tag 标签: 电源

相关帖子
相关博文
  • 2021-7-1 12:08
    114 次阅读|
    0 个评论
    首先,先介绍一下作为重要特性而说明的直流叠加容许电流和温度上升容许电流,与降压转换器的输出电流是什么关系。请看下图。 直流叠加容许电流 也被称为 饱和容许电流 。即波形图中蓝色线所示的电感的峰值电流。此前提过几次,当峰值电流超过直流叠加容许电流的最大值时,电感产生磁饱和,电感值减少。电感如果饱和,电感的峰值电流异常变大,导致效率下降或异常工作,甚至可能致使电源IC被破坏。 温度上升容许电流 也可以说是流经电感的电流和电阻成分带来的发热的容许值。在波形图中,红色所示的输出DC电流与粉色所示的三角波实效电流的合计即为温度上升容许电流。乘以电感的电阻量即为损耗功率,体现为发热。顺便提一下,三角波实效电流为峰值电流的1/√3,这部分成为AC损耗。当流过比温度上升容许电流大的电流时,发热增加,可能不仅使电感的可靠性下降,还使外围元器件的可靠性下降。另外,达到无法容许的发热水平时,可能引起线缆的绝缘不良,导致烧损。 -再稍微具体介绍一下峰值电流超过直流叠加容许电流值时的现象 有实际的波形数据,请看这个图。 这是使用三种特性不同的电感的降压型转换器数据。左上为相对于输出电流的效率,从图中可知,负载为500mA时没有什么差别,但1500mA时蓝色的电感效率比其他的要低。 左下的波形为相对于输出电流的电感值变化,蓝色电感的电感值在负载超过1000mA时急剧下降。也就是说该电感达到饱和状态。 右侧为电感电流的波形。右上为负载500mA时效率没有什么差异的状态下的波形,波形无特殊差异,正常。 右下为负载1500mA时的波形,饱和的蓝色电感的波形波动明显,峰值电流也增加。这是饱和导致电感值下降,从而导致峰值电流增加,进而电感值进一步下降,进一步流过电流的失控状态。 -也就是说,当出现因负载电流增加导致效率低于预期的症状时,确认电感电流的波形也是方法之一吧。 基本上在DC/DC转换器的评估阶段这是必须的确认项目,当观察到类似这样的波形异常时,或峰值电流明显超出计算值时,可以怀疑电感的饱和。顺便说一下,前面提到的鼓套型电感会急剧饱和,因此具有容易失控的性质,而树脂型电感的饱和相对缓和,可以说不易引起失控。 -接下来是有关温度上升容许电流的,详细介绍一下电感损耗 刚才探讨了输出电流的DC电流与电感AC电流的实效电流、以及电感的电阻。基本上就是如前所述,应该考虑AC电流的AC损耗与DC电流的DC损耗两方面,但电感的DC电阻Rdc与AC电阻Rac不同,需要同时考虑到Rac是因频率而变动的。 该图表示某电感的电阻及阻抗与频率的关系。绿线为电阻。Rdc是频率为零时的值。与之相比,Rac随频率提高而增加,一般开关稳压器的开关频段–几百kHz到几兆Hz的Rac为Rdc的几倍到几十倍。 -也就是说,AC损耗即使电流较小也可产生较大损耗对吧。而开关频率高时更是这样吧。 的确如此。负载电流的大小不同,损耗的主体也有很大不同。看图更容易理解。 电感的损耗功率如上述公式所示,为DC损耗功率+AC损耗功率。首先看负载较轻状态,输出电流小因此DC损耗少,AC成分占主导因而AC损耗占主导地位。相反,负载较重的状态,即输出电流较大的状态下,DC电流占主导。 另外,请看下面的数据。这是相同DC/DC转换器电路,使用电感值相同但结构、尺寸、及容许电流不同的电感时的负载-效率特性比较,以及各电感的Rac频率特性。 在负载较大的区域,电感的Rdc带来的DC损耗占主导地位。而在轻负载区域,Rac带来的AC损耗占主导地位。在此希望大家关注的是,根据电感的种类,Rdc、Rac均有波动,尤其Rac的波动较大。 从效率图可以读取到的是,轻负载时的效率差较大,因而Rac差较大。此外,从Rac图可知,Rac本身存在相当大的波动。纵轴为对数,因此粉色线电感与蓝色线电感相差几倍。 -AC损耗在低负载时占主导地位,不同电感种类的波动较大,这会产生什么问题吗? 例如,像智能手机一样待机状态较长的设备,其工作时间多为待机状态,负载电流即DC电流非常小。也就是说,AC损耗处于主导状态,电流尽管微小,但也产生相应的损耗。那么这类设备如果使用Rac较大的电感会怎样呢? -待机时间变短,电池的寿命可能会受影响。 是啊!电源是电池,因此应该先降低待机时的损耗。如果设计人员不了解电感的这些特性而选用了Rac较大的电感,则电池驱动的便携设备可能无法实现预期的工作时间。待机状态较长的电池设备,Rac小这一点是非常重要的。 -也就是说电感选型时,不仅仅关注电感损耗导致的发热,还要了解损耗因素与特性,这是非常重要的。 绝大多数规格值表中都没有Rac这项,相关官网上也很少有提供这项数据的。需要Rac信息时,请咨询相关制造商。 来源:techclass.rohm
  • 热度 1
    2021-6-3 14:57
    281 次阅读|
    0 个评论
    理解开关稳压器的特性和评估方法后,电源IC的技术规格解读非常重要。近年来一般的电源设计是指针对电源IC的依赖度度之高,实质上是以电源IC为中心进行设计。也就是说,不读电源IC的技术规格就无法设计。 本章将说明技术规格的代表项目,不过由于项目众多,将分成几个部分来说明。本项将说明技术规格的封面、IC的功能图示框图以及绝对最大额定和推荐工作条件。 电源IC技术规格的解读方法 封面、框图、绝对最大额定和推荐工作条件 电气特性的要点 特性图表、波形的看图方法 应用电路例 部件选定 输入等效电路 容许损耗 技术规格的封面 技术规格的封面除了其电源IC的概述、特长、用途等之外,也记载了最初应知道的种种事项。记载的项目或顺序会因厂商而有些微差异,不过基本上所涵盖的项目大致相同。但是,从内容相关细节或最初应知道的项目等可以隐约看出厂商的姿态或特征。 因此,技术规格的封面是相当重要的一页。以下述技术规格的封面为例,首先从“标题”可以大致明白何种电源IC。而且,“概述”更有稍微具体的说明,“特长”则进一步分条列举,明示所搭载的功能或代表性规格。此外,本技术规格中也有“重要特性”一项,列出电源IC首先应该确认的规格,就算没有详细的规格值表也可以知道最低限度的必要基本项目值。封装信息、安装空间等示意图也很必要。而且,所示用途的例和基本应用电路可以考虑是否使用于要设计的设备,从电路了解必要的外置部件、部件数量、部件尺寸示意图。最后,最下方显示硅单片IC非耐放射线设计。在开始点事先取得这些信息的话,往后的问题就会少一些。 2.7V~5.5V输入 3A 内置MOSFET 1ch 同步整流降压 DC/DC转换器 – BD9A300MUV 技术规格的封面虽然可以快速掌握概述,不过还是有很多注意需要掌握。 首先,记载的特性值没有明记是否为最大值或最小值等保证值、标准值(Typ)时,必须以规格值表确认。以封面所书写的值开始设计后,由于该项目只有标准值没有保证值而导致设计障碍的情况时有耳闻。 最后,请务必记得在规格值表或功能说明一项中确认细节。 ・框图 技术规格大多有刊载图标该IC内部构造的框图。框图可以概略知道内部有何种功能模块、以何种流动输出等。此外,框图一般会伴随各功能模块的工作说明或引脚的功能说明。这些是了解工作的重要信息,以下为示例。 ・绝对最大额定和推荐工作条件 技术规格有时会显示绝对最大额定和推荐工作条件。以下是绝对最大额定的定义和推荐工作条件的示意图。 ◆绝对最大额定的定义(依据JIS C 7032) 即使一瞬间也不能超过的界限值,而且如果有规定2项目以上规格值时,任何2个项目都不得同时到达的界限值。 ◆推荐工作范围 此为保证正常工作的规定,使用上必须确实遵守这种条件。与保证规格值的条件不同。 如果以输入电压为例,则绝对最大额定是“可以输入的电压,但不稳定要工作”。此外,额定,故此数值没有容许差或实力值等概念。此外,虽然一超过便有损坏的可能性,不过并没有提示会损坏的值。总之,是不得以无条件超过的值。 推荐工作范围虽说是“推荐”,但由于“必须确实遵守”,因此想必许多人也难以理解。尽管众说纷纭,然而英语系厂商的技术规格标示相同主旨的条件或数值作为Recommended operating condition,因此可以推测其被翻译成“推荐工作范围(条件)”来使用。的确,recommend有“推荐”的意思,不过也有“劝告、提及”等强烈的意思。此时,recommend为后者之意,如果斟酌意思的话,或许应翻译成“正常工作保证范围”或“工作保证条件”吧。总之,为取得所希望的工作或性能,必须在该条件下使用。以下为示例。请试着与电源电压的额定做比较。 电气特性的要点 针对“电源IC技术规格的解读方法”,继“技术规格的封面”、“框图”、“绝对最大额定和推荐工作条件”之后,本项接着说明“电气特性的要点”。 无论哪方,理解开关稳压器的特性和评估方法之后,解读电源IC的技术规格是非常重要的事情。 ・电气特性的要点 技术规格中必定会有显示IC特性及其保证值的规格值表。设计时虽然会使用此特性值,但可惜的是所有条件不可能都显示特性值。因此,特性值在已决定的电源电压、温度等条件下有规定。而很多条件值,例如Ta=25℃的值,而非Ta=25.1℃的值。不过,实际使用条件不可能刚好Ta=25℃,设备启动时虽然是室温,不过时间一久机箱内便会上升至50℃等例子不在少数。 也就是说,规格值表的值可以理解其数值为何种条件、是否为最小值或最大值等保证值、是否为标准值(typ),进一步添加后使用。以下为规格值表的参考例。红色箭头的地方规定了条件。在这些条件下可以保证记载的值,但是条件只要稍微不同便无法保证。此例中,温度条件为Ta=25℃,温度方面有时会提示所有工作温度范围的保证值。此时,当然就要参照所有温度范围的保证值。 ◆规格值表有显示设计所不可欠缺的特性值 注意保证值的条件(红色箭头)。利用图表判断是否参考尽可能接近自我使用条件的条件值 几乎所有规格值都为指定条件下某一点值,故有温度或电源电压等变动要件时必须以图表确认 规格值栏的最小/最大值为保证值。标准(Typ)非保证值 设计可以参考标准值,但必须进行最糟条件(最少/最大值)的验证 其次,应该思考IC特性值和应用电路特性值的关系。必须理解的是,电源IC的规格值并非为直接使用该IC的电源特性值。 示例如下。作为输出电压设定基准的FB引脚电压(有些厂商称为参考电压)基本上有规定并保证最大值和最小值。因此无庸置疑,当然是决定输出电压的重要特性值。 近年来开关电源用IC虽然FB引脚电压大多具有±1%等之高精度,但可惜的是在连接分压电阻后设定输出电压时(此工作模式规格)输出精度无法保证±1%。