tag 标签: 电源

相关帖子
相关博文
  • 热度 3
    2020-7-23 09:06
    172 次阅读|
    0 个评论
    开关转换器之回授控制‒OTA Type II/III之相位提升 摘要 Type II 补偿器通常用于电流模式控制的开关转换器回授电路,一般可获得良好的线电压与负载调节及瞬时响应。然而当工作点(如输入电压或负载电流)改变,原设计的补偿器可能会有稳定度变差,或相位裕度不足的情形发生。此外,当转换器的工作环境发生变化,如温度、湿度、或零件老化等,都可能造成系统稳定度的改变,甚至导致电源系统不稳定。本文探讨因应原设计参数改变而采用相位提升电路,以改善系统稳定度,并以立锜科技降压转换器RT2857B为实例说明稳定度改变的情形,提出两种相位提升电路作为改善,最后以Mathcad作计算及SIMPLIS作电路仿真,验证理论的分析。 一、降压型转换器之小信号模型 探讨电源转换器的回授设计首先须从功率电路的开环转移函数开始;其频率响应是非线性的,透过小信号模型而线性化后,可以获得随工作点而异的转移函数。根据此开环的转移函数来设计回授补偿电路,使死循环路系统具有低的线电压及负载调节率,且对于负载电流瞬变发生时,输出电压可有很低的过冲(overshoot)与很快的回复稳态的调节时间(settling time);此外,也希望能对环境温度、长时间老化等都有相当的因应能力。而评价死循环效能并达到上述之目标最简单的方法就是透过电源系统的环路增益(loop gain)分析,并藉由交越频率与相位裕度以比较系统的响应带宽与相对稳定度。 图 1、降压型开关转换器电路与其回授电路 图1为一常规峰值电流控制(peak current mode control)的降压型转换器电路,红色虚线区域为其回授补偿电路(compensator)。输出电压VO经RF1、RF2分压采样,与一参考电压VREF作比较,其误差经过放大之后,得到一控制电压VCNTL;控制电压再与经电感电流检知增益RS之电感电流峰值比较得到控制开关晶体Q1的逻辑信号,完成双环闭回路控制。 功率电路的开回路转移函数,即从控制电压VCNTL到输出电压VO的频率响应,本文采用的是双环控制(two-loop feedback)降压转换器小信号模型,其模型演进与推导相当繁复,不是本文的重点,详细的电路模型与参数推导可参考文献 。此功率电路在连续导通模式(continuous conduction mode)下的开环转移函数可由以下近似式式(1)表示: (1) 其中, (2) (3) (4) (5) 在式(1)中,直流增益除了与工作点R、D有关外,也和电感电流检知增益RS、电感值LO、开关周期TS以及斜坡补偿(SE,SN)有关系,相当复杂。其中Fp(s)有一个低频的极点ωp以及输出电容ESR零点。如式(4)所示,ωp与工作点、输出滤波器LO、CO,以及斜坡补偿有关,即当工作点变化时,ωp极点也会随之而变;分子为输出电容ESR零点,并不会随工作点改变。Fh(s)为采样维持函数的近似值;在开关频率一半的地方有两个极点,同时有一个与补偿斜坡有关的Qp值。从式(5)可知,当其分母趋近于0时,Qp值会变很大,即形成一个尖峰(peaking),此尖峰会造成次谐波振荡(subharmonic oscillation)。若工作周期D高于0.5且无斜坡补偿(mC=1)时,Qp值为负值,表示Fh(s)在一半开关频率时会有一对共扼复数极点,相位会陡降,而增益大小则有一尖峰,造成系统不稳定。解决方法是加入斜坡补偿SE,让Qp为正值,以确保系统稳定。(SN电感电流的上升斜坡量。) 为方便以数值说明,本文后续都采用立锜科技RT2857B电流模式控制同步整流降压转换器之功率电路当成回授设计的受控平台。其开关频率设定为420kHz,内嵌固定斜坡补偿量SE =54 mV /μs;电感电流检知增益RS为62mV/A。输入电压范围为6V至12V,输出电压为1.8V,最大负载电流为6A。功率电感选用2.2μH,其绕线电阻为11mΩ;输出电容330μF,其等效串联电阻(ESR)为9mΩ。 图2为应用立锜RT2857B降压型转换器在各种不同输入电压与负载电流条件下之增益曲线,其中输出电压VO均为1.8V,而四条曲线分别代表高压轻载(VIN=12V,IO=0.6A)、低压轻载(VIN=6V,IO=0.6A)、高压重载(VIN=12V,IO=6A)以及低压重载(VIN=6V,IO=6A)等四个工作条件。如图所示,因为峰值电流控制有输入前馈的作用,输入电压对增益的影响不大。此范例将先以高压重载条件(VIN=12V,IO=6A)设计,如前所述,若选定一工作点进行补偿器设计,为避免相同的补偿器应用于其他条件如高压轻载时(VIN=12V,IO=0.6A),补偿效果受到影响,仍须检查其他条件下的相位裕度(phase margin),以确保系统的稳定。 图 2、不同输入输出条件下之控制电压对输出电压的增益曲线 图3为输入电压VIN=12V,负载电流IO=6A 的工作点下,依式(1)所得之频率响应波德图,包括增益及相位。其低频直流增益为12dB;在745Hz处有一个极点fP1,53kHz有一输出电容ESR零点fZ1,在一半开关频率,约210kHz处,有一对共轭复数极点fP2、fP3,增益与相位陡降,分别以 - 40dB/dec和‒180°/dec之斜率衰减。 图 3、功率级转移函数波德图(VIN = 12V,IO = 6A) 所谓环路增益(loop gain)是功率电路的频响增益与补偿电路增益的乘积。对一个电源转换器而言,若要有很低的线电压与负载稳压率,在零频率时,要有很高的环路增益,所以一般补偿器在零频率会有一个极点。另外,为了系统稳定,以及兼顾瞬时响应(transient response),环路增益的单位增益带宽(unit-gain bandwidth),也就是通称的交越频率(crossover frequency),会设计在大约开关频率(fS)的1/20 到1/5之间;且必须有相当程度的相位裕度,最好是在50°以上。有了上述之系统需求,就可以设计补偿器了。 本文是以最为熟知与采用的极零点置放法(pole-zero placement)作补偿器设计。以峰值电流模式控制的降压转换器为例设计补偿器时,除上述之零频率极点外,并在功率电路的低频极点处fP1置放一个补偿器零点fCZ1;在中频输出电容ESR零点处fZ1置放一个补偿器极点fCP1;如此,加上适当的直流增益设计,环路增益便可以-20 dB/dec 的直线通过所设定的交越频率点。至于在功率电路高频段的双极点,因为频率已经远高于交越频率,增益低于0dB,通常在设计补偿器时不会考虑。 简单的说,补偿器会有一个零频率极点,及一个低频的零点,到了电容ESR处有一个极点。这样的补偿器,通称为Type II补偿器。一般峰值电流模式控制的降压转换器若采用Type II补偿器,都可得到满意的效能。然而当电源系统的工作点改变,或交越频率设定的不适当,或是电路器件的参数值(特别是电容)因为老化而变质等等,都会让原来的死循环系统稳定度受到影响,相位裕度降低。下章将从回授补偿器的组态探讨,以找到简单方便的解决方案。 二、OTA Type II 与 Type III补偿器的设计 运算跨导放大器(Operational Transconductance Amplifier;OTA)之功能为将输入差分电压(differential voltage)转换为 输出电流讯号,可视为一电压控制电流源(Voltage-Controlled Current-Source;VCCS)。相对于运算放大器(Operational Amplifier;OPA),OTA的结构较简单,在IC内部比较容易实现,且没有「虚拟接地」(virtual ground),所以在电源控制IC中,常作为回授控制之误差放大器。因此,本文主要探讨如何利用OTA实现较常使用的Type II与Type III补偿器,且如前所述,以高压重载为设计补偿器之工作点。 图4(a)为OTA之内部等效电路模型,而图4(b)为其电路符号。正端VIN+与负端VIN-的电压差为其输入信号,乘上OTA之跨导Gm,即为其等效之输出电流信号。此电流源并联一高输出阻抗RO与一杂散输出电容CO,即得到OTA 的输出电压。Gm与RO的乘积即为其开环路直流电压增益,通常可高达60dB以上;RO与CO造成的极点,决定了OTA的开路带宽,可达数MHz以上。 图 4、OTA电路(a)OTA等效模型(b)OTA电路符号 1. OTA Type II补偿器 式(2)为一标准Type II补偿器转移函数,具有一零点ωCZ1与二个极点:零频率极点及ωCP1,A为直流增益大小,图5为其对应之波德图。 (2) 图 5、Type II补偿器增益与相位之波德图 图 6、OTA之Type II补偿器 图6所示为一OTA Type II补偿器,推导其转移函数结果,如式(3), (3) 比较式(3)与式(2),二者有相同形式,列出fCZ1与fCP1及A公式如下: (4) (5) (6) 此补偿器有一零频率的极点,一个零点fCZ1,一个极点fCP1,本文采用极零点放置法,fCZ1与fCP1分别对应于功率级745Hz的极点与53KHz的ESR零点。如前所述交越频率决定后,将其代入可算出补偿器在交越频率下的相对应的增益,并算出A,以确定补偿器的所有系数。 极零点放置法的目标是让电路的死循环路增益以 - 20dB/dec斜率通过所设计的交越频率。如此设计补偿电路,仅能确定所需的交越频率,但相位的部份则无法保证。若所得之相位裕度无法满足系统需求,就必须降低交越频率的设定,或是采用更高阶次的补偿器。图7为所设计出之OTA Type II补偿器,使用Mathcad之理论计算的环路增益。 图7、Type II补偿器增益与相位之波德图 2. Type III补偿器 – Type II加相位提升电容 如上所述,若所得之相位裕度无法满足系统需求,除降低交越频率的设定之外,亦可采用更高阶次的补偿器。在原本的Type II补偿器中先加入一个零点fCZ2与再加入一个极点fCP2,相位在新加的极零点频率之间得到了提升,且可维持原本设计的交越频率。 图8,在原本的OTA Type II补偿器电路之上方分压电阻上并联一个电容CF1,在相位上会增加一个零点与极点,以提高相位裕度,此电容通称为相位提升器(phase booster)或又称为前馈电容(feedforward capacitor)。加了此相位提升电容之后,即为三极点二零点(three-pole two-zero;3P2Z)的补偿器,也是一种Type III补偿器。 图8、Type III补偿器 – Type II加相位提升电容 推导图8转移函数如式(7), (7) (8) (9) (10) (11) (12) 由式(10)、(11)可以看出,新增的零点fCZ2与极点fCP2是和CF1、RF1以及RF2有关,而RF1和RF2关系被输出电压与参考电压的比值固定,因此,新增的零点和极点存在着一相依的关系,在设计零点时,极点也就被决定了。