SCDMA多媒体终端在工作模式下的省电关键技术,这对于推动TD-SCDMA产业的发展有着重大的技术意义和现实意义。1.前言移动终端的通话时间和待机时间一直是业界关注的焦点问题之一。3G终端除支持类似2G终端的基本的语音、短信业务以外,还支持高速数据下载和视频电话等丰富的多媒体应用,为此增添了复杂的物理层数字信号处理和高层协议栈软件处理,大大增加了终端省电处理难度,也对3G终端的省电性能提出了更高的要求。目前,业界对于TD-SCDMA终端省电的研究集中在待机模式下,即通过周期性的睡眠-唤醒来达到在待机模式下省电的目的,而对于在正常工作模式下的省电研究甚少。正是基于这种情况,本文结合TD-SCDMA系统及终端的技术特性,深入研究并实现了TD-SCDMA多媒体终端在工作模式下的省电关键技术,这对于推动TD-SCDMA产业的发展有着重大的技术意义和现实意义。2、TD-SCDMA多媒体终端的总体结构TD-SCDMA的重要特点之一是可以提供高达384kbit/s的数据传输速率,远高于GSM的数据传输速率,这种数据速率不仅可以支持普通语音,还可支持多媒体业务,这也被喻为3G的“杀手级”应用。可支持300万像素摄像头及视频电话的TD-SCDMA多媒体终端的总体结构如图1所示,其中clk26M与clk32k是系统所用的两个外部时钟。[pic]图1TD-SCDMA多媒体终端的总体结构该终端基于Philips的Dragonfl……