简而言之,使用电阻值和FB引脚电压公称值所计算的输出电压,只要有电阻和FB引脚电压的容许差,除非偶然否则绝对不会如计算值所示。 以下为使用±1%精度电阻而且FB引脚电压精度±1%时输出电压的误差例。 ◆规格值并不等于电源特性(性能)的例子 输出电压的精度包含如下 ・FB电压的误差:±1% ・电阻的公差:精度(例±1%)+系列近似值的选择(不限为计算的电阻值) 也就是说,如果打算制造输出电压精度±1%的电源时,如果选择FB引脚电压精度±1%的电源IC,则输出电压精度±1%便无法保证。或许会有“如果以最糟情况来计算的话,标准值(typ)将会进入±1%”之意见,不过如果要求严格保证时应该为“不可能”。 以此方式,规格值毕竟是IC的特性值,架构电路时虽然会有所呈现,但必须知道的是并非可以原封不动获得该值或特性。 特性图表、波形的看图方法 针对“电源IC技术规格的解读方法”,我们已经说明了“技术规格的封面”、“框图”、“绝对最大额定和推荐工作条件”以及“电气特性的要点”。针对“电源IC技术规格的解读方法”,本项接着说明“特性图表、波形的看图方法”。 无论哪方,理解开关稳压器的特性和评估方法之后,解读电源IC的技术规格是非常重要的事情。 ・图表的看图方法 技术规格除了规格值表外,也有刊载特性图。其理由在于规格值表的数值是指定条件中某一点值,且因无法得知幅度或倾向、对多个条件的变化等连续特性而加以补充。此外,规格值方面,有许多图表显示未规定的特性或电路的特性。这里要提及的不只是规格值表的数值,也提醒务必在检查图表并了解倾向或连续特性后再进行设计。关键要点在于图表可以说是设计不可或缺的。那么,接下来便以实际图表来具体说明。 下表是技术规格的部分规格值表。请观察ICC、工作时电路电流的参数。ICC通过“Ta=25℃”的温度条件和几项电压及电流条件而有了最大值500μA的保证。标准值为350μA,没有最小值的保证。由此表可知,“ICC为25℃则在350μA左右,不超过500μA。 在这里,如果要设计的设备工作温度范围为0℃~60℃,则为了设计,最好事先抑制增加或减少0℃或60℃时标准值或温度等变动的倾向。不过,从此表无法得知。 规格值表的温度条件设定中有时会显示所有工作温度范围条件,例如-40℃~+85℃范围条件的规格值。此时与25℃一点的数值不同,如果是上述设备的温度范围0℃~60℃,虽可以知道在其显示的保证值内,但无法更进一步则没有说明的必要。 此图表同样被记载于IC的技术规格,以曲线表示温度和ICC的关系。此外,更进一步显示2个规格值表没有的VIN相关条件。如果是刚才的0℃~60℃条件,即使VIN高时也可以读取到400μA±20μV左右。 此外,温度上升ICC会増加,VIN一高ICC会増加等倾向也可以读取。而且,这些在设计中将成为重要的信息。 这里必须注意的是,可从图表读取的数值或倾向并非保证值,而是标准特性。 虽然ICC即使超过80℃也不会有超过25℃最大值500μA的情况,不过此例中“或许如此,但不稳定保证”才是正确的理解。 下图表示效率和输出电流的关系。此图表在开关稳压器IC的技术规格中经常可以看见。然而,几乎所有情况规格值表都没有效率项目,当然,别说是最大/最小值,就连标准值也没有显示。也就是说,效率是并未被保证的特性。 但是,虽说不保证,然而没有什么目标的话就没有探讨的方法。另一个意义上,特指定条件或电路、部件等,以图表提示(大致上最佳的)特性作为一例。 由此图表可以想象本身电路负载电流可得到的效率,效率曲线也是选择电源IC时的重要检查点。 ・波形的看图方法 技术规格除了图表外,有时也显示工作时的波形等。其主旨基本上与图表相同,目的在于提示规格值表中难以提示的特性。 此图表示的是示波器画面所显示的波形。纵向为电压而横向为时间轴。所表示的是开关节点的ON/OFF波形和输出呈现的纹波电压。 从输出电压波形可以读取纹波电压。仔细看的话,可以读取到如果开关波形H时纹波会上升,L时则下降。此外,也可知道纹波频率基本上也与开关频率相同,也即同步。 当然,这些也将成为标准特性。标准意义是指与本身电路相同节点的波形做比较,也可利用作为优化的比较对象。 图表和波形的看图方法的要点总结如下。 ◆图表或波形有时可补充规格值没有的特性,因此务必检查 可确认规格值表的补充某一点值的连续特性 可确认针对温度等变动条件的规格值变动 可提示规格值没有的特性(上例中的输出纹波和效率),也可利用作为最优化度的比较对象 图表的值非保证值,而是标准值 应用电路例 针对“电源IC技术规格的解读方法”,我们已经说明了“技术规格的封面”、“框图”、“绝对最大额定和推荐工作条件”、“电气特性的要点”以及“特性图表、波形的看图方法”。本项将说明技术规格有记载“应用电路例”。 ・应用电路例 电源IC的技术规格基本上都有刊载其IC的应用电路例。没有刊载时,应该会另外以应用备忘录等名称备有应用电路例的补充数据。目的在于希望通过显示其IC的使用标准电路例,让大家可以利用作为设计的出发点。各引脚或搭载功能虽然文章已有说明,不过在完全没有电路图的状态下,即使听了说明也往往很难懂,而且不举例的话想必也难以说明。 向厂商确认虽然有必要,不过所刊载的应用电路例大多已架构实际电路并确认工作,此外,有时还同时备有其电路的评估板。所幸开关稳压器IC所使用的电路构造为IC的基本电路,只要变更外置部件的常量即可符合要求规格。当然,特别条件或要求需要进一步的调整或工夫时,如果利用基本应用电路例或评估板一面修改一面进行评估以配合自身设计的话,由于可以缩短设计和评估时间,故推荐多加利用。 下述的电路图是摘录于开关稳压器IC的技术规格BD9A300MUV的说明例。只要有几个电容器和阻抗、1个电感,基本上配合输出电压设定部件的常量。 此外,视技术规格而定,有时会以代表性输出电压为主提供各外置部件的常量或型号。此IC技术规格也有提供,故显示摘要为例。此IC例中,针对此应用电路例基本上可以从表格中选择对应设定电压的部件来进行设计。由于原本为部件数量少且设计简单的IC,故通过附加此类信息可以使设计更加快速。 ・基板布局 应用电路例相关,有时会发生的麻烦例。“明明依照技术规格所载的电路图、部件编组电话卻无法工作”等问题。在没有简单结线错误等前提下,此种问题大多起因于基板布局。 在开关电源设计已相当普及的近年来,“基板布局在开关电源设计中极为重要”的认知想必相当高。不过,由于以车乐美/靶心基板(万能基板)或时而以空中管线编制的电路进行评估的例或过去勉强制作印刷基板但管线围绕或部件设定场所不适当,故产生大峰波,有些情况下会有损坏IC的例。 为了不发生这种麻烦,技术规格或应用备忘录会显示基板布局例。因大多为双面基板,故显示双面布局,有时更进一步直接提供制作基板可使用的电子文件(光绘文件等)。 如前所述,为了发挥开关电源所期待的性能和特性,需要适当的基板布局。应用电路和基板布局由于表里一体,故强烈推荐任何一方都参照这些信息。 以下是摘录于技术规格的基板布局相关信息和布局页,请作为一例参考。 评估板如上述,在此追记作为参考。技术规格有记载评估板的型号,有时虽有刊载参阅的URL,不过近年前往厂商首页的产品页时则有提供相关信息的链接。例如,这里是BD9A300MUV的首页,有“评估板数据下载”按钮,请下载后看一下内容。评估板使用手册除了板的规格外,还提示修正的方法、基板布局等。此外,也有提示基板布局用的光绘文件。 部件选定 针对“电源IC技术规格的解读方法”,我们已经说明了“技术规格的封面”、“框图”、“绝对最大额定和推荐工作条件”、“电气特性的要点”、“特性图表、波形的看图方法”以及“应用电路例”。本项接着举例说明设计所必要的“部件选定”相关信息的看图方法,特别是开关稳压器中重要的“输出LC滤波器”和“相位补偿”。 ・部件选定 “电源IC技术规格的解读方法:应用电路例”一项已经说明,除了电路例之外,有些厂商或IC有时还会包含输出电压等根据设定值的部件常量一览信息。对此,势必非常便利,不过想进行进行微调整或在提示以外的条件下使用时,没有适合的部件或无法计算常量就令人伤脑筋了。因此,技术规格刊载了搭载功能或其设定方法、必要外置部件的选定方法、常量决定的计算公式等。 以下为技术规格的“部件选定”项的“输出LC滤波器常量”相关记述的摘录。就内容而言,内容记述在决定输出LC过滤器的常量时该以何种公式来决定什么值。实际上则有更进一步说明,可以计算满足欲设定条件的常量。 这里另举一例。虽也同样摘录自技术规格,不过有显示开关稳压器的相位补偿电路所必需部件和常量的计算方法。 掌握的方式或许有点牵强,不过应该理解的是,像这种从工作说明开始,详细显示计算公式并加以说明,对设计来说是非常重要之处。想要让工作或特性优化的话,不事先理解这些的话似乎无法进行设计或调整。 例如,设定输出电压的电阻值和和公式并没有记载得那么详细,基本上根据计算式来决定,可以想成原因在于即使不知道“为什么会那样”也不太有问题。反之,例示的输出过滤器或相位补偿则可以想成如果无法理解“那是什么”以及“为什会那样”的话便无法处理。进一步来说则可以解读,那些在设计或调整时是首当其冲的关键要点。 内容虽非一看就懂,但不理解的话电源便无法完成。所幸例示的输出过滤器或相位补偿即使电路构造或常量、计算公式因厂商或IC种类而稍异,“那是什么”、“为什会那样”基本上也会根据相同的想法。虽然这2点偏离了本项的主题,不过事先理解原理非常有助于电源设计。 “部件选定”相关细节视厂商或IC而定,有些非技术规格,而称呼也因厂商而异,有时为应用备忘录或设计使用手册等附册。如果以设计为前提的话,这些基本上应该可以取得。此外,有时就算有上述说明部分、附册也并非可以涵盖全部,必须询问厂商。 评估板如上述,在此追记作为参考。技术规格有记载评估板的型号,有时虽有刊载参阅的URL,不过近年前往厂商首页的产品页时则有提供相关信息的链接。例如,这里是BD9A300MUV的首页,有“评估板数据下载”按钮,请下载后看一下内容。评估板使用手册除了板的规格外,还提示修正的方法、基板布局等。此外,也有提示基板布局用的光绘文件。 输入等效电路 针对“电源IC技术规格的解读方法”,我们已经说明了“技术规格的封面”、“框图”、“绝对最大额定和推荐工作条件”、“电气特性的要点”、“特性图表、波形的看图方法”、“应用电路例”以及“部件选定”。本项接着说明IC的输入引脚相关内部等效电路。事实上,能公开“输入等效电路”的厂商并不多,不过ROHM的技术规格有刊载。此信息非常有助于对IC输入引脚工作的理解,故在这里尽可能列举技术规格的内容。 输入等效电路 不限于电源IC,IC各引脚也存在最大额定或偏置电流等规格值。