虽设计的自由度受限,但若小心调试也可达到相位提升的效果。图9为Type II加上相位提升电容的补偿器,用Mathcad计算的理论环路增益。 图9、Type II加相位提升电容之补偿器增益与相位之波德图 3. Type III补偿器 – Type II加相位提升电容与电阻 上述之Type II补偿器,只能确保交越频率,无法保证足够的相位;若使用Type II加相位提升电容的补偿器,则有设计自由度不够的问题。因为新增加的极点fCP2与零点fCZ2相依,其相依关系等于输出电压与参考电压的比值,若输出电压为3.3V,参考电压为0.6V,极点频率就为零点频率的5.5倍,且固定无法调整,应用上受到限制。 改善方法可如图10,在原本的OTA Type II补偿器电路之上方分压电阻上并联一组电容与电阻,依然会增加一个零点与极点,亦为三极点二零点(three-pole two-zero;3P2Z)的Type III补偿器。 图10、Type III补偿器 – Type II加相位提升电容与电阻 推导其转移函数如式(13), (13) (14) (15) (16) (17) (18) 由式(16)、(17)可以看出,新增的零点fCZ2与极点fCP2是和CF1、RF1、RF2以及RF3有关,RF3可调整fCZ2与fCP2的相对位置,增加设计的自由度。图11为所设计出之OTA Type II加上相位提升电容与电阻的补偿器,使用Mathcad计算的理论环路增益。 图11、Type II加相位提升电容之补偿器增益与相位之波德图 三、设计范例 本章将以实例来说明上述之补偿器设计方法。以第一章提到的功率电路平台参数进行讨论,并使用图3之相关极零点参数,依序说明Type II、Type II加相位提升电容、与Type II加相位提升电容电阻的二种Type III补偿器之设计程序。利用上述之所推导之关系式可算出补偿器之各电路组件参数,将参数代入模拟平台SIMPLIS验证与理论计算作比较,并可观察各补偿器对系统闭回路相位提升之效果。 1. Type II补偿器 设定交越频率为60kHz。通常是选择开关频率的1/5到1/20,此范例开关频率为420kHz,60kHz为1/7的开关频率。 1. 已知降压转换器极点fP1=745Hz、ESR零点fZ1=53.59kHz,采用极零点对消法,设计补偿器零极点与之对消,即fCZ1 = fP1 =745Hz ,fCP1= fZ1=53.59 kHz。 2. 由式(1),可得功率级在交越频率下之增益为 - 14dB。将fCZ1,fCP1代入式(2),可得补偿器在交越频率时,增益下降76.9 dB。因此补偿器之系数A须补偿此二衰减的增益,使闭回路增益在交越频率下为0dB。因此A=91.073dB,或还原其倍数,即为35800。 3. 因设计考虑及通用性,可选择RF1 = 10kΩ。已知系统参数VO=1.8V,转换器参数VREF=0.6V,由其电路关系VO/VREF=(RF1+RF2)/RF2,可得RF2=5kΩ。 4. 已知Gm为1.3mA/V,A=35800,将RF1,RF2代入式(6),可得CC1+ CC2=12nF。 5. 将fCZ1=745Hz,fCP1=53.59kHz及CC1+ CC2=12nF代入式(4)、(5),可得CC2=168pF,CC1=11.934nF。 6. 将CC1=11.934nF及fCZ1=745Hz代入式(4),可RC1=17.9kΩ。 上述设计程序已求得所有Type II补偿器的电路参数,将其代入Mathcad作计算并用SIMPLIS作模拟,其结果如图12,13,相位裕度为66°。 图12、使用Type II 补偿器之闭回路增益曲线波德图 图13、使用Type II 补偿器之闭回路相位曲线波德图 2. Type II补偿器考虑组件老化 在实际应用上,相位裕度为66°已有不错的稳定度,但电路组件在高温或是长时间工作之下,内部化学反应以及漏电流导致介质电压降低,可能出现老化的情况而造成参数误差变化,如输出电容的容值变小与等效电阻变大等,闭回路的特性因此改变,以下范例讨论上述的状况。 输出电容值(CO)330μF 衰减至 160μF。等效电阻(ESR)9mΩ 增加至 12 mΩ。当以上参数改变,根据式(2)、式(4)可知功率级的fP1与fZ1会跟着变化,fP1变更为1.53kHz,fZ1变更为82.89kHz,功率级的极零点会往后偏移,若使用相同的Type II补偿器,因为fZ1零点位置延后,可预见交越频率会提高,相位裕度也会因为接近双极点而衰减。 电容老化的范例,使用同样的Type II补偿器,闭回路补偿结果改变,其模拟与计算结果如图14、15,交越频率为90kHz,相位裕度降为41°,相位大幅减少,在组件老化时,原本良好的系统稳定性会受到影响。 图14、使用Type II 补偿器之闭回路增益曲线波德图(输出电容老化) 图15、使用Type II 补偿器之闭回路相位曲线波德图 (输出电容老化) 3. Type III补偿器 – Type II加相位提升电容 使用Type II增加相位电容进行设计,目标提高闭回路的相位裕度,先决定新的补偿器零点频率fCZ2=20 kHz,因二者之相依关系,可得极点频率fCP2=60 kHz。依照前述设计流程,得出相关参数: RF1 = 10kΩ,RF2=5kΩ,CC1=26.7nF,CC2=376pF,RC1=8kΩ,CF1=795pF 将上述求得所有Type II补偿器及相位提升电容的电路参数(以上设计程序虽只示范一组,但可自行调试),将其代入Mathcad作计算并用SIMPLIS作模拟,其结果如图16,17,相位裕度大为改善,从66°提升到92°,但是新增的补偿器极零点仍为相依关系,无法决定个别位置。 图16、闭回路增益曲线波德图 图17、闭回路相位曲线波德图 4. Type III补偿器 – Type II加相位提升电容 考虑组件老化 考虑相同的组件老化条件,使用Type II补偿器加相位提升电容,进行闭回路补偿,其模拟与计算结果如图18、19,交越频率为90kHz,相位裕度为64°,可以看出,在组件老化等极端条件下,使用相位提升电容的补偿器结果,相位裕度仍能维持在64°,因应外在不确定因素的影响,保持好的系统稳定性 。 图18、使用Type III 补偿器之闭回路增益曲线波德图(输出电容老化) 图19、使用Type III 补偿器之闭回路相位曲线波德图(输出电容老化) 5. Type III补偿器 – Type II加相位提升电容与电阻 讨论Type II加相位提升电容与电阻的设计自由度。此范例功率级参数改变,工作条件为输入电压VIN 12V、输出电压变更为常用的VO 3.3V。 首先以Type II加相位提升电容进行设计,因为输出电压改变,且极零点与电压VO及参考电压VREF比值一致,所以补偿器fCZ2与fCP2的倍率为5.5倍。设计fCZ2=20kHz,会自动决定fCP2=110kHz。 相关设计参数如下: RF1=10kΩ,RF2=2.22kΩ,CF1=795pF,CC2=263pF,CC1=44.642nF,RC1=11.3kΩ。 模拟与计算结果如图20,21,交越频率仍为60kHz,因为新增零点与极点距离为5.5倍,fCP2频率更往后,导致相位较晚衰减,所以闭回路相位提升到112°,但过大的相位,也可能会造成系统的震荡,此时希望降低极点fCP2频率到最佳的工作点,但在此范例中,因使用"Type II加相位提升电容的补偿器",其极零点有相依性的缘故,将无法做任何设计变动,设计自由受限。为了改善此问题,可以增加电阻,提高设计自由度。以下进行Type II加相位提升电容与电阻的设计。 图20、闭回路增益曲线波德图 图21、闭回路相位曲线波德图 增加相位电容电阻进行设计,目标缩短新增极零点的距离,先决定新的补偿器零点频率fCZ2=20 kHz,以及极点频率fCP2=40 kHz。依照前述设计流程,可得出相关参数: RF1=10kΩ,RF2=2.22kΩ,CC1=28.207nF,CC2=166pF,RC1=17.9kΩ,CF1=486pF,RF3=6.36kΩ 新的极点fCP2、零点fCZ2倍率因为电阻RF3的参与,可以从最大固定的5.5倍调整到2倍,其结果如图22,23,交越频率仍为60kHz,相位也依照使用者设计需求到达85°的目标。 图22、闭回路增益曲线波德图 图23、闭回路相位曲线波德图 上述之设计范例,维持相同的交越频率,藉由加上相位提升的电容或电阻,可有效地提升相位与自由度。范例的设计参数与效益可参考下表。 Compensator Type Type II Type III Type III Extra components N/A Add CF1 Add CF1,RF3 fCZ1(Hz) 745 745 745 fCP1(Hz) 53.59 k 53.59 k 53.59 k fCZ2(Hz) N/A 20k 20 k fCP2(Hz) N/A 60 k 40 k (CC1+ CC2) 12n 27.08n 28.374n RF1(kΩ) 10 10 10 RF2(kΩ) 5 5 2.22 CC2(pF) 168 376 166 CC1(nF) 11.943 26.7 28.207 RC1(kΩ) 17.9 8 17.9 CF1(pF) N/A 795 486 RF3(Ω) N/A N/A 6360 fC(Hz) 60k 60k 60k Phase Margin 66° 92° 85° 四、结论 为了改善Type II补偿器特性,获得更好的相位提升,进而加强系统的稳定性,本文基于OTA Type II补偿器架构,延伸出Type II 加相位提升电容以及Type II 加相位提升电容/电阻的Type III补偿器;依序先分析工作特性与补偿器理论,接着说明相位提升器的原理,并完整清楚的介绍组件参数设计概念;最后,用降压型转换器范例说明补偿器的设计并加以验证,若参考此设计方针进行补偿器设计,有助于提升转换器系统的稳定度。 五、参考文献 Raymond Ridley, “A New Small-signal Model for Current-Mode Control”, Ph.D. Dissertation, Electrical Engineering Department, Virginia Polytechnic Institute and State University, 1991. Jian Li, “Current-Mode Control: Modeling and its Digital application”, Ph.D. Dissertation, Electrical Engineering Department, Virginia Polytechnic Institute and State University, 2009. 王信雄博士, ”开关转换器 控制理论与设计实务” 来源:立锜科技电子报
  • 热度 3
    2020-7-16 15:26
    331 次阅读|
    0 个评论
    摘要 电源IC的失效常常是其输入端受到电气过应力(EOS)的结果。本文对电源IC输入端ESD保护单元的结构进行了解释,说明了它们在受到EOS攻击时是如何受损的。造成EOS攻击事件的原因常常是热插入和导线或路径电感与低ESR陶瓷电容结合在一起形成的瞬态效应。在系统设计中采用一些特别的设计可以避免EOS的发生,防范它们可能带来的危害。 1. 概述 在产品研发和生产过程中总是会出现一些IC损坏的现象,要想找出这些IC损坏的根本原因并不总是很容易。有些偶发性的损坏很难被重现,这时的难度就会更大。有些时候IC的失效表现简直就是灾难性的,可能被烧得一塌糊涂,对这样的状况进行分析就像要在完全烧成断垣残壁的房子里找出火灾的原因一样,几乎就是不可能的事情。 立锜科技在长时间的工作中对大量用户的失效样品进行了分析。通过对损坏的区域进行仔细的探查,有时候是可以对损坏元件进行准确定位的,这对寻找类似失效的原因会有很大帮助。 在很多情况下,器件失效的原因都是输入电压太高了。 本文的后续章节将对Buck转换器输入端的结构进行介绍,给出过高的输入电压造成器件损坏的机制,通过不同的应用案例说明过高的输入电压是如何发生的,还将提供相应的问题解决方案。 2. Buck转换器输入端的结构 图1显示了一个Buck转换器IC内部的基本构成,其中包含了几个静电释放(ESD)防护单元。 图 1 电源输入端VIN被一个很大的ESD单元保护着,其保护范围包括内部稳压器和MOSFET,因而可以承受很高的静电电压。SW端子内部通常没有ESD单元,因为大型MOSFET本身就可以像ESD保护单元一样动作,静电电流可经其体二极管流向GND或VIN端,也可利用它们的击穿特性实现保护。BOOT端有一个ESD单元处于它和SW之间,其它小信号端子也各有一个小型的ESD单元,它们通常都和输入串联电阻一起保护这些小信号端子免受静电放电的危害。 在立锜的电源IC中,用于保护IC端子的ESD元件的动作电压介于器件的击穿电压和绝对最高工作电压之间,这样可避免它们在正常工作期间被触发,参见图2。 图 2 ESD单元在设计上的特性将决定其ESD击穿电压、最大冲击承受能力和其折返特性。 3. ESD和EOS的差异 当超过ESD单元钳位电压的过电压出现在IC端子上时,IC会不会损坏就取决于ESD元件被击穿期间通过它的能量的多少。 ESD(Electro Static Discharge, 静电释放)和EOS(Electrical Over Stress, 电气过应力)都是与电压过应力有关的概念,但它们之间的差异也很明确: 500V),持续时间相对较短(< 1µs) EOS的电压相对较低( 1µs) 立锜科技的IC的ESD保护单元都是按照一定的标准进行设计的,这使得它们能够承受一定的ESD脉冲能量,这些标准是关于人体模型(HBM)的JESD22-A114(其电压值为2kV)和充电器件模型(CDM)的JESD22-C101E(其电压值为2kV)。人体模型的ESD放电过程含有极为陡峭的上升沿和大约300ns的指数式下降过程,充电器件模型的ESD放电过程呈现为极短时间的振荡脉冲,振荡周期约为4ns。比较而言,人体模型的ESD放电具有最高的能量等级。 静电放电总是在极短的时间内完成的,图3显示了JEDEC定义的人体模型ESD测试方法,其中的100pF电容首先被充电到一定的水平,然后通过一只1500Ω电阻将电能释放到受试器件上。 图 3 由于多数受测元件的ESD保护单元的击穿电压都比测试电压低很多,ESD测试的峰值电流基本上都是由测试电压和1500Ω电阻决定的。在此波形样板中,测试电压为2kV,由此带来的峰值电流为2kV/1.5k = 1.3A。RC时间常数约为150ns,因此波形下降得很快,整个过程在1µs以内。 对于2kV的ESD测试来说,释放出来的电荷大约为0.2µC,这个数据可以被用于计算到底有多少能量在ESD期间进入ESD保护单元。例如,当ESD保护单元的击穿电压为27V时,2kV的人体模型ESD放电脉冲在其中释放的能量大约为0.2µC*27V = 5.4µJ。如果是进行4kV的ESD放电测试,这个值就会翻倍到大约10.8µJ。 当持续时间更长的EOS事件发生时,冲击ESD保护单元的能量就会更多,常常超出ESD保护单元的最大冲击能量承受能力,这样就会在ESD保护单元中积累太多的热量,最终导致严重的毁灭性结果。通常情况下,芯片中支撑ESD保护单元的其他部分也会连带着一起受损。 4. 由于输入电压太高造成IC失效的案例 为了展示实际IC输入端的应力限制,我们来探讨一下RT7285CGE,这是一款18V耐压的ACOT架构Buck转换器,额定负载能力为1.5A,采用SOT-23-6封装,它的规格书列出了下述的推荐工作条件和绝对最大额定值数据: 输入端ESD保护单元的击穿电压应该高于上述的绝对最大额定值数据20V。为了测定实际的数据,我们可以使用I/V曲线测试仪,它应该和IC的VIN和GND连接起来。当我们这样做的时候,IC的使能端应当和GND连接以使IC保持在关机状态。将曲线测试仪的纵轴设定为100µA/div,同时设定其功率限制为0.5W。让水平轴的电压缓慢增加,最后会看到波形在电压大约为25.5V的地方突然上升,这意味着RT7285C VIN端的ESD保护单元的击穿电压为这个值。由于曲线测试仪的功率是受到限制的,流过ESD保护单元的电流不会太大(< 1mA),这样的测试不容易对IC造成损害。参见图4。 图 4 由于ESD保护单元的击穿特性是很陡峭的限幅状态,超过其限幅水平的任何输入电压很容易就会导致大电流的出现,并且会在ESD单元中产生巨大的功耗,这将快速导致毁灭性的效果。假如我们在测试中加大曲线测试仪的电流设定和功率限制值,很容易就可以将ESD单元毁掉,我们在此时将看到击穿特性的突然坍塌,此后,该器件将在VIN-GND之间表现为低阻特性。 (在连续模式设定中,曲线测试仪的脉冲周期很长,大约为4ms,这将在大电流测试中快速导致高能量状态。) 通过像图5那样将脉冲电流施加给受试器件,我们有可能将ESD保护单元的失效点更精确地测量出来。测量中所用的电源电压需要高于ESD保护单元的击穿电压,电流脉冲的宽度和电流的幅度可以通过精确的调节以寻找到ESD保护单元在不同电流水平和不同脉冲持续时间下的不同的失效点。 图 5 图6给出示在25°C环境温度下对RT7285C用电流脉冲进行击穿测试的波形。 电流= 197mA, Δt = 7µs 没有失效 电流= 268mA, Δt = 6.2µs 在脉冲结尾处失效 放大显示的失效点,VESD降低到约3V 电流= 136mA, Δt = 14µs 没有失效 电流= 175mA, Δt = 11.1µs 在脉冲结尾处失效 放大显示的失效点,VESD降低到约3V 图 6 从失效发生的测试波形中,ESD单元能够承受的最大冲击能量可以被计算出来:当用6µs的268mA脉冲(7.6W峰值功率)时,造成器件失效的冲击能量为47µJ;当用11µs的175mA脉冲(4.9W峰值功率)时,造成器件失效的冲击能量大约是55µJ。造成器件失效的冲击能量与器件的温度是高度相关的,温度越高,能够造成失效的冲击能量也越少。无论如何,在这种EOS测试中造成器件失效的能量总是明显高于普通的人体模型ESD测试中的能量。 图7显示的是将上述测试中失效了的器件打开以后看到的景象,ESD单元显示出烧毁了的痕迹,ESD单元与地线之间的连接路径上也出现了烧痕。另外,与ESD单元临近的上桥MOSFET区域也显示出一些受损的痕迹。所有的迹象都在表明ESD单元区域受到了严重的热损伤。 图 7 需要注意的是,上面的这些输入电压过应力都是在IC处于不工作的模式下加上去的,此过程中只有ESD单元处于活动状态,最大电流也受到了限制。因此,硅芯片所受到的损伤也是相对不算大的。 5. 电源热插入导致的输入端过应力 一种造成电源IC输入端受到EOS冲击的常见原因是电源的热插入事件,这种事件发生在处于开机状态的电源被引入一个系统的时候。这种系统的输入端通常含有低ESR的陶瓷输入电容,它们与电源引线的电感一起发生谐振,可以导致高压振荡信号的出现。图8显示的就是这样的场景,其中的电源是开着的,有两根引线将电源接入应用系统,其中的开关S用于模拟热插入的行为。 图 8 出现在系统输入端的电压振荡信号的幅度与很多因素有关:电源供应器的内阻,引线的电阻和电感量,开关S的电阻,输入电容C1、C2的电容量和它们的ESR的大小。 作为一个例子,我们假设12V电源供应器具有很大的输出电容,电源引线的长度为1.2m并且具有很低的电阻,开关S的阻抗也是很低的,C1、C2是10µF/25V X5R 1206的MLCC。 电源引线的总电感大约为1.5µH,包括连接器在内其电阻约为10mΩ。两只电容在12V直流偏置下的实际总容量约为9µF,而且它们各自的ESR约为5mΩ。 图9显示了热插入事件发生在这样的输入电路时的振荡过程的模拟结果。 图 9 从模拟结果可以看到,这样的热插入过程导致的输入电流高达大约30A,由引线电感和输入电容导致的电压振荡波形的峰值几乎可以达到直流输入电压的2倍。 图10显示的是对同样的电路进行热插入测试的情形,其中的开关S被换成了MOSFET,该MOSFET是用脉冲发生器驱动的,目的是让热插入的动作变成是稳定的,同时也是可以重复的。 图 10 测试的结果显示在图11的左侧: 图 11 从中可以看到,实际的热插入事件导致了比理论上更高的振荡电压峰值,这是由于MLCC输入电容在直流偏置电压下的电容量的非线性变化导致的,它的这种特性在图中的右侧显示出来。当电容上的电压升高时,它的电容量会下降,对其充电的电流进入更小的电容后就会得到更高的电压。在此案例中,12V电源的热插入事件能导致大约30V的最高电压峰值。 现在将同样的热插入方法应用到由RT7285CGE构成的12V转5V的标准应用电路上,再来测试此期间的IC输入电压和输入电流,看看会有怎样的表现。 通过缓慢增加直流电源的电压,我们就能看到不同的输入电压峰值下导致的不同的IC输入电流。在IC的工作模式下,IC在启动过程中会有一个电流峰值出现,这是由IC的自举电路开始工作造成的,我们在这里应该将其忽略掉。在电源电压出现尖峰期间进入IC的电流峰值出现在IC的ESD单元被击穿的时候。 VSUPPLY = 11.6V, VIN peak = 27.2V VSUPPLY = 11.9V, VIN peak = 28.4V VSUPPLY = 12.1V, VIN peak = 29.4V ESD 单元击穿电流:100mA ESD 单元击穿电流:532mA ESD单元失效:电流失去控制,出现异常的开关动作 电流尖峰的持续时间大约为1.8µs,在失效前通过ESD单元的能量大约为0.6A*1.8µs*29V = 31µJ,比2kV人体模式ESD脉冲带来的能量多5倍以上。 