规格值以外有时也会以图表显示电压/电流特性。这些大致上依赖其引脚连接的内部电路。特别是输入引脚由于连接电阻或电容器等其他设备的输出,故了解输入引脚的偏置电流或输入电路如何工作可以让设计更加确实。 提供输入电路或等效电路可以了解以下几点:  - 引脚的电压/电流特性  - 偏置电流(漏极/源极、流入/流出电流等表现)  - 保护构造 本稿说明以电源IC BD9A300MUV为例。从FB引脚的输入等效电路可以知道输入晶体管的栅极有输入20kΩ的电阻作为保护。此外,由于有寄生二极管,故也可知最大额定(-0.3V~+7V)负电压有时也为此二极管的正向电压的余量值,当FB引脚超过此二极管的VF时则正向电流会流出至FB引脚。 MODE引脚对流入电流有10μA(typ)、20μA(max) @5V的规定。从输入等效电路可以了解到,由于MODE引脚可以通过10Ω+500kΩ电阻与AGND接地,故必然有10μA左右流入。反之也可以了解到,包含晶体管的栅极所插入的10kΩ电阻在内,应用例中直接连接输入电压,其在内部为可能的构造。 引脚的偏置电流等尽管有提示作为比较规格值,然而却几乎没有规定或说明保护构造(过电压保护等的保护功能有否),因此等效电路的信息非常有助于设计或评估的加强。 此外,“IC输入电源前如果引脚未施予电压时”经常被拿来做探讨。以FB引脚为例,可以知道的是,如果为负电压,则虽然电流会如前述般流出,不过即使为晶体管形成几个寄生路径的偏置关系由于有20kΩ的电阻,故基本上没有大电流流动的可能性。也就是说,等效电路也将成为探讨在技术规格没有记载的条件下会有何种情况的辅助信息。 此电源IC技术规格所提供的虽然是输入等效电路,不过能否理解应该是此信息最大的用处。但是,等效电路毕竟是等效电路,故在进行重要判断时还是向厂商确认比较好。此外,所提供的信息中如果没有等效电路信息时必须向厂商咨询,至于厂商能否提供则可能得视情况而定。 容许损耗 不论使用电源IC与否,使用IC时必须探讨热问题,切勿超过最大额定Tjmax(最大接合部温度/结温),并视情况进行散热设计。特别是电源IC等处理大功率的IC或晶体管上可以说是必须的探讨事项。针对“电源IC技术规格的解读方法”,本项接着说明“容许损耗”。 本项是“电源IC技术规格的解读方法”最后一项。“技术规格的封面”、“框图”、“绝对最大额定和推荐工作条件”、“电气特性的要点”、“特性图表、波形的看图方法”、“应用电路例”、“部件选定”以及“输入等效电路”已经说明,所有项目应该可以作为解读技术规格并让设计顺利进行的提示,推荐全部浏览。 容许损耗 IC的容许损耗(适用于大多数电子部件),意指不超过其IC可维持性能的温度的最大的功耗。例如,如果某电源IC的容许损耗为“1.2W”,则单纯来说,在该条件下所损耗的功率只要不超1.2W即可。 以简单的LDO稳压器为例,其计算方式如下: 输入为5V、输出为3.3V、输入电流(自我消耗+负载)为0.7A时:(5V-3.3V)×0.7A=1.19W 因而,可以判断“勉强安全”。当然,实际上需要再仔细探讨。 容许损耗基本上大多以图表显示,以下为图表示例。 首先,从图表的①2.66W的曲线可知,25℃为止可以容许2.66W,不过超过25℃以上的话容许损耗便直线式减少,此IC的最大工作Ta85℃则可以容许1.4W。 ①~④是提示基板和面积的条件,容许损耗因安装条件而异。此外,也显示其条件下的热电阻θj-a。近年许多电源IC为表贴封装,容许损耗视安装条件而有极大的不同,因此这类详细的条件提示是有用的。 有这些条件提示的话,本身设计只要以最近条件的容许损耗作为“参考”即可。之所以将“参考”两字框起来,是想强调毕竟只是“参考”而已。关于这个将另外说明。 举一例。如果②的基板条件相当接近,安装基板的Ta上限为50℃的话,则知可容许1.4W弱的损耗。在上述LDO稳压器例子中,可以取得0.8A左右。开关稳压器时虽然计算有点麻烦,不过如果可以测量效率(输出功率/输入功率)的话,1-效率将变为损耗。如果为内置功率晶体管型的话以此便可以求得,不过外置功率晶体管型则必须只计算(测量)控制IC的损耗。当然,就电源电路而言,外置功率晶体管的热计算是必须的。 那么,看了此图表之后没有注意到什么吗?当然,此图表由于提供了一般性充分的信息,因此有稍微深读之意。   (1) 0℃~25℃为何容许损耗相同? (2) Ta=150℃且容许损耗为0W。 理论上(1)令人质疑。当周围温度下降时,在计算上应该可以增加功率损耗。(2)想必立刻注意到,由此可知Tjmax为150℃。因为无法完全功耗,故发热为零,也就是Ta=Tj的条件。 过去时而被问到(1)的问题,难得从图表读取了Tjmax,也有提供θj-a,那就以①的条件为例试算看看。 从Tj=θj-a×PD+Ta得47.0℃/W×2.66W(@ Ta=25℃)+25℃=150℃ ←Tjmax的条件     从150℃=47.0℃/W×?W(@ Ta=0℃)+0℃得3.19W ←0℃的话计算上应该可以容许这一点损耗 其实,有关于此虽然众说纷纭,不过想必是惯例,一般如果假设室温为25℃的话,即使没有通电Tj也有25℃,如果设定2.66W以上则通电瞬间有超过Tjmax的危险,因此25℃以下的容许损耗适用25℃的值应该比较安全。当然,寒冷地带等没有25℃以上,那是非常特殊的条件且只要有可靠的证据,容许损耗想必可以配合计算。 尽管有点脱轨,然而这里所要陈述的是,如果有提供容许损耗的图表,利用上虽然没有问题,不过务必得遵照求Tj的基本公式进行确认,而计算结果更应该以实测验证。 曾经看过容许损耗图表的数值和计算结果不合的图表,对此,想必是将已降额的值作为容许值了。反之,如果所提供的容许损耗值正好是Tjmax的话,在其损耗条件下使用就可靠性而言等于是在最差条件下使用,工作寿命将会变短,故通常会降额,也就是取余量。也因此,对于所提示的信息根据有必要进行某程度的确认。 最后,说明将前述“参考”两字框起来强调的理由。实际上,技术规格提示的基板条件极少数能与本身设计吻合。大多把目标放在“大致上接近”或“比这个好而比这个差”等。此外,甚至因功率设备并排于旁侧或冷却条件(风扇等)、框体或设定场所的关系等导致散热、热阻、Ta成为相当不确定要素,计算过于复杂的话有时无法验证。因此,探讨所提供的信息并确认计算,最后再进行实测的过程非常重要。特别是近年安装的高密度化,有时会有无法随心所欲利用散热空间或散热器等情况发生。在电源设计时,希望能大家充分理解热探讨和热设计是非探讨不可的项目。 来源:techclass.rohm
  • 热度 3
    2021-5-13 14:33
    469 次阅读|
    0 个评论
    实例详解:使用SiC-MOSFET的隔离型准谐振转换器的设计(电路、选型、PCB)
    1. 前言 本文将开始AC/DC转换器设计篇的新篇章:“使用SiC-MOSFET的隔离型准谐振转换器的设计案例”。在本文中,继此前提到的“反激式”和“正激式”之后,将介绍使用了“准谐振方式”电源IC的隔离型AC/DC转换器的设计案例。 另外,功率开关使用SiC(Silicon Carbide:碳化硅)MOSFET。与Si半导体相比,SiC是一种损耗低且具有优异的高温工作特性的新一代半导体材料。提起SiC半导体,给人的印象可能是使用在处理特大功率的特殊应用上的,但实际上SiC可以帮助众多我们身边所熟悉的应用实现节能化和小型化。SiC半导体已经开始实际应用,并且还应用在对品质可靠性要求很严苛的车载设备上。关于SiC功率元器件,在Tech Web基础知识专栏中有详细介绍,可以结合起来阅读。 在本篇章中计划介绍以下项目。 <使用SiC-MOSFET的隔离型准谐振转换器的设计案例> 用于设计的IC 变压器设计 主要部件选型 EMI对策 输出噪声对策 布局方案 评估 以下是该设计案例所完成的AC/DC转换器。顺便提一下,电源用IC安装于背面红色○处,SiC-MOSFET安装于表面橙色○处。 使用了电源用IC:BD7682FJ和SiC-MOSFET:SCT2H12NZ的隔离型准谐振AC/DC转换器示例 2. 设计中使用的电源IC (1)专为SiC-MOSFET优化 本文将从设计角度首先对在设计中使用的电源IC进行介绍。如“前言”中所述,本文中会涉及“准谐振转换器”的设计和功率晶体管使用“SiC-MOSFET”这两个新课题。因此,设计中所使用的电源IC,是可将SiC-MOSFET用作开关的准谐振转换器IC。 在使用电源IC的设计中,要使用SiC-MOSFET需要专用的电源IC 设计中使用的电源IC是ROHM的“BD7682FJ-LB”这款IC。BD7682FJ-LB是AC/DC转换器用的准谐振控制器,是全球首款*专为驱动SiC-MOSFET而优化的IC。(*截至2015/3/25的数据) 您可能已经注意到,开关要使用SiC-MOSFET时,需要为将SiC-MOSFET用作开关而专门设计的电源用IC。这意味着SiC-MOSFET的栅极驱动与Si-MOSFET是不同的。您可能马上会问“有什么不同呢?”,在介绍电源IC之前,先来了解一下SiC-MOSFET与Si-MOSFET的栅极驱动的不同之处。 主要的不同点是SiC-MOSFET在驱动时的VGS稍高,内部栅极电阻较高,因此外置栅极电阻Rg需要采用小阻值。Rg是外置电阻,属于电路设计的范畴。但是,栅极驱动电压绝大多数情况下都取决于IC的规格,因此虽然不是没有方法,但选用专为SiC-MOSFET用而优化的电源IC应该是上策。 具体一点来讲,在规格方面,一般的IGBT或Si-MOSFET的驱动电压为VGS=10V~15V,电源IC以“AC/DC PWM方式反激式转换器设计手法”篇中使用的AC/DC转换器用PWM控制器IC:BM1P061FJ为例,其栅极驱动电压(OUT引脚H电压)为10.5V(min)~14.5V(max),typ为12.5V。 对此,SiC-MOSFET的VGS为20V以上,并逐渐饱和,因此一般建议使用VGS=18V左右进行驱动。此次使用的BD7682FJ-LB的栅极驱动电压(OUT引脚钳位电压)为16.0V(min)~20.0(max),typ为18.0V。 下图是BM1P061FJ的设计过程中使用的N-ch 800V 5A的Si-MOSFET:R8005ANX(左)和此次使用的N-ch 1700V 3.7A的SiC-MOSFET:SCT2H12NZ(右)的导通电阻与VGS特性比较图。从比较图中可以看出,上述IC的栅极驱动电压在每种MOSFET将要饱和前变为VGS。 由于该比较不是在同等规格和条件下的比较,因此请当做用来理解上述VGS之不同的资料使用。 设计中所使用的电源IC:SiC-MOSFET驱动用AC/DC转换器控制IC:BD7682FJ-LB 通过前面的说明,相信您已经理解了BD7682FJ-LB作为SiC-MOSFET用IC最重要的关键点,接下来介绍其概要和特点。 <特点> 小型8引脚SOP-J8封装 低EMI准谐振方式 降频功能 待机时消耗电流低:19uA 无负载时消耗电流低(轻负载时采用猝发模式工作) 最高频率(120kHz) CS引脚Leading-Edge Blanking(前沿消隐) VCC的UVLO保护和OVP保护 逐周期过流保护电路 软启动 ZT触发器屏蔽功能及OVP保护 输入欠压保护功能(掉电) SiC-MOSFET用栅极钳位电路 <重要特性> 工作电源电压范围(VCC):15.0V~27.5V 正常工作电流: 0.80mA(typ.) 猝发模式时工作电流: 0.50mA(typ.) 最高振荡频率: 120kHz(typ.) 工作温度范围: -40℃~105℃ 主要的特点是SiC-MOSFET适用和准谐振方式。准谐振方式利用软开关工作,与PWM方式相比,具有低噪声、高效率、可降低EMI的优点。 另外,还内置多种保护功能,在690VAC这样的高电压条件下也可工作,可支持广泛的工业设备应用。其中包括电源电压引脚的过压保护、输入电压引脚Brown-In / Brown-Out(低电压输入动作禁止功能)、过流保护、二次侧电压过压保护等。 在高耐压应用中,与Si-MOSFET相比,SiC-MOSFET具有开关损耗及传导损耗少、温度带来的特性波动小的优点。这些优点有利于解决近年来的重要课题–节能化和小型化,比如有助于提高功率 转换效率,可实现散热器的小型化,可高频工作从而实现变压器和电容器的小型化等。 右图是在AC/DC转换器中SiC-MOSFET与Si-MOSFET的效率比较。如图所示,预计可实现高达6%的效率提升。 另外,除此次使用的BD7682FJ-LB之外,根据FB引脚过载保护、VCC引脚过压保护功能,还有另外3种不同机型。 FB引脚OLP VCC引脚OVP BD7682FJ-LB AutoRestart Latch BD7683FJ-LB Latch Latch BD7684FJ-LB AutoRestart AutoRestart BD7685FJ-LB Latch AutoRestart 最后,虽然与特性和性能没有直接关系,也在此提一下,这些产品是面向工业设备市场的、保证长期供应的产品。作为具备卓越性能和工业设备所需保护功能等的电源IC,这样的支持也是非常重要的。 下一篇文章将对准谐振方式进行介绍。 3. 设计案例电路 上一篇文章对设计中使用的电源IC进行了介绍。本文将介绍设计案例的电路。 准谐振方式 上一篇文章提到,电源IC使用的是SiC-MOSFET驱动用AC/DC转换器控制IC“BD7682FJ-LB”。转换电路采用准谐振方式,是利用变压器一次绕组的电感和谐振电容器的电压谐振的自激式反激转换器,通常损耗和噪声可以比PWM反激式转换器降得更低。 基本上属于反激式转换器,因此会在关断期间将MOSFET导通期间内积蓄到变压器中的能量输送至二次侧。PWM反激式转换器也是相同的工作模式,但采用准谐振方式的话,变压器在释放能量后,根据变压器一次绕组的电感量和谐振电容器的电容量,会产生谐振带来的电压振动。从而利用该电压振动,由IC检测到Vds的波谷电压并进行下一次导通。在这个时间的导通,变压器中流动的电流为零,漏极电压也很低,因此可将降低开关损耗和噪声。这就是准谐振方式的优势。 顺便提一下,该动作产生的准谐振转换器的开关损耗,基本上不会在导通时产生,关断时的损耗占主导地位。 另一个工作特点是,轻负载时处于不连续工作模式,开关频率随着负载的上升而上升。然后,以某个负载电流为为边界(临界点)进入临界工作模式,在这种状态下,开关频率随着负载的上升而降低。由于开关频率随负载而变化,因此可以说是一种PFM转换器。 24V/1A隔离型准谐振转换器的设计案例电路 下面是设计案例的输入输出条件和电路图。将在该条件下计算电路部件的常数。 输出:24V、1A(24W) 输入:300~900VDC(400~690VAC) 关于输入,虽然具有DC电压输入和AC电压输入两种输入,但由于将AC输入电压整流后会成为DC电压,因此将根据DC输入电压值来设置常数。 点击电路图可放大查看。 4. 变压器T1的设计 其1 从本文开始进入具体的设计,比如计算相关电路常数等。首先是变压器T1的设计。计算步骤如下。 ①反激式电压VOR的设定 ②一次侧绕组电感值Lp、一次侧的最大电流Ippk的计算 ③变压器尺寸的决定 ④一次侧绕组数Np的计算 ⑤二次侧绕组数Ns的计算 ⑥VCC绕组数Nd的计算 为进行变压器设计,必须推导出来的参数有:“铁芯尺寸”、“Lp电感值”、“Np/Ns/Nd的匝数”。 另外,赋予T1的条件为:输出24V1A,VIN(DC)=300V~900V。 ①反激式电压VOR的设定 反激式电压VOR是VO(二次侧Vout加上二次侧二极管DN1的VF)乘以变压器的匝比Np:Ns得到的值。确定VOR后,求匝比Np:Ns和占空比。基本公式和示例如下。(电路图中缺少DN1的描述,实际上在T1的二次侧连接的2个二极管就是DN1) 设置VOR值时,请考虑到MOSFET的损耗等,使Duty达到0.5以下。图中是MOSFET的Vds波形。 ②一次侧绕组电感值Lp、一次侧的最大电流Ippk的计算 确定最低输入时(VIN=300V)、最大负载时的最低振荡频率fsw后,求一次绕组电感值Lp和一次侧的最大电流Ippk。 设最低输入时(VIN=300V)的最低振荡频率 fsw=92kHz。另外,其他参数如下: ・根据Po=24V X 1A=24W,考虑到过负载保护等,  设Po(max)=30W(降额:0.8) ・变压器转换效率η=85% ・谐振用电容器容值Cv=100pF ③变压器铁芯尺寸的决定 根据Po(max)=30W,并稍微留些余量,变压器铁芯尺寸选择EFD30。下表是相对于输出功率Po的适当的铁芯尺寸参考标准。具体请向变压器厂商确认。 这样,所需的“铁芯尺寸”、“Lp电感值”就确定了。“Np/Ns/Nd的匝数”将在下一篇文章中进行计算。 变压器设计所需的参数 变压器铁芯尺寸 EFD30(或替代产品) Np(一次侧匝数) 1750µH Np(一次侧匝数) (下一篇) Ns(二次侧匝数) (下一篇) Nd(VCC匝数) (下一篇) 5. 变压器T1的设计 其2 在前面的“变压器T1的设计 其1”中,对下述计算步骤①~③进行了说明。本文作为“其2”来计算剩下的④~⑥,并结束变压器T1的设计篇。 ①反激式电压VOR的设定 ②一次侧绕组电感值Lp、一次侧的最大电流Ippk的计算 ③变压器尺寸的决定 ④一次侧绕组匝数Np的计算 ⑤二次侧绕组匝数Ns的计算 ⑥VCC绕组匝数Nd的计算 在“其1”中也提到过,为了进行变压器设计,必须推导出来的参数有:“铁芯尺寸”、“Lp电感值”、“Np/Ns/Nd的匝数”。在“其1”中已经计算了“铁芯尺寸”和“Lp电感值”。 变压器设计所需的参数 变压器铁芯尺寸 EFD30(或替代产品) Lp(一次侧绕组电感值) 1750µH Np(一次侧匝数) 按步骤④ Ns(二次侧匝数) 按步骤⑤ Nd(VCC匝数) 按步骤⑥ 另外,赋予T1的条件为:输出24V1A,VIN(DC)=300V~900V。 ④一次侧绕组匝数Np的计算 第4步是计算一次侧绕组匝数Np。一般的铁氧体铁芯磁通密度B(T)的最大值在100℃时为0.4T,所以Bsat=0.3T。 需要确认AL-Value-NI特性,并在不饱和区使用,以免引起磁饱和。确认时需要使用AL-Value-NI特性曲线图。 例如,假设Np=50匝,则 进入饱和区。 设置一次绕组匝数,并避免进入该饱和区。 当Np=64匝时,则 处于不饱和区。所以,确定为Np=64匝。 ⑤二次侧绕组匝数Ns的计算 接下来计算二次绕组匝数Ns。在“①反激式电压VOR的设置”中,已经求出Np/Ns=8,所以在此使用这个数据进行计算。 ⑥VCC绕组匝数Nd的计算 通过下列公式来求VCC绕组匝数Nd。设VCC=24V、Vf_vcc=1V。 VCC的24V是该设计中使用的IC“BD7682FJ-LB”的VCC标准要求电压。由于需要驱动SiC-MOSFET,因此栅极电压(OUT引脚钳位电压)需要18V(typ)。 至此,所需参数全部计算完毕。前表中加入数值后如下。 变压器设计所需的参数 变压器铁芯尺寸 EFD30(或替代产品) Lp(一次侧绕组电感值) 1750µH Np(一次侧匝数) 64匝 Ns(二次侧匝数) 8匝 Nd(VCC匝数) 8匝 最后是基于这些参数的变压器设计案例。 6. 主要部件选型 (1)MOSFET Q1 变压器设计篇已经结束,接下来将围绕电源ICBD7682FJ-LB的外围元器件进入部件选型部分。本文将摘录并使用所要介绍的部件的外围电路,需要确认整体电路时看下图。 主要部件的选型:MOSFET Q1 MOSFET Q1是用来驱动变压器一次侧的晶体管,是本设计主题之一的“SiC-MOSFET”。 MOSFET的选型需要考虑最大漏极-源极间电压、峰值电流、导通电阻Ron的损耗、封装的最大容许损耗等。 低输入电压时,MOSFET的导通时间变长,Ron损耗带来的发热量增加。SiC-MOSFET的特点是Ron低,其传导损耗也小,但请务必在组装在实际PCB板和产品中的状态下进行确认,并在必要时利用散热器等来解决散热问题。 ID的额定值以Ippk×2左右作为大致的选择标准。Ippk在变压器设计的②中已经求出为0.66A。 Vds通过下列公式计算。 Vspike则很难通过计算算出来。所以,根据经验,在添加缓冲电路的前提下,选择Vds为1700V的MOSFET。在这个设计案例中,选择ROHM生产的SiC-MOSFET “SCT2H12NY(1700V、1.15Ω、4A、44W)”或“SCT2H12NZ(1700V、1.15Ω、3.7A、35W)”。 下面以SCT2H12NY为例列出其最大额定值。关于其他参数和其他详细信息,请参考相应的技术规格书。 (2)输入电容和平衡电阻 继上一篇文章MOSFET的选型之后,本文将确定输入电容和平衡电阻的常数。 主要部件选型:输入电容C2、C3、C4 右侧的电路图是从整个电路图中摘录的输入部分的电路。输入端的输入电容需要C2、C3、C4这3个电容。需要确认整个电路时,请参考这里。 输入电容的容值通过下表来确定。 关于输入,如设计案例电路中所述,将AC输入电压整流后会变为DC电压,因此将根据DC输入电压值来设置常数。 