如上例,IC处于工作状态下经受这种输入电压过应力时对ESD单元带来的损伤将会大很多,这是因为没有限制的输入电流将导致更高的电流水平,而由此导致的功率级的功能错误也会带来更严重的损害,通常会导致电源贯通并将MOSFET部分完全烧毁,图12所示的就是经历这种过应力损毁的器件在开盖以后所看到的景象。 图 12 6. 不同类型ESD单元的击穿特性 根据不同的IC制程和设计,ESD单元的类型也是不同的,它们各自具有独特的个性。 PNP型ESD单元可将击穿电压点钳制在相对固定的电压上,其表现与齐纳二极管相当。这种类型的ESD单元常用于DC-DC转换器的输入端保护,其表现参见图13。 25V PNP ESD 单元在曲线测试仪上的表现 PNP ESD 单元的脉冲特性 PNP ESD 单元的脉冲特性的细节 图 13 SCR(单向可控硅整流器)型的ESD单元在击穿后会被钳制在很低的电压上,表现出很猛的折返特性,其表现见图14。 40V SCR ESD 单元在曲线测试仪上的表现 SCR ESD 单元的脉冲特性 SCR ESD 单元的脉冲特性的细节 图 14 NPN型的ESD单元在击穿以后也表现出折返特性,但其保持电压与SCR型ESD单元的保持电压相比要高很多,参见图15。 48V NPN ESD 单元在曲线测试仪上的表现 NPN ESD 单元的脉冲特性 NPN ESD 单元的脉冲特性的细节 图 15 ESD放电过程是一个电流受限的短时过程,因而SCR和NPN类型的ESD单元对高压敏感电路的ESD保护是很有效的,因为它们都具有很低的保持电压。但当这些类型的ESD单元在有直流电源加载的场合被触发时,它们所具有的低维持电压如果低于外加的直流电压就会导致高输入电流,从而立即造成灾难性的损毁。下面的例子可供参考: RT8470是一款老旧的Buck架构LED驱动器,它的输入端ESD单元就是SCR类型的。当其ESD单元被出现在输入端的短脉冲触发时,其中的SCR就会被锁定住,看起来就是其输入端和地之间被短路了。图16对此进行了示范。 使用ESD枪(可用气体点火器改制)将短时电脉冲加入处于工作状态的电源输入端 放电过程在输入端生成了短时电压尖峰(大约5ns),此电压尖峰还不足以触发ESD单元动作 当SCR型ESD单元被触发时,它被锁定在低压状态,对电源供应器来说就相当于短路,大电流由此生成,IC被摧毁 图 16 7. 消除热插入期间电压尖峰的措施 第5章 已经解释过热插入期间电压尖峰发生的原因,图17将与输入电路有关的参数表达了出来:电源供应器的内阻Ri,电源传输线的电感Lwire和电阻Rwire,具有低ESR的输入电容。 图 17 有多种方法可以降低热插入期间的电压振铃信号的幅度: 方法1: 大多数电源供应器是使用了很大的输出电容的开关模式电源适配器,这种电路的输出阻抗很低,遇到热插入事件时可以快速生成大电流。如图18那样增加一个共模电感和一只ESR比较高的小型电解电容,适配器的输出阻抗就会增加,谐振过程会受到抑制。 图 18 方法2: 使用较小线径的适配器电缆来增加电缆的阻抗。为了达成好的谐振抑制效果,电缆的阻抗应该大于0.3Ω,其坏处是电缆上的压降会增加。 方法3: 增加电缆两条线间的耦合程度。两线间更好的耦合可以形成相反的磁场,这对谐振的抑制有帮助。图19显示了对75cm长、规格为18AWG的同轴电缆的模拟,根据漏感测试的结果,两线间的耦合度大概为0.8。 图 19 通过使用不同类型的电缆进行测量,可以确认耦合良好的线对谐振过程会有更好的抑制效果,相应的热插入过程所导致的电压尖峰也更低。参见图20。 75cm/12AWG/ø 2.05mm实验室电缆,耦合度 < 0.1, Rwire = 0.008Ω 75cm/18AWG/ø 1.02mm双芯电缆,耦合度 ≈ 0.3, Rwire = 0.035Ω 75cm/18AWG/ø 1.02mm同轴电缆,耦合度 ≈ 0.8, Rwire = 0.035Ω F谐振 = 37kHz, V尖峰 = 30.2V F谐振 = 51kHz, V尖峰 = 25.2V F谐振 = 91kHz, V尖峰 = 20.4V 图 20 方法4: 由LC电路形成的谐振可以通过给输入电容并联一个RC电路进行抑制,RC电路的参数可用下述方法进行计算: RS的计算公式: 。其中LP是电缆的电感量,CIN是系统的输入电容,ξ是希望的抑制系数。 在前述的热插入案例中,LP大约是1.5µH,CIN在12V时为9µF。当我们选择良好的抑制效果(ξ = 1)时,RS = 0.2Ω。 抑制电容CS的值必须足够大以避免它在热插入造成的电流脉冲出现期间被过度充电,其电压增量VC = IC * 1/ωC,其中的ω是LP 和 CIN的谐振频率(测量数据大约是40kHz)。由于电流脉冲的幅度是35A,要想使充电造成的电压增量小于2V,我们需要电容的值大于70µF。 在加入100µF和0.2Ω的RC电路后,针对上述的热插入案例再次进行仿真模拟,我们可以看到谐振被完全抑制住了,电压的过冲低于2V,参见图21所示。 图 21 在实践中,RC抑制电路可以很容易地通过使用一只100µF/25V的电解电容实现,它需要和陶瓷输入电容并联在一起。之所以这么简单,是因为大多数100µF的电解电容在100kHz频率下有大约0.2Ω的ESR。 在图22中的右侧电路就在输入端加入了100µF/25V电解电容,热插入试验表明其输入端的过冲会被完全抑制掉,不会有损毁风险再出现在IC上。 图 22 8. 其他造成电源IC输入端EOS的原因 除了热插入造成的冲击以外,还有其他一些状况可能造成电源IC输入端受到EOS的攻击: a. USB输出端短路测试造成USB开关输入端损毁 图23显示的是一个典型的USB开关的应用电路图,有一个1µF的去耦电容放在靠近IC输入端的地方,电容前面有大约10cm的铜箔路径将它和5V主电源连接起来。 图23 USB端口都需要进行短路测试,这个测试通过一个开关来模拟,IC需要在侦测到短路以后快速将其MOSFET开关关断。从图23中的实例可以看到,MOSFET开关关断的动作是有延时的,因而会有一个短时大电流流过IC之后关断才会发生。由于输入线有电感存在,此电感和输入端去耦电容C2会一起发生谐振,因而可在示波器上看见输入端出现了高压脉冲,这很可能超过IC的最高耐压能力并将其损毁。 为了解决这样的可靠性隐患,用于热插入风险防范的类似措施可以被纳入考虑范围,因此我们要在电路中加入类似电解电容的RC抑制电路。抑制电路的参数计算方法是类似的,我们可以利用开关关断过程的dI/dt计算电容的值。实际上,一个47µF的电解电容就可以将电压峰值控制在大约6V上,见图24所示。 图24 立锜科技全新的USB功率开关系列产品如RT9742已经考虑到上述的短路问题,大大缩短了对短路状态的检测时间,可以避免在短路测试时出现大电流。如图25所示,虽然输入电容仍然只有1µF,但IC输入端在测试时仍然处于安全区间内。 图25 b. Buck转换器的反向偏置问题 工作在强制PWM模式下的Buck转换器如RT7285C在经由输出端反向偏置时会表现出Boost转换器的行为。 假如转换器的输出端由高于预设输出电压的外部电源供电时,IC内部的下桥MOSFET会从输出端吸入电流,再与上桥MOSFET一起形成一个Boost转换器。如图26所示,该电路的输出端就由一个缓慢上升的5V电源供电,它的输入端电压将上升并最终将其ESD单元击穿。 图26 像这种电源反向偏置的情况并不经常发生,但在存在电池的系统中就很容易出现。又假如在某些设计中使用了动态电压调节技术(通过反馈网络对输出电压进行调节),如果输出电容很大,又恰好遇到了输出电压的设定突然变低,Boost的动作就会发生了。 c. 反馈网络阻抗高的两段式方案 两段式降压方案通常含有一级高压元件将电压降低到低于5V的电压,这样就可以用最高额定工作电压为5.5V的器件作为第二级来使用,它可能会再为系统提供一个更低的电压轨。 在图27中,第一级采用17V的电流模式Buck转换器RT8297B将12V的电压转换为3.3V,低压差线性稳压器RT9193-25再从3.3V转出2.5V。 图27 RT8297B是采用内部补偿的Buck转换器,反馈电阻R1的值对误差放大器的增益会有影响,它必须被适当选择以得到合适的交叉频率。在此例中,输出电容是一只22µF的电容,这样就需要很高的R1值来维持稳定的工作,而高阻值的R1就导致了高阻抗的反馈网络。在通常情况下,这算不上一个问题,除非你拿手去触碰反馈网络,或者是遇到PCB存在漏电的状况(到地的),这时候的FB端就会受到干扰,导致输出电压的提高,严重的情况下就会导致线性稳压器的损坏。 有些电路设计者会故意用手去触碰以完成自己的测试,他们通过用手指触碰PCB上的不同位置来看会不会有电压抖动的现象,从而发现走线或是高阻的敏感位置。 ACOT®; 架构的Buck转换器或使用GM型误差放大器的电流模式转换器对反馈网络的阻抗就不太敏感,可以在这样的应用中予以采用。 9. 用自制工具生成EOS 下面介绍一些可以自制的过应力测试工具,用它们可以分别生成脉动的电流、电场和磁场。 a. ESD发生器(图28) 这款工具是用压电式的气体点火器改制的,这种工具不需要使用电池。 图28 此工具可以像ESD枪一样生成高压脉冲,小心别把自己打着了。 下图是制作的流程: 图29 制作这个工具需要将压电式气体点火器拆开来进行。首先将金属外壳取下来,把高压线拨到外面,用铜箔把手柄盖住,将压电陶瓷的地与铜箔以及地线连接起来。再次装上金属外壳,确保它和铜箔之间连接良好。你还可以在外壳上增加一条地线以降低它和测试对象连接时的阻抗。参见图29。 做试验的时候不要直接对IC进行攻击,你可以在不同的接地点之间或是电源的正极和地之间进行攻击,也可以在电源线上串联电阻以后再行攻击以得到更多不同的量化效果。 b. 脉冲电场发生器,见图30。 图30 这个工具可直接从ESD发生器转变而来。将一块铜箔和高压节点连接起来,再在高压节点和地之间增加一个火花隙即可形成,参见图31。 图31 你可以用这个工具检查你的系统在快速变化的电场下的鲁棒性,很多高阻抗的电路会受到它的影响。 c. 脉冲磁场发生器,参见图32。 图32 这个工具是通过将电流脉冲送入一个线圈使之生成快速变化的磁场来形成的。 你还是可以使用压电式点火器来制作此工具,但你这时候需要使用一个能够固定线圈的装置。在压电式点火器的顶端安装一个小型同轴连接器是比较方便的,这样会给连接不同的线圈带来方便。 一块小型的双面PCB可以用作安装连接器的基座,然后再将PCB和金属外壳焊接起来。你还需要增加一块接地的铜箔,它要将气体点火器的手柄、压电元件的地端和金属外壳连接在一起。 高压线的位置需要进行调节,使之形成2~3mm的火花放电间隙。 屏蔽环的制作与用于EMI测试的环形天线的制作方法是一样的,请参考应用笔记 AN045 ,请注意同轴线的内芯线末端要和电缆的屏蔽层焊接在一起。参见图33。 你可以用这个工具对应用中的敏感环路进行检查,像IC的去耦回路就可以用此方法进行检测。你也可以将线圈与铁氧体磁芯耦合在一起将脉冲电流引入电缆中去,这很类似共模电流测量,但这时候的环形线圈变成了发送器。 需要注意的是这个工具可以生成极端糟糕的脉冲干扰,不要在敏感的数字电路附近使用它。 图33 10. 总结 电源IC的损坏经常是由于输入电压过应力造成的,这在电源热插入导致出现过高电压尖峰或由线路电感和低ESR陶瓷电容形成谐振时就会发生。 当电源IC输入端的ESD单元遇到超过其能量承担水平的冲击能量时就会被损坏。造成IC损坏的EOS能量通常要比正常的人体模式(HBM)ESD能量高好几倍。当ESD单元被损坏的时候,作为其承载体的硅晶圆也会受到伤害。在大多数情况下,承载体的损坏会直接导致功率级的不正常运作,引起直通短路、功率级烧毁等问题。 具有折返特性的ESD单元在被触发以后可能保持在低于工作电压的电压上,这会在被触发之后立即导致大电流的出现。 由于热插入事件和电源线上的谐振效应都会将电压尖峰引入IC输入端,因而在电源设计过程中必须对这样的瞬态过程进行检查,确保在任何情况下都不会在IC输入端形成高电压。由于ESD单元的激活电压总是高于器件的绝对最大额定值,应用中能够出现的电压就不能超过IC的绝对最大额定值,以便确保ESD单元在工作过程中不会被激活。 来源:立锜科技电子报