输入电压规格:300~900VDC(400~690VAC) Pout=24V×1.1A=25W 根据上述规格,Cin为1×25=25µF,因此选择33µF的电容。 输入电容也与输入停止后的输入电压保持时间等有关,因此,也可根据这些相关规格来选择电容量。 接来下,我们将探讨并来确定输入电容的耐压。从上面可以看出,这个电路是处理高电压的电路,要求输入电容具有高耐压特性。输入电容的耐压需要达到最大输入电压以上。最大输入电压按80%降额。 最大输入电压/降额=900V/0.8=1125V 要想支持1125V,需要串联使用三个450V耐压的电容,从而获得450V×3=1350V的耐压。当然,整体上要获得33µF的电容量,各电容需要三倍的电容量,因此选择100µF/450V的电容。 主要部件选型:平衡电阻R1、R2、R3、R4、R5、R6 为了获得所需的耐压,我们采用了串联连接电容的手法,但在这种情况下,需要保持施加到所有电容的电压均衡,因而需要与各电容并联连接平衡电阻。从电路图中可以看出,平衡电阻是串联在输入端和GND之间,因此流经平衡电阻的电流只是一种损耗,故建议选择470kΩ以上的电阻值。平衡电阻R1、R2、R3、R4、R5、R6的损耗如下: 平衡电阻损耗(W)=最大输入电压×最大输入电压/平衡电阻的和 =900V×900V/(470k×6=2.82MΩ)=0.287W 综上所述,得出: 输入电容C2、C3、C4:100µF/450V 平衡电阻R1、R2、R3、R4、R5、R6:470kΩ (3)用来设置过负载保护点切换的电阻 本文中将对本设计中使用的电源IC固有的功能、过负载保护校正功能的设置相关的电阻值进行计算。 主要部件选型:用来设置过负载保护点切换的电阻R20 首先,来确认过负载保护点切换设置电阻R20在电路上的位置。这个电路图是从整个电路图中摘录的。 此次设计中使用的电源IC“BD7682FJ”对于输入电压的波动具有校正过负载保护点的功能。 当输入电压上升时,如果过流限制是恒定的,则容许功率将直接增加。当输入电压超过设置值时,这种校正功能可通过降低电流限制电平来降低损耗功率,从而使过负载时的保护更可靠。 下面为计算示例。输入电压采用三相380VAC来进行设计。三相380VAC的最大值为√2×380VAC = 537VAC。对此取50%左右的余量,将切换电压设置为DC800V。 公式中的Izt是开关导通时从IC流到变压器VCC绕组Nd的电流。当Izt超过1mA时,降低过流限制电平,来降低过负载保护点。 接下来,我们来确认过负载保护点切换后,是否能保证额定负载。当过负载保护点切换时,Vcs=1.0V变为0.70V。这意味着过电流限制变为0.7倍。然后计算这个条件下的各个参数。 设变压器的转换效率为η=0.85,则过载切换后的输出功率可通过下述公式计算。 在这个公式中,fsw’不是计算值158kHz而是120kHz的原因是电源IC的最大开关频率为120kHz。 通过计算结果可以看出,当输入电压高于800VDC时,过载点发生变化,输出功率被限制为19.38W。下面给出示例电路中的实测值作为参考值。关于过负载保护点,不仅需要计算,还需要在整机实装状态下进行确认。 过电流检测 示例电路中的实测值(参考值) (4)电源IC的VCC相关部件 本文中将确定本设计中使用的电源IC的VCC引脚相关的元器件常数。VCC引脚是电源IC BD7682FJ的电源引脚。 BD7682FJ的内部控制电路通过施加于VCC引脚的电压来工作。大家都知道,如果这个电源电路的输入电压为300V~900V的话,不仅不能直接工作,还有可能瞬间被破坏。因此,需要生成较低的DC电压供该IC电源之用。VCC的工作电压范围为15.0V~27.5V,在“变压器T1的设计 其2”中已经介绍过,计算变压器VCC绕组Nd(也称为“補助绕组”或“第三绕组”)时,已经以VCC=24V为前提计算出了Nd。 右侧电路图为相应部分的摘录。在这里,我们来确定“VCC用电压生成(橙色框)”、“VCC绕组浪涌电压抑制(橙色框)”及“VCC启动(蓝色框)”相关电路的元器件常数。 VCC电压生成用整流二极管D18及滤波用电容C5 通过电路图橙色框内的二极管D18和电容C5,将VCC绕组Nd(电路图的第5-6绕组)产生的开关电压整流为DC电压并滤波。该电路与二极管整流型DC/DC转换器基本相同。(框内的电感L4实际上是不使用的,请忽略。另外,电阻Rvcc1是浪涌抑制电阻,后续会进行说明) D18的耐压通过计算施加于D18的反向电压Vdr来确定。 VCC(max)按31.5V。VCC引脚具有VCC OVP(过电压保护)功能,其最大值为31.5V,所以VCC电压即使上升到这个电压值,也不会超过D18的耐压。设Vf为1V。VIN(max)为900V。根据“变压器T1的设计 其2”中求得的结果,Nd为8匝,同样,Np为64匝。 将这些值代入, 考虑到余量后,根据145V/0.7≒200V,最终选择具有200V耐压的二极管。D18根据其目的需要选择适合高速开关的类型。此次使用ROHM生成的快速恢复二极管RF05VAM2S。 电容C5选择22µF的铝电解电容比较合适,根据Vcc(max)耐压为35V。 VCC绕组用浪涌电压抑制电阻Rvcc1 受变压器的漏电感(Lleak)影响,当MOSFET从ON至OFF的瞬间,将产生大的浪涌电压(峰波噪声)。这种浪涌电压是由VCC绕组所引起的,VCC电压上升可能会引发VCC引脚的VCC OVP动作。插入5~22Ω左右的抑制电阻Rvcc1来降低这种浪涌电压。请在实际安装在产品中的状态下确认VCC电压的上升情况并调整电阻值。 VCC启动用电阻R11、R12、R13、R14、电容C6、二极管D19 对于VCC绕组的VCC电压来说,二次侧的输出是基础(Ns:Nd)。所以,在原理上,电路如果不开始开关工作,就不会产生VCC电压,故需要在启动时另行给IC施加VCC电压。启动用电阻(Rstart)R11、R12、R13、R14与启动用电容(Cstart)C6一起启动IC。另外,还可以使用这种CR来调整启动时间。此外,对待机功耗也有影响。 启动用电阻Rstart可通过以下公式所示的最小和最大条件求出。根据VIN_min取余量,VIN_start按180V。根据技术规格书,VCC UVLO(max)为20V,且待机时电路电流IOFF、即启动前的VCC最大电流为30µA,但需要确保余量,所以按40µA。VCC OVP(max)在技术规格书中的规定是31.5V,保护电路动作时的VCC电流Ion1取最小值300µA。 Rstart<VIN_start-VCC UVLO(max)/IOFF=(180V-20V)/40µA=4000kΩ Rstart>VIN_max-VCC OVP(max)/Ion1=(900V-31.5V)/300µA=2895kΩ 2895kΩ<Rstart<4000kΩ 根据计算结果,Rstart为2940kΩ(R11、R12各1MΩ,R13、R14各470kΩ)。 启动用电容(Cstart)C6由于还具有使VCC稳定的作用,所以推荐采用2.2µF以上的电容。再考虑到前述的启动时间,本次采用4.7µF的电容。图中显示了Cstart与VIN的启动时间的关系。 关于与启动电阻Rstart之间的关系,如果将Rstart的值设置的较小,则启动时间缩短,待机功耗增加。反之,如果将Rstart的值调大,则启动时间延长,待机功耗变小。 当VIN接通时,C6被充电;当VCC引脚的电压达到启动电压时,IC开始工作。其后,当输出电压超过恒定电压时,VCC生成电路工作且供给VCC电压。二极管D19要避免给启动时的滤波用电容C5充电。D19使用反向电流IR很低的开关二极管1SS355VM(ROHM生产)。请参考这里的电路图(在该电路中,Rvcc1为22Ω)。 (5)电源IC的BO(Brown-out)引脚相关部件 继上一篇VCC引脚相关部件的内容之后,本文来确定本设计案例中使用的电源IC的BO引脚相关的元器件常数。BO引脚是用来设置电源IC BD7682FJ的欠压保护功能的引脚。 什么是欠压保护(Brown-out)功能 欠压保护功能是当输入电压VIN低于正常工作所需的电压时停止开关工作的保护功能。该功能由BO引脚执行。例如,在启动时,直到BO引脚电压超过欠压检测电压值时才会开始开关工作,并且不产生不稳定的输出电压。另外,工作过程中一旦VIN下降、BO引脚电压低于欠压检测电压值则立即停止开关工作。工作停止时不会锁存,当VIN恢复、BO引脚电压再次超过欠压检测电压值时会自动开始工作。 欠压保护设置电阻R7、R8、R9、R10、R15及BO引脚电容C8 这个电路图中包括BO引脚所需的电阻和电容,以及内部功能模块。BO引脚连接于IC内部电压比较器的同相输入端,比较器的反相输入端被施加比较电压1.00V。据此,欠压检测电压VBO规定为标准1.00V、最小0.92V、最大1.08V。 向BO引脚输入将VIN电阻分压为RH和RL的电压,并使用1V作为阈值控制开关工作的开始和停止。也就是说,通过RH和RL来设置开关开始和停止电压。 另外,电阻值的计算需要考虑下列欠压检测迟滞电流IBO。 VBO<1V(开关停止状态):有灌电流(Sink Current)IBO VBO≧1V(开关工作状态):无灌电流(Sink Current)IBO IBO规定为标准15µA、最小10µA、最大20µA。 下面是RH和RL的设置示例。 设开始开关工作的VIN(低→高)为VINON、停止开关工作的VIN(高→低)为VINOFF,则 根据上述公式,RH和RL可通过下列公式求出, 设VINON=90V、VINOFF=60V、VBO=1V、IBO=15µA,则 在前面给出的电路中, RH=R7+R8+R9+R10=470kΩ+470Ω+470Ω+470Ω=1.88MΩ、RL=R15=33kΩ BO的线路中因阻抗高而对噪声敏感,所以电容C8是必需的。大致标准为0.01µF~1µF。在上述电路中选择了0.1µF。 (6)缓冲电路相关部件 本文介绍的内容不是电源IC BD7682FJ的功能设置部件,而是电源电路中常用的缓冲电路的组成元器件和常数。 什么是缓冲电路 缓冲电路是抑制浪涌的电路。在本例中是为了抑制输入浪涌而设置在输入端,其实也可用于输出端。由于输入连接于变压器的一次侧,所以受变压器的漏电感影响,当MOSFET从ON变为OFF的瞬间,将产生较大的浪涌电压(尖峰噪声)。这种浪涌电压施加在MOSFET的漏极-源极之间,因此如果产生的浪涌电压超过MOSFET的耐压,可能会造成MOSFET损坏。