  • 热度 4
    2020-7-16 15:21
    223 次阅读|
    0 个评论
    摘要 负载瞬变测试是检查功率转换器表现的一种快速方法,它可以反映出转换器的调整速度,能将转换器的稳定性问题凸显出来。转换器的负载调整特性、占空比极限、PCB布局问题和输入电压的稳定性也可经此测试快速显现出来。此文解释了负载瞬变测试的原理,并将其用于实际的DC/DC问题解决过程中,最后还给出了自制低成本快速瞬变负载工具的方法。 1. 概述 许多现今的电子设备都包含了计算和无线连接功能,这些功能电路常常表现出很重的脉冲负载特性。面对这种快速变化的脉冲负载,全新的DC/DC转换器需要具有快速的环路响应特性来维持输出电压的稳定。为了测试这种类型的转换器,拥有能够生成与最终应用类似的快速变化的负载的工具是很重要的。 对于具有比较稳定的负载的通用型DC/DC转换器来说,快速的回路响应特性是不需要的,因而也不必进行负载瞬态响应特性的测试。但在把快速阶跃变化的负载施加到一个稳压器上时,必然在很宽的频带内对调节回路造成冲击,在某些情况下甚至可能逼迫它们运行在控制回路的极限之下。通过将一个快速变化的阶跃负载施加到一个转换器的输出端,再对其输出电压的响应过程进行分析,可让我们快速而且容易地知道这个转换器在面临这样的状况时能否维持其输出电压的稳定,同时也能凸显出可能存在的环路稳定性问题、电源供应的稳定性问题、斜坡补偿问题、负载调节性能和PCB布局问题。 2. 典型的DC/DC转换器阶跃响应特性 图1显示了一个电流模式Buck转换器在其负载发生1A快速跳变时典型的响应过程,其输出电压正常值VOUT NOM = 3.3V。 图1 :电流模式Buck转换器面对快速瞬变负载时的响应 电流模式转换器对负载的阶跃变化不能做出即时响应,所以,当负载发生阶跃变化的时候,供给负载的电流最初是来源于输出电容里的储能。面对负载的快速跳变,输出电容的ESR和ESL首先起作用,在输出电压上表现为一个不大的跳变和尖峰,然后才是输出电容放电的开始,这将造成输出电压的下沉。输出电压的下降将被误差放大器感知到,相应地,这将导致VCOMP的上升,这又会增加开关Q1导通的占空比,电感电流因此增大以满足负载增大了的需要。在此过程关中,电压下沉的幅度和恢复的时间将取决于多种因素:输出电容的大小,负载电流跳变的幅度和它变化的速度dI/dt,误差放大器的补偿水平和整个控制回路的带宽。 抛开由ESR和ESL造成的尖峰来看,转换器的阶跃响应过程在这个案例中看起来是非常平滑的,这表明此转换器的表现是稳健的。响应过程中的电压下沉幅度为75mV,相当于输出电压的2.2%,这对大部分3.3V的电源供应来说是可以接受的。需要注意的是,如果我们使用的输出电容是低ESR的MLCC,由ESR所造成的跳变通常就看不出来。 可能影响转换器面对负载阶跃的响应过程的情形大概有这些: 1. 不稳定的控制回路:当控制回路调整得不好时,转换器的控制作用可能过头,快速负载阶跃可能导致输出电压的颠簸或是存在振铃现象,某些情况下甚至可能进入振荡状态。 2. 不稳定的电源供应:转换器输出端的负载跳变会导致转换器输入端的电源供应器的负载跳变。假如电源供应器的稳定性不好,或者是与转换器匹配得不好,则电源供应器自身就可能振荡起来,这必然会传递到转换器的输出端,看起来就像转换器的控制回路不稳定一样。 3. 斜坡补偿问题:电流模式转换器采用斜坡补偿方法避免高占空比应用中可能出现的次谐波振荡。为了让斜坡补偿工作正常,适当程度的电感电流纹波是必须的。电感选择不当会导致不当的电流纹波,并在遇到阶跃负载时出现不稳定的次谐波。 4. 在占空比极限下工作:当转换器在靠近最小/最大占空比的状态下运行时,负载的快速阶跃变化将使转换器触及占空比的极限,这将导致输出电压下沉或上冲过度,某些时候甚至会造成转换器运作在保护模式下。 5. PCB布局问题:假如由于PCB布局而造成的阻抗出现在转换器的小信号环节和功率环节上,电压的耗损和噪声的耦合就会发生,这将劣化转换器对阶跃负载的响应特性。假如负载处在远离转换器的地方,多出来的路径阻抗会在负载增加时导致电压的下沉,劣化转换器的负载调整性能。此外,当负载发生跳变时,路径电感也能导致振铃信号的出现。 后面的章节将针对上述问题分别提出应对的方法。 3. 不稳定的控制回路 回路稳定性问题是功率转换器设计中很重要的一个方面,增益-相位分析法是常用的检查功率转换器回路是否稳定的方法。通过对转换器进行快速负载瞬变测试查看其稳定性是可能的,但要从中看出到底是哪里出了问题并不总是十分清晰的。 图2显示了一个标准的电流模式Buck转换器的控制回路 : 图2 (简化了的)调制器的增益GVC拥有一个负载极点 和一个ESR零点 。 峰值电流模式控制架构的取样和保持电路将导致一对位于开关工作频率一半处的双极点。 补偿器的增益常被用于将转换器的单位增益频率设定在工作频率的1/10处以避开双极点的影响 : 于是,转换器的带宽大概就是 : 补偿器的零点被设计在靠近调制器负载极点处 : 。 补偿器的极点 被设计在靠近调制器的ESR零点处 : 。 当使用MLCC作为输出电容时,ESR零点频率会很高,常常超过了工作频率。在这种情况下,将补偿电路的极点设定在工作频率的一半处可避免转换器的切换噪声影响环路的工作。需要注意的是,许多转换器具有内部的位于COMP和地之间的电容,因而外部的CP可以很小或是被省略掉。 通过将单位增益频率处的相位进行提升,可以赢得足够的相位裕量以实现稳定工作。不稳定的工作状态(相位裕量不足)可以发生在单位增益频率发生移动或是补偿电路的零点或极点频率选择不当时。 为了示范上述理论,让我们来看一个典型的12V à 3.3V / 2A应用的案例。我们将使用800kHz工作频率的电流模式Buck转换器RT7247CHGSP来进行,计算元件参数所用的工具是免费的在线设计工具 Richtek Designer™ ,这个应用的电路如图3所示 : 图3 使用前文所述公式和设计工具生成的原理图中的元件值,我们可以得到如下的环路参数: fC = 79kHz,靠近工作频率fSW的1/10; fP_LOAD = 2.2kHz,针对2A负载; 取样保持电路的双极点频率 :fP_S/H = 400kHz; fP_ESR = 1.4MHz,基于两只5mΩ MLCC的并联; 补偿器的零点:fZ = 1.8kHz; 补偿器的极点频率:fP = 508kHz,基于1pF外部电容和11pF的COMP端内部电容。 仿真所得的增益相位图如图4所示,实际的带宽为69kHz,相应的相位裕量为57°。 由于调制器采样保持电路的作用,相位裕量在高频部分快速下降。 实际的电路按照下图所示的元件值得以形成 : 图4 图 5 图 6 当使用电子负载形成相对比较慢的负载阶跃对此电路进行测试时,其响应过程看起来是不错的(参见图6)。 但在使用第8章所述的快速瞬变测试工具形成的快速阶跃负载对此电路进行测试时,电路的响应就出现了过度的振铃信号(参见图7),这表示此电路的环路稳定性并不理想。 图 7 对响应过程进行更细致的观察,可以看到振铃过程包含多个周期,其振荡的频率大约为139kHz。 图8 :不同相位裕量与阶跃响应之间的关系 为了对相位裕量进行评估,图8中的图形可供利用。(请注意我们所测量到的振铃信号是叠加在指数型的恢复波形上的,该波形由于CCOMP很大而变得很慢。) 由于我们测量到了好些个振铃信号周期,所 以相位裕量应该是低于36°。 透过阶跃响应中的振铃信号的频率,环路的带宽可以被评估出来,我们由此得到的带宽很高,大约为139kHz。 因此,在计算出来的环路带宽和实际测量出来的带宽之间出现了明显的不同。 影响环路带宽的参数是 。 假设IC的参数都是正确的,看起来能够造成错误的参数似乎只能是输出电容。 能够影响MLCC电容量的重要参数有两个: 1. 电容上所承受的直流电压:较高的直流电压使电容量减小。 2. 电容上所承受的交流电压:较低的交流电压使电容量减小。 你总是需要检视你的电容供应商向你提供的直流偏置下的特性和交流偏置下的特性的具体数据。 在我们的实际案例中,我们并联使用了两只22µF/6.3V/0805的Murata电容,型号为GRM21BR60J226ME39L。 通过使用Murata的网页工具SimSurfing : http://ds.murata.com/software/simsurfing/en-us/ , 我们可以得到图9所示的GRM21BR60J226ME39L的特性资料。 图 9 从中可以看到,电容器GRM21BR60J226ME39L在3.3Vdc偏置下的容量只有11.4µF,它在很低交流纹波(~20mV)下的容量又会再下降30%。所以,我们最后得到的容量只有每只8µF,两只电容合起来只为转换器提供了16µF的电容,远低于原始设计的44µF。这么低的值将使我们的带宽增加很多,同时降低了相位裕量。 图 10 使用实际的16µF输出电容在Richtek Designer™中重新进行运算,最后得到的环路带宽是156kHz,相位裕量仅有26°。参见图10。 为了解决不稳定的问题,我们需要将带宽降低到原始的目标值80kHz。 有两种方法可以达成这一目标: - 增大输出电容量,使其在3.3Vdc和低交流纹波下的等效电容量达到44µF。 - 按输出电容的减小量相同的比例减小补偿电阻的值。 图 11 我们通过减小补偿电阻的值来提升带宽,其它一切维持不变。 RCOMP 的新值为 16 / 44 * 26.1k = 9.5k,我们选择9.1k的电阻来进行新的仿真,最后得到的环路带宽为69kHz,相应的相位裕量为65°。参见图11。 对经过调整后的实际电路进行测量,它对阶跃负载的响应表现出了平滑的响应过程,没有出现振铃信号。 图 12 对转换器面临快速负载增加时的响应时间tR进行探索是很有意思的事情:对于电流模式的转换器来说,tR是与转换器的带宽成反比的,因而可以被用来对带宽进行评估。实际的测量表明,tR介于 之间。 在上述案例中,tR大约为4.2µs,转换器的带宽大概可以被评估为70kHz。 因此,通过测量快速负载阶跃的响应过程就可以知道转换器的稳定性,并且给出其带宽的评估数据。测量中所使用的负载阶跃上升时间一定要远小于转换器的响应时间tR。 像电子负载那样提供的太慢的负载阶跃不能在很宽的频带范围内激发转换器的环路响应过程,因而不能确保凸显出转换器的稳定性问题。用于检测DC/DC转换器的稳定性问题的快速负载阶跃应当具有远小于1/fC的上升时间。 因为输出电容太小而导致的转换器不稳定问题可以发生在各种不同类型的转换器中,包括Buck、Boost和LDO。所以,当把MLCC电容使用于这些应用中时,一定要检查实际工作条件下的真实电容量。除此以外,还会有其它造成转换器不稳定的因素存在于电流模式的Buck转换器中,带宽变得太低就是其中一例。下面的这个案例可对此进行说明,其中涉及到的Buck转换器具有内置的补偿电路。 图 13 大多数使用内置补偿电路的Buck转换器使用运算放大器作为误差放大器,它们的表现类似于Gm型误差放大器,但有一点不同:误差放大器的增益是与反馈网络的阻抗有关的。 其环路带宽由此式给定 : , 补偿电路的零点位于 , 补偿电路的极点位于 。 我们的案例使用RT7252AZSP,这是一款以340kHz频率工作、负载能力 2A的 PSM模式 buck转换器,使用内部补偿,拥有PGOOD输出信号,我们让它从12V输入获得5V的输出为系统和USB口供电,电路使用规格书建议的元件参数来进行设计。RT7252AZSP的内部参数是这样的 :RCOMP = 400kΩ,CCOMP = 35pF,CP = 1pF , GCS = 2.5A/V。 图 14 这个5V输出的电路显示在图14中。规格书建议使用44µF的输出电容,实际电路使用3只22µF/16V/1206的MLCC,以便在5Vdc下获得33µF的电容量。 根据电路求得的环路参数如下: fC = 40kHz(接近fSW的1/10), fP_LOAD = 1.9kHz (针对2A负载), 采样保持电路导致的双极点位置: fP_S/H = 170kHz, fP_ESR = 2.5MHz(基于3只并联的5mΩ MLCC算出), 补偿电路的极点位于fP = 398kHz, 补偿电路的零点位于fZ = 11kHz(此频率处于相对高处,根据IC内部可知的最大电容量算得)。 图 15 将快速变化的阶跃负载施加到这个电路上,它显示出平滑的响应过程,说明电路是完全稳定的。 根据测量到的响应时间tR,转换器的评估带宽大约为41kHz。 当USB热插入事件发生的时候,我们可在输出端看到很大的5V电压的下跌。为了降低热插入事件所带来的电压下跌,一个150µF的低ESR聚合物电容被添加到5V输出上,参见图16。 图 16 图 17 再次检视它面对阶跃负载时的稳定性,可以看到其响应过程出现了振荡现象,这提示了稳定性的不足。 通过测量得知振荡的频率大约为9.4kHz,这表明环路的带宽太窄了。 低下来了的带宽可从加大了的输出电容量得到解释 :因为 ,这将导致大约7.3kHz的带宽,这是150µF电容加入后的结果。 图 18 稳定性的劣化现在可以得到解释了:额外加入的输出电容降低了带宽,也降低了转换器的负载极点,内部11kHz的补偿电路零点落在比9.4kHz的单位增益频率略高的地方。低频率的负载极点导致相位的快速下降,在补偿电路的相位提升作用发生影响之前,环路增益就穿过了0dB位置,导致0dB位置处的相位裕量很低。 为了提升相位裕量,最好的做法是将转换器的单位增益频率设定在高于补偿电路零点频率的地方,使fC落在相位提升区域内,这可通过减小R1以增加误差放大器的增益来实现。为了让带宽重新增加到34kHz,R1需要按9.4/34的比率减小,因此,R1变成33kΩ,相应地,R2也需要同样地减小以维持5V的输出电压。 图 19 对修改后的电路进行阶跃负载测试,确认电路是稳定的,其带宽大约为35kHz。参见图19。 关于稳定性的上述案例都是关于电流模式控制架构Buck转换器的。 ACOT控制架构的Buck转换器内部没有误差放大器,更易于使用。但在某些情形下,它会发生欠阻尼的负载阶跃响应。关于ACOT®器件的稳定性的信息,请阅读应用笔记 《ACOT®的稳定性测试》 。 4. 不稳定的电源供应 在前面的章节里,快速瞬变的负载被施加到DC/DC转换器的输出端,输出电压上出现的振铃信号是我们的探讨对象,它能指示出转换器环路是否处于不稳定的状态。在某些情况下,转换器输出端的振铃信号并不总是意味着环路是不稳定的。出现在转换器输出端的负载阶跃总是会在转换器的输入电源上表现为负载阶跃,输入侧负载阶跃的速度与转换器自身的速度有关,反应很快的转换器几乎可将其负载阶跃的速度完全传输到它的输入源上。而电源供应器的任何不稳定或振荡过程都会在转换器的输入端呈现出振铃信号,这种振铃信号也总是会在转换器的输出端被(部分地)看到,能被看到的程度是和DC/DC转换器的线路调整能力相关的。但只要能被看到,它就可能把我们引导至对转换器的稳定型水平的错误判断上。 下述的实例可对此效应进行验证 : 图 20 图20显示的是采用RT7231GQW构成的10V转3.3V电路。RT7231GQW是一款18V/4A的700kHz ACOT®器件,电路由Richtek Designer™生成,我们的分析也用它来完成。电路中的输出电容被修改成2x13µF以反映两只22µF/16V/1206的MLCC电容在3.3Vdc偏置下的实际容量,仿真器的负载也被修改成以400ns的短时间形成3A的负载高速阶跃。 图 21 由设计工具Richtek Designer™进行的瞬态分析生成的图形如图21所示,其响应过程是平滑的,说明电路具有很好的稳定性。 图 22 把相同的电路置于实验室环境下进行测试,电源供应使用实验室里的电源供应器,快速瞬变的负载则由第8章介绍的负载瞬变工具提供,我们可在负载阶跃的响应阶段看到轻微的振铃信号,信号频率大约为36kHz。参见图22。 反复检视实验所用的元器件,没有找到任何造成转换器不稳定的原因。 图 23 当对转换器输入电容上的电压进行测量的时候,发现上面存在和转换器输出端振铃信号频率相同的振铃信号,而且幅度更大,表现得更加明显。 这种输入端的振铃信号是由低ESR的陶瓷输入电容和实验室电源供应器及其传输线的电感一起共同形成的谐振信号。 图 24 我们这里遇到的输入端振铃信号是很容易被消除的,只需将电解电容和转换器的输入电容并联在一起即可达到目的。电解电容具有比较高的ESR,它在电路中的作用就像RC吸收电路一样,可以很容易地把陶瓷电容和线路电感共同形成的谐振信号吸收掉。通常地,把拥有50~100mΩ ESR的220µF/25V电容用在这里就足够了,它们也会对热插入事件所形成的电压尖峰冲击起到抑制作用。 要对一个转换器进行快速瞬变负载测试的时候,强烈建议在其陶瓷输入电容基础上增加一个220µF/25V或是更大的电解电容以避免可能的输入端振铃信号的发生,这些信号能够传输到转换器的输出端,可对转换器的稳定性判定发生不良影响。 5. 斜坡补偿问题 电流模式Buck转换器使用斜坡补偿方法避免高占空比应用中次谐振现象的发生,一个内生的斜坡信号被添加至电流检测波形以后才让其与误差放大器的输出信号进行幅度比较。 图 25 为了让斜坡补偿能够很好地工作,斜坡补偿信号的斜率Se需要与电感电流下行斜坡信号的斜率Sf保持某个合适的比例,如图25所示。就理论而言,需要Se ≥ 0.5 Sf ,但在实际上,内部斜波的斜率常常大于这一规格,以便确保在广泛的应用和元件选择中保持足够的斜坡补偿水平。 电感电流下行斜坡的斜率Sf是由VOUT/L决定的,因而在某个VOUT之下需有一个适当的L值以满足IC内部斜坡补偿斜率的需要。 电感值的选择错误会造成不正确的电感电流斜率,问题也因此而发生。 在常规的开关式DC/DC转换器设计中,电感值是根据电感电流纹波为负载电流最大值的一定比例来进行计算得到的,该比例通常为30%,可惜这并不能总是给出最佳的选择。下面的例子将说明这一点。 在一项工业应用中,我们需要从最低为6V的输入得到一个5V/5A的输出,这就需要使用一款具有高占空比能力的大电流Buck转换器。为此,我们选择了RT2856GQW,这是一款工业级的电流模式6A器件,集成了低Rdson MOSFET,其占空比几乎可达100%。参见图26。 图 26 大部分元件的取值都是根据规格书的推荐得来,4只22µF/16V GRM31CR61E226KE15 MLCC被用于在5Vdc偏置下得到推荐的44µF输出电容值。电感量根据下述公式进行计算以获得大约0.3 * ILOAD_MAX的电流纹波 : 因为VIN = 6V,VOUT = 5V,f = 500kHz,ΔIL = 0.3 * 5A = 1.5A,所以L = 1.11µH,选定为1.4µH。 当这个电路在快速阶跃负载下进行测试时,输出电压上出现了很大的纹波,参见图27。 图 27 在时间轴上展开并且加入开关节点的电压波形以后,可以看到阶跃负载的施加导致了不规则的占空比表现,其重复频率为½ fSW,这意味着引入了次谐波振荡,它是与斜坡补偿有关的。通过更多的实践,发现次谐波振荡会在较高的负载水平和VIN最低时发生。 此应用中的次谐波振荡可以这样来解释:如前文所述,IC内部的斜坡补偿信号斜率Se是根据通常的电感电流下降斜率Sf生成的,而电感电流的下降斜率Sf是决定于VOUT/L和IC内部的电流传感器增益GCS。当VOUT增加了,L也必须增加以保持Sf不变,以便与补偿信号的斜率Se匹配,这可以在规格书中谈论电感值的地方看到 :要在VOUT增加的时候增加L。在这项应用中,电感值是基于5A应用时纹波电流为30%即1.5A设计的,但由于应用中的VIN接近其输出VOUT,因而需要很小的电感量来满足1.5A电流纹波的需要。很小的电感量就会导致很陡峭的电感电流下降斜率Sf,IC内部的斜坡补偿信号的斜率Se就不足以满足这一需要以避免在高占空比情况下出现次谐波振荡。 图 28 图 29 此案例之问题的解决办法是按照规格书的建议增加电感量。针对5V输出的应用,推荐的电感量是4.7µH。为了避免电感体积太大,使用略微小一点的电感也是可以的,但千万别偏离太多。我们的案例中选用了3.3µH的电感,经过验证解决了次谐波振荡问题,可在整个输入电压范围和负载范围内保持稳定的工作状态。参见图28。 这里所说的这些效应在仿真工具 Richtek Designer™ 中也可以得到验证。 电感选择上的另一种错误也会带来问题,让我们从一个15V转3.3V的降压应用开始谈起,其负载电流的最大值为0.5A,设计采用RT7247CHGSP完成,该芯片是18V/2A/800kHz的电流模式Buck转换器,参见图30。 图 30 设计中大部分元件的取值都来源于规格书的推荐,电感量则利用下述公式算得,目标是使电流纹波约为0.3*ILOAD_MAX : 因为VIN = 15V,VOUT = 3.3V,f = 800kHz,ΔIL = 0.3 * 0.5A = 0.15A,所以L = 21.5µH,选择22µH的规格。 