为了防止MOSFET损坏,插入由RCD(电阻、电容、二极管)组成的缓冲电路以抑制浪涌电压。由于大多数情况下都会产生这种浪涌,因此建议在设计之初就设置缓冲电路。 缓冲电路:Rsnubber1、Csnubber1、及D13、D14、D15、D16 在本例中使用的缓冲电路,由电阻Rsnubber1、电容Csnubber1、以及二极管D13、D14、D15、D16组成,只要去掉D15和D16就是典型的RCD缓冲电路。首先来确定钳位电压和钳位纹波电压,并按R、C、D的顺序确定常数。 1)钳位电压(Vclamp)、钳位纹波电压(Vripple) 钳位电压需要根据MOSFET的耐压考虑到余量来决定。余量取20%。 Vclamp=1700V×0.8=1360V 钳位纹波电压(Vripple)定为50V左右。 2)电阻Rsnubber1 Rsnubber1的选型需要满足以下条件。 这里设漏电感Lleak=Lp×10%=1750µH×10%=175µH, 利用下列公式计算Po=25W、VIN(max)=900V时的Ip和fsw。 根据上述计算: fsw从161kHz变为120kHz的原因与以前介绍的一样,因为电源IC的最大开关频率为120kHz。Rsnubber1是比计算结果253kΩ小的值,因此定为200kΩ。 Rsnubber1的损耗P_Rsnubber1可利用以下公式进行计算。 考虑到余量,定为2W以上。最终Rsnubber1采用2W、200kΩ的电阻。 3)Csnubbe1 Csnubber1的电容量通过下列公式计算。 由于容量要大于1607pF,所以选择2200pF。 施加于Csnubber1的电压为从Vclamp减去VIN(MAX)后的电压,即1360V-900=460V,因此考虑到余量,Csnubber1的耐压定为600V以上。最终选用2200pF、2kV、10%、X7R、1210封装的陶瓷电容。 4)D13、D14 4个二极管中,D13和D14使用快速恢复二极管。耐压选择MOSFET的Vds(max)=1700V以上的电压。此次串联使用2个通用的UF4007(1000V、1A)。 由于浪涌电压不仅受变压器的漏电感影响,还受PCB板薄膜布线的寄生分量影响,因此需要在组装于实际PCB板中的状态下确认Vds,并根据实际的电压调整缓冲电路。 5)D15、D16 这些二极管是TVS(瞬态电压抑制)二极管,是浪涌吸收元件。当需要获得更优异的保护性能时,可添加TVS来吸收瞬态尖峰噪声。通过确认MOSFET开关时的波形来决定是否使用。施加于这部分的计算值电压与施加于Csnubber1的电压相同,均为460V,因此串联使用2个钳位电压274V的1.5KE200A二极管,来吸收超出的瞬态电压。 (7)MOSFET栅极驱动调整电路 本文将对电源IC BD7682FJ的外置MOSFET的开关调整部件和调整方法进行介绍。 MOSFET栅极驱动调整电路:R16、R17、R18、D17 为了优化外置MOSFET Q1的开关工作,由R16、R17、R18、D17组成一个调整电路,用来调节来自BD7682FJ的OUT引脚的栅极驱动信号(参见电路图)。这个电路会对MOSFET的损耗和噪声产生影响,因此需要边确认MOSFET的开关波形和损耗边优化。 开关导通时的速度由串联插入栅极驱动信号线的R16和R17来调整。 开关关断时的速度由用来抽取电荷的二极管D17和R16的组合来调整。 通过减小各电阻值,可提高开关速度(上升/下降时间)。 在此次的电路示例中,R16=10Ω/0.25W,R17=150Ω,D17=肖特基势垒二极管RB160L-60(60V/1A)。 准谐振转换器的开关损耗基本上不会在导通时产生,关断时的损耗占主导地位。 要想降低开关关断时的开关损耗,需要减小R16,提高开关关断速度。但这会产生急剧的电流变化,开关噪声会变大。 开关损耗和噪声之间存在着此起彼消(Trade-off)的制约关系。所以需要在装入实际产品的状态下测量MOSFET的温度上升(=损耗)和噪声情况,并确认温度上升和噪声水平在容许范围内。请根据需要将上述常数作为起始线进行调整。 另外,由于R16中会流过脉冲电流,因此需要确认所用电阻的抗脉冲特性。 R18是MOSFET栅极的下拉电阻,请以10kΩ~100kΩ为大致标准。 (8)输出整流二极管 本文将介绍将二次侧(输出)开关电压整流为DC的二极管的常数计算。 输出整流二极管:ND1 首先来看电路图。输出整流二极管ND1即右侧电路图中的深蓝色二极管。 为了对开关电压进行整流,输出整流二极管采用高速二极管(肖特基势垒二极管或快速恢复二极管)。 首先来计算施加于输出二极管的反向电压。 设Vf=1.5V、Vout(max)=24.0V+5%=25.2V,则: 对此,取30%余量,选择139.2V/0.7=198V → 200V耐压产品。 另外,二极管的损耗为估算值: 相应的二极管,选用ROHM生产的快速恢复二极管RFN10T2D(共阴极双芯型、200V/10A、TO-220FN封装)。 原则上,希望在电压70%以下、电流50%以下使用。另外,需要在装入产品的状态下确认实际的温度上升情况,并根据需要增加散热器或重新评估部件。 (9)输出电容器、输出设置及控制部件 继上一篇文章之后,本文将介绍二次侧(输出)相关部件的选型。 输出电容器:Cout1、Cout2 先来回顾一下输出电容器的作用。当MOSFET为ON时,输出二极管DN1处于OFF状态。此时,从输出电容器提供电流给负载。当MOSFET为OFF时,输出二极管DN1处于ON状态,此时给输出电容器充电的同时供给负载电流。 输出电容器取决于输出负载容许的Peak-to-Peak纹波电压(ΔVpp)和纹波电流。先来求电容器的阻抗Z_C。 设ΔVpp=200mV,则: ※按照60kHz(fsw min)计算 由于普通的开关电源用电解电容器(低阻抗产品)的阻抗规定条件为100kHz,所以换算为100kHz。 接着求纹波电流Is(rms)。Is可通过以下公式求得。 接下来,电容器的耐压以输出电压的2倍左右为大致标准。 耐压选择50V以上。 最后选用符合“算出的阻抗以下、额定纹波电流在计算值以上、耐压50V以上”条件的电解电容器。在电路示例中,采用了开关电源用的低阻抗型产品,50V/470µF×2(并联)。 实际的纹波电压和纹波电流,必须通过在应用上实际安装进行确认。 输出电压设置电阻:R25、R26、R28、U3 输出电压根据以下公式进行设置。U3为TL431型的分流稳压器,是用来设置输出电压的基准电压Vref。设Vref为2.495V,则: 实际上请通过输出电压反向推算。 反馈信号调整部件:R24、R27、R32、C15、U2 在该电路示例中,为了使输出电压Vout更稳定,通过右侧电路调整Vout,并通过光电耦合器反馈至电源IC的FB引脚以进行隔离。 R27、C15为相位补偿电路。请在实际应用中装机,以R27=1k~30kΩ、C15=0.1µF左右的条件边确认响应边调整。 R32为光电耦合器U2的限流电阻。请以300~2kΩ进行调整。 R24为分流稳压器U3的阴极电流设置电阻。由于需要通过U3的TL431确保1mA,因此使R24为光电耦合器的Vf/1mA=1kΩ。 (10)电流检测电阻及各种检测用引脚相关部件 本文将介绍电源IC用来降压及稳定控制的各种检测用引脚所需部件。 首先来看一下电源IC BD7682FJ检测用引脚功能。BD7682FJ通过FB引脚,ZT引脚,CS引脚来监测所需的位置(点),从而进行降压及稳定控制。 FB(反馈信号输入)引脚通过光电耦合器来监测二次侧输出电压,从而实现稳定控制。ZT(过零电流检测)引脚通过VCC绕组检测开关关断时线圈中积蓄的电力被供应给二次侧输出电容器,且供给电流已达到零。CS(一次侧电流感应)引脚在监测开关(MOSFET)电流的同时,还具有过电流限制功能。 作为整体的工作,通过FB引脚和CS引脚控制开关的导通时间,通过ZT引脚控制关断。 下面介绍各引脚所需的部件。 电流检测电阻:R19 R19通过开关晶体管Q1将一次侧的电流转换为电压。该电压由CS引脚监测,并设置输出的过负载保护点。设置R19的值,使一次侧的最大电流Ippk(0.66A)流过时CS引脚的过电流检测电压Vcs=1V。    →1.5Ω 另外,R19的损耗P_R19为:       考虑到耐脉冲性能,设R19为1W以上。 关于耐脉冲,即使额定功率相同,耐脉冲性能也可能因电阻的结构等而改变。具体请向所用电阻的厂商进行确认。 CS引脚噪声保护用电阻及电容器:R22,C13 无法用消隐功能吸收噪声时,可考虑增加RC滤波器。不需要滤波器时,推荐插入R22(1kΩ左右)作为抗浪涌对策。C13为47pF左右。 ZT引脚电压设置电阻:R21 R21用来设置ZT引脚的波谷检测电压。ZT引脚的波谷检测电压为Vzt1=100mV typ.(ZT引脚电压下降时),Vzt2=200mV typ.(ZT引脚电压上升时)。另外,根据ZTOVP(min)=3.30V,大致设置为Vzt=1~3V左右。通过“用来设置过负载保护点切换的电阻抗”将R20设置为100kΩ。线圈匝数如“变压器T1的设计 其2”中所计算的,Nd,Ns均为8匝。   设置为 时,   则 →12kΩ ZT引脚电容:C11 C11是用来稳定ZT引脚和调整波谷检测时序的电容器。确认ZT引脚波形,波谷检测时序后进行其电容设置。在本电路示例中,选择47pF。 FB引脚电容:C12 C12是用来稳定FB引脚的电容器。推荐1000pF~0.01µF左右。在本电路示例中,选择2200pF。 (11)EMI及输出噪声对策部件 本文将介绍EMI对策和输出噪声对策用的部件选型。这将是示例电路部件选型的最后一篇。 EMI对策 EMC对策在设备设计中是非常重要的项目。开关电源因其“开关”的特性而产生EMI。针对EMI有以下3种对策: 1)在输入部增加滤波器 可增加电源用共模滤波器、LC滤波器等。 2)在一次侧和二次侧之间增加电容器 可增加称为“Y电容(Y Capacitor)”的电容器。一次侧GND和二次侧GND之间插入CY1(2200pF)。另外,在一次侧HV+和二次侧GND之间也插入CY2和CY3(各2200pF)。在这些用途中可能需要承受高电压等较大应力,因此请使用已获得所有相关标准认证的电容器。在这里使用EA型(X1,Y1)、1kV的产品。 3)给二次侧整流二极管增加RC缓冲电路 这与在一次侧开关节点加入缓冲电路的方法相同,给可以称为“二次侧的开关节点”的整流二极管DN1增加了R23(82Ω)和C14(330pF)。 