当使用快速阶跃负载对此电路进行测试时,图31所示的响应波形上出现了振铃,这表明相位裕量太低。 图 31 对环路参数进行计算(因为偏置电压为3.3Vdc,使用CO = 2 x 17µF的参数),得 :fC = 67kHz,这与测量得到的振铃频率相符;fP_LOAD = 710Hz(对 0.5A负载);取样保持电路带来的双极点频率为fP_S/H = 400kHz;fP_ESR = 1.9MHz(基于3只5mΩ MLCC的并联);补偿电路极点fP = 851kHz(基于11pF的内部CP电容);补偿电路零点fZ = 2.84kHz。 据这些计算所得到的值来看,单位增益频率看起来是对的,小于fSW的1/10。补偿电路的零点频率处在低于单位增益频率处,其极点频率很靠近fSW。从这些值来看,没有什么明确的原因可以解释为什么相位裕量低了。 然而,电感量要比推荐的3.3V输出时的4.7µH高出很多,这是因为要得到30%的纹波电流,而最大负载电流只有0.5A,这会导致很大的电感量。 大电感必然导致很低的电感电流纹波,其变化斜率远低于补偿信号的斜率,而补偿信号的斜率是根据纹波为IC的最大负载电流2A的30%设计的。 图 32 图32显示了不同电感情况下电感电流纹波和斜坡补偿信号的对比。与斜坡补偿信号的幅度相比,大电感导致的电流纹波信号的幅度要小很多。在这样的情况下,峰值电流模式的控制系统表现得有点像电压模式的控制系统,而电压模式的控制系统需要的是完全不同的补偿方式。这个时候在频域里所发生的事情是调制电路的双极点从1/2 fSW移动到fC去了,这将导致调制电路的相位裕量快速降低,在fC处的相位提升不足,导致最后的相位裕量不足。 对于这个案例来说,相位裕量可用几种方法进行提升: a. 按照电流纹波为IC的最大额定电流的30%计算电感量。对于低负载电流的应用来说,这意味着电感量将会小很多,电感电流相对负载电流来说也会很大。 b. 降低转换器的带宽。在此案例中,将转换器带宽设定为fSW的1/20可带来足够的相位裕量。 c. 通过增加与R1并联的前馈电容CFF来增加一个III型补偿,其值可以这样设定 : ,这一措施可在单位增益频率上添加一个额外的相位提升效果。 图 33 按照b方案将RCOMP减小至8.2k使带宽降低到40kHz后重新测试电路,转换器表现出了平稳的阶跃响应过程,测试其带宽为大约41kHz。参见图33。 这里显示的结果可以用 Richtek Designer™ 进行仿真模拟。 需要特别注意的是,在大多数低占空比的应用中,最好不要使用比推荐值大很多的电感量,因为太小的电流纹波会使转换器的占空比很容易受到噪声的影响,很容易导致抖动的发生。同时,大电感也意味着更高的成本,不值得选用。 6. PCB布局问题 PCB布局在DC/DC转换器的设计中扮演着很重要的角色,在那些存在很快的负载瞬态过程的应用如VCORE、DDR存储器等应用中,尤其是负载自身对电源电压的变化很敏感的应用中,PCB布局甚至成为设计的关键环节。在动态负载之下,转换器和负载之间的物理距离可能成为电源品质的限制因素,将DC/DC转换器和负载放在尽可能靠近的位置就成为这种应用中很重要的设计原则。假如做不到这一点,转换器和负载之间的路径上的电阻和电感就会对动态特性和静态负载调节性能发生明显的影响。 下面这个实际案例可以说明这个问题 : 图 34 在图34所示的板子上,Buck转换器和负载FPGA之间有一定的距离,因而在转换器和负载之间起连接作用的铜箔导致的寄生电阻和电感就会表现出它们的作用来,当负载在静态和动态之间转换时,不同的电压降落会呈现出来。 在图35所示的12V转1.0V/5A电路中,ACOT®架构的Buck转换器RT7239GQW对其输出电压进行稳定调节,但转换器和1V/5A负载之间的连接线却表现出明显的电感和电阻。 图 35 图 36 当负载上出现大电流时,负载端的电压会由于线路电阻而表现出明显的跌落,这就导致了很差的负载调节特性。 负载的快速阶跃变化将因为传输路径上存在的电感和负载端的电容而在负载端导致高频振铃信号,而这种振铃信号与转换器的稳定性是无关的,它仅仅是不良的PCB布局设计的副产物。 为了降低路径电阻和电感导致的电源变化,需要把一些新的解决方案纳入设计中。 通过采用远程电压检测的方法可以消除由于路径电阻而导致的电压跌落问题,在图37中,电阻R23的电压取样点的就从靠近转换器的输出端移动到了靠近负载的地方。与此相应的是,路径上寄生的电感与负载端的电容结合在一起将使高频信号的相移增加,这种反馈回路上的额外相移可以造成转换器的不稳定。为了避免此问题,一个放置在近处的高频反馈元件C30就被加入到了电路中。 图37 :结合了分离的高低频反馈位置的远程反馈 C30的取值应当是这样的,它在转换器单位增益频率处的阻抗应当远小于远程取样电阻R23的值,所以有 。 图 38 当转换器的FB端处于噪声敏感状态时,图38所示的电路配置可供使用 :一个额外的远程检测电阻和本处的交流耦合电容可被加入。在此,需要确保电容的阻抗在转换器带宽频率处要低于电阻的值。 图 39 为了减小负载侧因为寄生电感而导致的振铃信号,可在负载侧添加RC抑制电路对其进行平抑。为了确定RC抑制电路的值,需要对振铃信号的频率进行测量,由此可以推算出寄生电感的值: ,我们由此得到的LPARASITIC是30nH。 由此可以算出RC平滑电路的阻容参数 : 图40 实用上,只要在负载侧增加一只和计算所得的电容值和电阻值具有相当的电容量和ESR的电解电容或聚合物电容即可将PCB布局所导致的振铃信号抑制掉。图40所示的快速阶跃负载测试结果就是在使用了远程检测和抑制网络以后得到的。 7. 实用提示汇总 检查输出电容 在很多DC/DC转换器中,输出电容都在环路稳定性上扮演着很重要的角色。当使用MLCC电容时,你总是应该考虑到直流偏置和交流纹波对电容量的影响。当电容量改变以后,必须对环路稳定性进行复查。 足够快的负载阶跃速度 确保负载发生跳变的速度要足够快,以便在足够宽的频带内对环路造成冲击,负载阶跃的上升时间应该远小于1/fC。 负载跳变的幅度对于转换器问题的检查不是很重要,但最好是使用比较小的幅度(例如为最大负载电流的20%~30%),而且要在整个负载范围内通过改变负载基数进行测试,这样就可以在全负载范围内对转换器的表现进行检查。 确保稳定的电源供应 当负载阶跃响应波形上出现振铃信号时,需要通过检查分辨该信号是由于转换器自身或是电源供应的振铃信号引起的。当要进行快速负载阶跃测试时,确保在转换器输入端去藕电容上并联一只电解电容。 选取正确的电感量 选用太大或太小的电感都会引发问题。在低占空比应用中,电感电流纹波应该基于IC额定电流的一定比例进行取值。在高占空比应用中,应该考虑到IC内部斜坡补偿信号的斜率来选择电感电流的下降斜率。IC规格书中根据不同输出电压VOUT推荐的电感量应该被当作设计的指引来使用。 降低转换器输出端到负载之间的阻抗 在负载表现出很快的瞬变过程的应用中,DC/DC转换器和负载的位置应该尽可能地靠近,其间的路径应该尽可能地宽,并且确保地电流回路的畅通。遇到负载调整问题时要使用远测检测方式解决问题,这种情况下要直接在转换器输出端对转换器的稳定性进行测试。假如此时发现转换器存在稳定性问题,可在近处引入交流反馈信号。面对由于布局而导致的振铃问题,可以加入RC平滑电路或聚合物电容予以抑制。 占空比极限与负载跳变的时机 快速的负载瞬变可导致转换器占空比的极大变化,在某些情况下可使转换器触及其占空比的最大或最小限制。负载阶跃出现在转换器切换周期中的不同位置也会对其响应结果造成影响。 让我们来看看下面这个例子,它使用了RT7294CGJ6F,这是一款低成本的18V/2.5A ACOT Buck器件,封装为SOT-23-6,电路的目标是生成一个1V的输出为MCU内核供电。 图 41 ACOT转换器具有固定的导通时间和可变的截止时间,能对突然发生的负载变化做出很快的回应。这种转换器的最大占空比受导通时间和转换器可能达到的最短截止时间的关系的限制;它能达成的最低占空比则可以低到0%。当从高到低的负载阶跃出现时,ACOT转换器可使下桥MOSFET持续处于导通状态以便让电感电流尽快降下来,在此期间,占空比就暂时处于0%的状态下。图42就是这一表现的展示。 图 42 由这种负载的由高到低的变化带来的过冲称为输出电压的隆起。在此例中可以看到,输出电压隆起的幅度不是恒定的。假如负载的阶跃发生在转换器的截止时间内,此时电感电流已经降下来了,转换器只需继续保持下桥导通状态以继续电流的下降过程。但假如负载的阶跃恰好发生在转换器开始一次新的导通过程的时刻,我们就必须等待导通过程的结束,然后才会开始电感电流的下降过程,而这就将造成比较高的输出电压隆起。在遇到重复的负载阶跃时,这种可见的不同电压隆起幅度不应当被错误地看作是转换器处于不稳定状态的标志。 PSM转换器和强制PWM转换器面对负载阶跃时的不同表现 某些DC/DC转换器通过采用PSM工作模式提升轻载情形下的转换效率。PSM是Pulse Skipping Mode的首字母缩写,有时又被称为PFM(Pulse Frequency Modulation,脉冲频率调制)或DCM(Discontinuous Conduction Mode,非连续导通模式)。这些器件在下桥导通期间出现电感电流变负时会关闭下桥,在负载电流很低时会降低开关切换频率。当一个转换器工作在PSM模式下时,其平均输出电压会比其工作在CCM(Continuous Conduction Mode,连续导通模式)模式下时略高。因此,当阶跃负载使其从PSM模式转入CCM时,转换器的负载调节性能会变得比较差。另外,重载到轻载的转换会导致比较长时间的电压隆起,因为PSM转换器不会吸入任何电流。这些结论性的东西可用下面的例子予以展现,例子中涉及到的RT7272A和RT7272B都是36V/3A/500kHz的工业级Buck转换器,RT7272A是以强制PWM模式工作的器件,RT7272B则是以PSM模式工作的器件,我们把它们用在24V转3.3V/2A的应用中进行测试,应用电路图见图43。 图 43 PSM模式和强制PWM模式器件在负载阶跃作用下的表现上的不同表现在图44中 : 图 44 对于PSM器件来说,当阶跃负载使其从PSM模式切入CCM模式时,它会表现出一个所谓的PSM偏差,此偏差通常大约为VOUT的1%。 对于强制PWM器件来说,无论负载条件如何,它总是处于CCM模式。在轻载状态下,其电感电流会出现负值。 当负载阶跃开始于电感电流最小值刚好高于0的中等负载状态下时,由负载阶跃所导致的反应在PSM器件中和强制PWM器件中的表现是一样的,这是因为转换器总是处于CCM模式下。 假如应用需要在全负载范围内都具有很好的负载调节性能和很好的瞬态响应特性,强制PWM模式的器件就是唯一的选择。那些需要很好的轻载效率的应用就应该选择PSM模式的器件。