每种方法都需要确认噪声的影响和对策效果并调整部件常数。 输出噪声对策 被输出整流二极管DN1整流的电压,由Cout1和Cout2滤波,如果要进一步滤波或对开关噪声进行过滤,需要增加LC滤波器。在该示例中,由L3(2.2µH)和Cout3(220µF)组成LC滤波器。这里也需要确认噪声的影响和对策效果并调整部件常数。 7. PCB板布局示例 截至上一篇文章,结束了部件选型相关的内容,本文将对此前介绍过的PCB电路板布局示例进行总结。 使用SiC-MOSFET的隔离型准谐振转换器的PCB布局示例 下面是使用了通孔插装型SiC MOSFET SCT2H12NZ的PCB布局示例。PCB使用双面PCB板。这是引线部件的平面视图。 下面是实际的PCB照片。如图所示,SiC MOSFET安装在散热器旁边。 这是表面贴装部件的布局视图。 使用SiC MOSFET或准谐振转换器时,PCB的布局原则基本不变。 8. 案例中的电路和部件清单 这之前介绍了示例电路的各部件选型要点、常数的计算、PCB板布局示例,最后将利用示例电路来确认并评估一下效率和波形。本文将给出整个电路和所有部件清单。 部件表中的部件是示例电路中使用的部件清单。由于需要针对不同的应用和条件进行优化,所适用的部件也不尽相同,因此这里的清单仅供参考。 9. 评估结果 (1)效率和开关波形 针对此前介绍过的示例电路,此次介绍其效率和开关波形的评估结果。 效率的评估 效率的评估结果曲线图中,给出了三种输入电压的效率和输出功率、各输入引脚的效率和输出电流。 图中是给DC输入引脚输入300VDC、600VDC、900VDC时的效率。设计的基本规格是24V/1A输出,因此在24W附近体现出良好的效率,比较理想的特性是低输出功率时也能保持高效率。在300V输入的示例中,到15W(Iout约0.63A)前的效率高达90%左右,到5W(Iout约0.21A)时也保持了80%以上的效率。在其他输入电压条件下也同样在广泛的输出功率范围内保持着高效率。 这张图中是向DCIN输入300VDC(红)、向ACIN输入300VDC(绿)、向ACIN输入300VAC时的效率。获得的结果是,不经由整流电路向DCIN的DC输入时效率最高。 开关波形的评估 虽然效率是通过测量功率或电压和电流就可以计算出来,而无需观察开关波形,但在开关电源中,观察关键波形并确认尖峰和振荡等是否有异常是非常重要的。下面是功率开关SiC MOSFET的漏极电压和漏极电流的开关波形。漏极电压波形是准谐振型的独特波形。相对于上段,下段的Iout是翻倍的。可以比较观察一下导通/关断的时间以及漏极电流的区别。 这些波形是接近理想波形的,也可以用于判断试制电路是否正常的参考。 10. 小结 此前共用19个篇幅介绍了“使用SiC-MOSFET的隔离型准谐振转换器的设计案例”,本文将作为该系列的最后一篇进行汇总。 该设计案例中有两个关键要点。一个是功率开关中使用了SiC-MOSFET。SiC-MOSFET与Si-MOSFET相比,具有损耗低且高温环境下工作特性优异的特点。另一个是开关拓扑选用了准谐振方式。准谐振方式具有噪声低且效率高的特点。通过这些组合,可设计出高耐压、高效率、低噪声的AC/DC转换器。对于近年来的主要课题–节能来说,SiC功率元器件是功不可没的。 此次使用的电源IC为准谐振控制器,SiC-MOSFET是外置的。目前ROHM正在开发SiC-MOSFET内置型转换器IC。内置Si-MOSFET的转换器IC有很多,但ROHM内置SiC-MOSFET的转换器IC为全球首发。 来源:techclass.rohm
  • 热度 3
    2021-3-31 10:22
    348 次阅读|
    0 个评论
    在设计AC/DC转换电路时,有几个必须思考的课题和讨论事项。本节特地挑选出其中最容易引发问题的项目。除了设计AC/DC转换电路外,也和设计电源有所关联。 1. 使用分立结构还是电源IC 使用分立结构还是电源IC设计电源电路的相关探讨日趋减少,在此主要从板载电源的角度进行探讨。有各种不同的考虑,使用电源IC的优势前面已经多有说明,近年来,如何将电源IC用得恰到好处才是考虑的重点。为了能更好的控制必要电路和搭载功能,设计者调整自身的设计以实现优化出更完善的电源设计。 图35 过去,电源是电源厂商的技术结晶,曾有一个时代分立结构在调校、功能、成本等方面更有优势。但是,近年来电源用IC已经能满足各种需求,轻易就能构筑简单、灵活、高性能的电源电路。尤其在减少元器件数量、减小尺寸、提高可靠性都有优势。在需要立马上市的设备快速设计时,提升电源设计的起步效率,就变得非常重要了。 关键要点: ·如果没有电源设计的相关丰富技术诀窍,使用电源IC会是比较好的方案。 ·IC厂商通常会提供设计支持。 2.效率提升 电源的效率提升是应对当前节能要求的最重要主题。此外,待机时的功耗也是重要的改善项目,也已经采取了各种对策。 开关DC/DC转换器的效率可实现95%,AC/DC转换器时,一次侧的转换效率实际上还有改善的余地。此外,必须应对大功率PFC(改善功率因数),还必须追加电路和诀窍。 图36 为实现AC/DC转换效率的提升,必须采用开关方式。要做到这一点,如前所述,例如100VAC的可滤波直接整流二极管和电容器,其后的近140V DC电压必须可开关晶体管比如高耐压部件。当然因此会有小幅成本上升。对此,随着与节能化要求的权衡作为重要考虑事项。 关键要点: ·如果重视效率,要选择开关方式。 ·尺寸和效率一般存在制约关系。 3. 小型化-部件数量、部件尺寸 小型化是近年来重要的要求事项。采用开关方式可以小型化。AC/DC转换的基础中,就以AC适配器为例,能有助于理解其区别所在。 在构成部件中,就数变压器又大且重,但也开始朝小型化发展。二次侧的DC/DC转换电路,如果开关频率高,电感和电容器就能缩小,进而达到小型化的效果。但是,也会面临到效率低落的问题。在这里,必须进行尺寸和效率的优化。 图 37 此外,加入控制IC的外围功能,也能够减少部件数量,削减安装面积。如果近年来控制IC已搭载5、6种保护功能。如果,使用分立部件来构成,需要相当多的部件和空间。 关键要点: ・部件数量多少会増加,采用开关方式外形尺寸可以变小。 4.保护功能 保护功能除了电源安全外,对于电路可靠性来说,也是一项非常重要的功能。保护功能大致上分成输入(过电压、防止低电压误动作等)、输出(过负载、短路、反向电压和过电压等)、温度(热关断或周围温度上升等)。虽然电源电路不必具备每一项保护功能,但这些都是几乎都是具备较佳、不可或缺的功能。前项已说明过,但由于必要的保护功能,几乎都搭载在控制IC上,因此推荐积极利用控制IC。 图 38 特别是AC/DC是,输入来源为插座的AC,有时因为落雷而忽然出现大浪涌等可能性。此外,电压变高,连家用电流都高达30A~50A时,谁都能想象如果因此引发损坏,将会造成多大的损害。 本稿提到AC/DC转换电路的简略图,省略AC线路的保险丝。大部分的电源电路都会加装保险丝。这点算是一般常识,因此略图大多会省略标示保险丝,不过在此还是稍微提一下。 关键要点: ・可以多利用IC搭载的功能,IC厂商也依照客户需求,将保护功能集成在控制IC上。 5. 认证、规范等 电源有许多认证和规范。当看到的Energy Star就是其中一种,和效率、待机功耗有关。安全相关的,AC适配器等电源单元必须取得的PSE认证,噪声相关多数案例要求符合EMI或EMC。分全球通用、只有某些国家和地区使用等类,如果想将产品推广至全球市场,就必须符合各个国家要求的规格。要注意,如果想取得这些认证都必须先通过测试,所要花的时间和费用以及人力相当可观。 图39 设计上最重要的就是在一开始的阶段,准确掌握必须先取得哪些认证、通过哪些规范。如果之后才增加要通过的规范,有可能陷入必须从头重新设计,导致产品虽然完成,但因为尚未通过测试,结果无法出货的窘境。 关键要点: ・所需各种规范和认证,必须事先调查清楚并制定日程表。 ・必须接受测试或审査,除了构思外,还要花费许多成本和时间。 来源:techclass.rohm
  • 热度 5
    2021-3-29 12:00
    1560 次阅读|
    1 个评论
    AC/DC 转换电路设计的设计步骤(概述) 确定要求规格 控制(电源)IC 的选择 设计、外围部件选定 试作、评估 量产设计、评估、出货检查 AC/DC 转换电路设计的设计步骤(概述) 在本项目中,将说明设计AD/DC转换电路设计的步骤。虽然只是基础篇,概略说明一下,但仍希望大家了解设计时,必须确认作业顺序和相关项目才行。即使拥有足以理解电路图的知识,也只有在工作时,才会记住图纸以外的工作和具体步骤。另外,基于经验的做法和判断,也是非常重要的诀窍。在设计电路上,必须结合理论、知识以及经验,以带来相辅相成协同效应的方法。 以下为标准设计步骤,但只是约略分类并依据顺序排列。 图 29 首先是决定设计规格,接着一边选择能满足该规格的IC和部件,一边进行设计。除了电路图外,还必须设计基板的线路。之后是进行试作和评估、量产得流程。另外,本流程除了设计AC/DC转换外,也能够运用在其他电源设计上。 在这里,第二个步骤为“选择IC”,但如同前述,在设计基板电源时,几乎都会设计成使用电源IC的电路,因此次一个步骤才会是“选择IC”。 负责设计的人,其工作范围会因为公司和各种因素而不同。例如,原本认为不算设计工作范围,但可能会和出货检查的方法、调查不良品等有关。然而,这些都必须反馈至设计上,且在市场推出产品时,也须完成类似上述的相关制程。 关键要点: ・设计电路必须具备丰富的经验,以解决遇到的问题。 ・选择电源IC在设计板载电源上非常重要。 确定要求规格 初期作业中最重要的,就是明确要求规格。这原本就是一开始最重要的步骤,如果未决定整个电路基板的规格,无可避免地,也没有办法决定电源规格,但却常听到愈接近设计期间,才手忙脚乱的开始的设计。正因为一开始未做出决定,将无法继续进行下去,必须利用暂时规格,根据推算出必要电压的负载电流,开始着手设计。在开始时必须决定的主要内容如下所述。 图 30 以输入条件为例,如果是只能在日本国内,则100VAC即可,但贩卖至国外的产品,必须具备能支持该国电压、全球电压的通用输入规格。此外,有的国家电压不稳定,因此须讨论该国容许误差的范围为多少等许多事项。部件选择也会因此而出现相当大的波动,这代表在开始时,须尽可能收集相关信息。严格说来,即使规格不清不楚,但仍必须硬着头皮着手设计。目的为期限内设计出正确的电源,设计上必须保持机动。 关键要点: ・大多会在之后才决定电源规格,因此必须在短时间内,设计出高品质的电路。 控制(电源)IC 的选择 决定规格后,接下来就是选出能满足该规格的电源IC。如同前述,这里是在使用电源IC的前提下进行说明。 根据要求事项,决定适合的AC/DC方式为变压器方式,还是开关方式,降压或升压、反激式或正激方式等,并且选择电源IC。也就是说选择电源IC决定了电源方式。基本上电源IC必须采用特殊方式,利用决定的方式选择IC。在设计使用电源IC时,电源IC占了非常重要的地位,会因为使用的IC来决定电路和部件。换言之,即使认为是以IC为中心进行设计也不为过。 图31 电源IC规格不一,具备的功能也不尽相同。在选择电源IC时,关键要点为找出具备电源上必要功能的IC。特别是保护功能,如果在装上IC后,为了增加功能还得增加更多外置部件和安装面积,且设计和评估的时间也势必增加。基于上述理由,只好承认无法利用外置部件来增加功能。如果能顺利使用电源IC,将有助于提升设计的效率。 选择时,会有“大是包含小在内?”的提问。其实关键要点在于广泛准备高耐压和支持大功率的规格。答案是“可兼顾”,但考虑效率、外置部件调整至优化,因此并不推荐。 最后,是各厂商所制作的开关电源用IC,彼此之间无法兼容。虽然构造非常相似,引脚配置位置却不同。基本上无法和更换线性稳压器78种系列产品一样随意更换,在设计过程中,于规划好基板线路后才变更部件,代表着重新设计,因此在选择IC时,必须充分加以讨论。 关键要点: ・选择电源IC会对设计造成很大的影响。 ・一般而言,以配备具保护功能的IC,较能够提升设计的效率。 设计、外围部件选定 决定IC后,参考该IC的技术规格的说明或应用范例,继续进行设计。此时虽然会决定外置的电容器或电阻等的常量,但开关式AC/DC转换器上,设计变压器是非常重要的一环。 图32 变压器设计依照以下的步骤进行。一开始先讨论变压器的尺寸。根据电源方式、开关频率、输出功率等,决定变压器的尺寸。其次,为了避免磁饱和,决定主要线圈(一次侧线圈)的L值、各线圈的匝数。完成后再进入设计构造。设计构造时,层构造必须考虑结合度,并确保沿面距离符合安全规范,以及确认是否缠绕成骨架有效绕线槽后,再决定线材的线径。如此一来即决定好变压器的规格。下方为变压器规格范例,供各位参考。 图 33:变压器设计例 除了变压器外,选定部件和探讨设计时,在电气、电子知识外,还必须具备部件知识,其中又以经验最为必要。接着开始设计,但也有不顺利的时候。此时,可以利用IC和部件厂商的支持,迅速完成设计。 关键要点: ・设计变压器和电感时,必须具备设计构造和选定部件的经验。 ・经验不足时,可以向部件厂商寻求协助。 试作、评估 完成图纸和部件列表、建立基板布局后,即进入试作、评估性能的阶段。试作阶段从确认基本工作开始。不过,其实经常不知道什么工作才是正确的。此时可以利用IC厂商准备的评估板。或许细部规格会和自己设计规格不同,但仍可作为比较、探讨的样本。 图34 评估项目有测量效率等,如果有适用于AC功率计(电力计)将更便利。当然,可以利用电压表、电流表、钳形电流表等进行测量,但仍推荐使用功率计显示效率。 此外,务必使用示波器观察各点的波形。如果未仔细观察波形,是无法发现异常的波形、噪声和峰波等。这样一来,才能在看起来正常运转,但却觉得有些奇怪时找到真正的原因。 评估时,须仔细确认输出电压、负载电流、温度的余量很重要。如果设计上对于温度的余量不足,容易在量产时偏离要求的规格,或因为该批产品影响到不良率。构成电路的部件特性都不一样,因此必须要了解部件特性,并设计出能达到规格目标的产品。 量产设计、评估、出货检查 调试和优化的作业结束后,开始判断是否可以进入量产。此时,有时可能无法完全满足要求规格。会为了满足无论如何都不会退让的规格要求,必须重新设计,或是稍微妥协,讨论如何取得权衡,尽量让全部产品接近目标值。 以上为步骤和确认项目,希望大家在设计时,大致上都能遵循上述步骤。总之,只要审慎制定计划以及能随机应变,相信就可以顺利进行设计。 关键要点: ・在试作、评估阶段,可能会发生布局所导致的问题等无法根据图纸,加以预测到的麻烦。 ・务必确认工作余量。如果设计时未留出余量,可能引起量产品合格率等问题。 来源:techclass.rohm
相关资源
  • 所需E币: 0
    时间: 5 天前
    大小: 302.29KB
    上传者: luck_gfb
    单管正激多路输出300W电源资料,带PFC,辅助电源,输出保护,工厂批量生产资料。
  • 所需E币: 0
    时间: 3 天前
    大小: 23.12MB
    上传者: MPS代理商
    智能这个词离我们越来越近,产品迭代越来越快,设计师也在不断得找新的突破口
  • 所需E币: 1
    时间: 2021-6-3 22:46
    大小: 37.48MB
    上传者: answer16888
    2020ADI智库在线课程课件集锦——电源篇
  • 所需E币: 1
    时间: 2021-5-19 23:04
    大小: 76.7KB
    上传者: answer16888
    电源输入的防逆接回路
  • 所需E币: 1
    时间: 2021-4-23 16:51
    大小: 5.7MB
    上传者: box520
    基于DSP的等离子体加工电源控制系统的设计和研究
  • 所需E币: 1
    时间: 2021-4-23 16:56
    大小: 2.79MB
    上传者: box520
    基于DSP的电阻点焊电源控制系统的研究
  • 所需E币: 1
    时间: 2021-4-23 17:13
    大小: 5.08MB
    上传者: box520
    基于DSP的数字化IGBT逆变点焊电源控制系统的研究
  • 所需E币: 1
    时间: 2021-4-23 20:20
    大小: 1.06MB
    上传者: box520
    基于DSP控制的弧焊电源的设计
  • 所需E币: 1
    时间: 2021-4-23 20:21
    大小: 2.65MB
    上传者: box520
    基于DSP控制的原油脱水电源的研究
  • 所需E币: 1
    时间: 2021-4-23 20:25
    大小: 6.41MB
    上传者: box520
    基于FPGA和DSP的激光器电源控制系统的研究
  • 所需E币: 1
    时间: 2021-4-26 19:28
    大小: 209.76KB
    上传者: box520
    基于DSP的数字化CO2焊接电源波形控制实现及仿真
  • 所需E币: 0
    时间: 2021-4-26 19:30
    大小: 85.07KB
    上传者: box520
    基于DSP的无线感应电源发射频率控制器的研究
  • 所需E币: 0
    时间: 2021-4-27 17:40
    大小: 557.29KB
    上传者: Argent
    AI产品层出不穷,手里收藏了有关电子通信,毕业设计等资料,方案诸多,可实施性强。单片机的应用开发,外设的综合运用,纵使智能产品设计多么复杂,但其实现的基本功能都离不开MCU的电路设计与驱动编程,无论是使用51单片机还是AVR单片机,其方案的选择因项目需求而定,需要这方面资料的工程师们,看过来吧。
  • 所需E币: 0
    时间: 2021-4-27 17:40
    大小: 403.94KB
    上传者: Argent
    AI产品层出不穷,手里收藏了有关电子通信,毕业设计等资料,方案诸多,可实施性强。单片机的应用开发,外设的综合运用,纵使智能产品设计多么复杂,但其实现的基本功能都离不开MCU的电路设计与驱动编程,无论是使用51单片机还是AVR单片机,其方案的选择因项目需求而定,需要这方面资料的工程师们,看过来吧。
  • 所需E币: 0
    时间: 2021-4-27 18:01
    大小: 5.52MB
    上传者: Argent
    AI产品层出不穷,手里收藏了有关电子通信,毕业设计等资料,方案诸多,可实施性强。单片机的应用开发,外设的综合运用,纵使智能产品设计多么复杂,但其实现的基本功能都离不开MCU的电路设计与驱动编程,无论是使用51单片机还是AVR单片机,其方案的选择因项目需求而定,需要这方面资料的工程师们,看过来吧。
  • 所需E币: 0
    时间: 2021-4-26 20:22
    大小: 1.27MB
    上传者: box520
    基于DSP和PID控制的数控电源研究
  • 所需E币: 1
    时间: 2021-4-26 20:24
    大小: 144.82KB
    上传者: box520
    基于DSP控制的十二相焊接电源主电路数字化触发.
  • 所需E币: 1
    时间: 2021-4-26 22:33
    大小: 110.5KB
    上传者: Argent
    AI产品层出不穷,手里收藏了有关电子通信,毕业设计等资料,方案诸多,可实施性强。单片机的应用开发,外设的综合运用,纵使智能产品设计多么复杂,但其实现的基本功能都离不开MCU的电路设计与驱动编程,无论是使用51单片机还是AVR单片机,其方案的选择因项目需求而定,需要这方面资料的工程师们,看过来吧。
  • 所需E币: 0
    时间: 2021-4-27 16:31
    大小: 310.35KB
    上传者: Argent
    AI产品层出不穷,手里收藏了有关电子通信,毕业设计等资料,方案诸多,可实施性强。单片机的应用开发,外设的综合运用,纵使智能产品设计多么复杂,但其实现的基本功能都离不开MCU的电路设计与驱动编程,无论是使用51单片机还是AVR单片机,其方案的选择因项目需求而定,需要这方面资料的工程师们,看过来吧。
  • 所需E币: 0
    时间: 2021-4-27 16:34
    大小: 591.49KB
    上传者: Argent
    AI产品层出不穷,手里收藏了有关电子通信,毕业设计等资料,方案诸多,可实施性强。单片机的应用开发,外设的综合运用,纵使智能产品设计多么复杂,但其实现的基本功能都离不开MCU的电路设计与驱动编程,无论是使用51单片机还是AVR单片机,其方案的选择因项目需求而定,需要这方面资料的工程师们,看过来吧。
广告