立锜科技的Buck转换器常常容许PSM器件和强制PWM器件拥有引脚兼容的封装,有些器件则具有模式选择端子可将器件设定为PSM模式或强制PWM模式。 8. 容易自制的快速负载瞬变测试工具 大部分电子负载都能生成负载阶跃,但通常由它们所生成的负载阶跃的变化速度dI/dt是很有限的,这部分是由于电子负载内部电路的限制,但也是因为电子负载和实际应用电路之间的长传输线存在电感的缘故。为了生成快速负载阶跃,一个简单的自制工具可供使用,它是由一只MOSFET开关对负载电阻进行通断控制形成的。 图45显示了这个快速瞬变工具的基本构成 :一个受脉冲发生器控制其通/断的MOSFET开关。MOSFET开关的切换速度可用其栅极的可选的RC网络进行调节;MOSFET漏极连接的电阻R2可根据需要的动态负载调节幅度进行选择;电阻R1用于设定负载阶跃的静态基点。负载电流的阶跃变化可通过示波器的电流探头进行测量,对转换器输出电压的测量则需要在输出电容或是负载点上进行。 图 45 图46显示了这样一个实用的快速负载瞬变生成工具的原理图: 图46 :快速负载瞬变生成工具的原理图 IC1是一款电压控制的PWM信号发生器,其MOD端的电压确定了PWM信号的占空比,DIV端的电压则确定了PWM信号的频率范围,连接在SET端的电阻值确定了精确的频率,OUT端子具有足够的驱动能力可以足够快的上升/下降速度驱动小型的MOSFET开关。占空比通常设定在比较低的5%左右的水平上,这样可使负载电阻和MOSFET在吸取大电流的情况下还能不超过其功率容限。一个时长大约150µs的脉冲就已足够让我们看到完整的电压隆起过程和绝大多数DC/DC转换器的电压恢复过程了,所以,PWM信号的频率可被设定为330Hz。要生成这个频率,LTC6992的规格书推荐的内部分频器是1024,这可通过将R5和R6//R7的比例设定为0.344获得。 最后的频率可以通过R3 + R4//P1进行设定,其计算公式为 ,由此决定的结果是316Hz。 将MOD端电压设定为0.1VSET~0.9VSET可给出0%~100%的占空比。根据给定的R3、R4和P1的值,调节P1可得到的占空比范围是0%~35%。 LTC6992 OUT端子具有很快的响应速度和±20mA的驱动能力,可在100ns内使Q1 MOSFET Si2312DS开通或关断。大多数应用并不需要这么快的速度,这就意味着可通过D1、D2、R8、R9和C3对Q1的开/关速度进行调节。依据图中给定的值,上升/下降时间约为400ns,这已足够查看大多数DC/DC转换器的稳定性问题或PCB布局问题使用。对于给定的Si2312DS来说,通过它的脉冲电流可达8A。更高的电流也是可能的,但在计算负载电阻的时候需要考虑到MOSFET的Rdson对电压降的影响。当要用于低压应用中时,可以选择具有更低Rdson和更小QG的MOSFET。 使用锂离子电池来为此电路供电是一种很方便的选择,这可使得整个电路是完全孤立的,可以避免接地设备带来的地弹问题。此电路的设计是电压不敏感的,电池电压的变化不会影响到频率和占空比的设定,整个电路的电流消耗约为0.4mA,电池使用时间可以很长。 图47显示了此电路的一种可能的PCB布局 : 图47 :快速负载瞬变工具的PCB布局 确保负载和MOSFET之间路径的低阻抗是很重要的。大面积的铜箔被保留着,以便可以焊接更多的并联负载电阻。静态负载电阻可以是固定的,也可以是可变的。 下面是元件清单: Item Value Type or Part number R1 1Ω ~ 25Ω fixed or variable power resistor Leaded 10W or Rheostat variable 25W R2 SMD power resistors 1Ω ~ 10Ω 0.25W/0.75W/2W 1206 0.25W / 1210 0.75W / 2512 2W R3 100k 1% 0.1W 0603 R4 75k 1% 0.1W 0603 R5 10k 1% 0.1W 0603 R6 6.8k 1% 0.1W 0603 R7 22k 1% 0.1W 0603 R8 68R 1% 0.1W 0603 R9 470R 1% 0.1W 0603 R10 3.3R 1% 0.1W 0603 P1 200K TRIMMER, 5 TURN SMD Bourns 3214W-1-204E C1 100µF/10V 6.3X5.2 electrolytic capacitor SMD Panasonic MCESL10V107M6.3X5.2 C2 22µF/16V 1206 X5R Murata GRM31CR61C226KE15L C3 1nF/50V X7R 0603 D1, D2 200V/200mA fast diode SOD323 NXP BAS321 SW Jumper header + jumper 1ROW, 2.54MM MOLEX 90120-0126 Q1 20V / 33mΩ Rdson N-MOSFET SOT23-3 Vishay Si2312DS IC1 Voltage controlled PWM generator, SOT-23-6 Linear LTC6992CS6-1#TRMPBF Battery 3.7V nom. 1250mAh Li-Ion battery Varta PLF503759.06.8080/2528F or similar 因为电路很简单,完全有可能自己用手工就在覆铜板上把电路雕刻出来了。下面的图片就是制作此工具需要用到的全部原材料和手工雕刻出来的PCB : 图 48 组装完成以后的工具看起来是这个样子: 图 49 用电流探头套住负载瞬变工具的引线对负载阶跃电流进行测量是很方便的。由于电流探头是隔离式的,其好处是不会在测量系统中引入地回路,但它却可能在负载阶跃电路中引入额外的电感,这在上升/下降速度非常快(~100ns)的测试中就可能改变阶跃电流的波形,而且也不是所有的电流探头都有足够的带宽可用于测量很快的上升和下降速度。 图50显示了一种可能的通过电流检测电阻测量电流的方法。 图 50 假如示波器各通道之间是共地的,那就绝对需要将检测电阻的地和电压探头的地连接在同一个接地点上。即便是极小的阻抗存在于这些接地点之间,也会在电流和电压探头的接地点之间形成不同的电位差,并在示波器上对电压波形构成影响,这可很容易地通过连接/断开示波器的电流检测连接器并且分别记录下相应的电压波形进行测试。假如电压波形有改变,那就存在地回路上的电流。 图51:通过电流检测电阻进行电流测量 图51显示了用于电流检测的工具和上升/下降速度很快时的测量方法,最好是将示波器的电流检测端子设定为50Ω以避免由于电缆上的反射信号可能导致的振铃过程,要注意这会轻微地降低电流检测的精度。 图52 :使用电流检测电阻测量超快速负载阶跃的结果 9. 立锜负载瞬态测试工具 立锜已经按照第8章所述的DIY工具的原理开发了独特的负载瞬态测试工具,下图是该工具的图片,其中还有一些简单的说明。 图53: 立锜负载瞬态测试工具及其简单说明 此工具使用一片MCU作为核心,它以一定的占空比使MOSFET开关接通和断开。借助一些跳线器,7种不同的负载电阻可供用户选用。有一只可调的10Ω 功率电阻作为静态负载一直存在着。该工具能够生成非常快的负载阶跃脉冲(大约500ns的上升/下降时间),脉冲重复周期和占空比均可通过按键进行调节。 工具使用电池作为电源,因而很容易就可以和你系统中的任何一个电压转换器配合工作。 10. 结论 使用快速负载阶跃对DC/DC转换器进行测试以判定其环路稳定性问题、输入电源的稳定性问题、斜坡补偿问题、负载调整特性问题和PCB布局问题是快速而方便的方法。要想寻找到问题的根源,对转换器的工作方式有基本的了解是必须的,遵从某些基本的规则可使快速负载瞬变测试所凸显出来的问题变得更容易被理解。你自己就可以手工制作出用于进行快速负载瞬变测试的小工具,你也可以使用立锜为此目的而特别开发的专用工具,它们都非常方便携带,适用于绝大多数DC/DC转换器的快速检测中。 来源:立锜科技电子报
  • 热度 2
    2020-7-4 06:23
    760 次阅读|
    0 个评论
    电源供应 1.8V~3.6V,用于内部电压调整器和IO供电,通过外部管脚引入 1.2V~1.8V ,用于内部的各数字外围模块、SRAM和FLASH供电,通过内部电压调整器供电。依据不同的VDD输入电压,该调整器输出电压可通过软件进行配置 1.8V~3.6V,用于内部ADC模块(包括温度传感器等)、复位模块、RC晶振、PLL供电 内部线性电压调整器 该调整器电压用于给内部所有数字电路提供电源(待机电路除外),它有三种工作模式:全开模式MR,低功耗模式LPR以及关机模式。 MCU处于运行模式或睡眠模式时,调整器工作在MR模式;MCU处于低功耗运行模式或低功耗睡眠模式时,调整器工作在LPR模式;MCU进入停止模式时,调整器可通过软件配置,选择进入MR模式还是LPR模式;MCU处于待机模式时,调整器进入关机模式 待机电路:包括Wakeup logic,IWDG,RTC,LSE 32K OSC, RCC 动态电压调节范围 Range1:高性能配置,调整器输出1.8V。当VDD输入低于2V时,CPU频率调节必须遵循2个原则:1. 调节目标频率小于当前频率的4倍,2.频率切换后,必须等待5us,然后再执行下一次调节 Range2:中等性能配置,调整器输出1.5V,此时FLASH读取周期会延长 Range3:低性能配置,调整器输出1.2V,FLASH读取周期最长,同时FLASH不具备擦除或编程操作 电压调节步骤:1. 确认VDD的输入电压是否适合调节,2. 检查PWR_CSR:VOSF标志位,直到其为0, 3.配置PWR_CSR:VOS位,4. 再次检查PWR_CSR:VOSF标志位,直到其为0。在电压调节过程中(VOSF=1时),系统时钟会处于停止状态,对于高实时性需求的应用需要特别注意 电源监控 POR: 上电复位,上电电压如果高于VPOR(1.5V),MCU开机运行(仅在BOR关闭时运行,BOR使能时由BOR接管),否则处于复位状态 PDR: 掉电复位,工作电压如果低于VPDR(1.5V),MCU进入复位状态 BOR: 欠压复位,上电时总是处于激活状态。上电电压超过VBOR(1.8V)时,MCU开始加载选项字节数据,然后检查并修改默认的门限电压(有5个可选级别),或者也可以永久关闭BOR功能 内部电压参考源VREFINT 该参考源电压为BOR,ADC以及比较器提供稳定的参考电压。PWR_CR:ULP位置1时,MCU在进入STOP模式时会关闭该参考源以节约功耗,但注意退出STOP模式时需要约3ms的启动恢复时间,而当快速唤醒标志位PWR_CR:FWU位置1时,MCU退出STOP模式时不会等待VREFINT稳定,而交由用户进行判定 低功耗模式(不同模式的区别点在于功耗、性能、恢复运行时间以及可用的唤醒源) 低功耗运行模式:电压调整器工作在低功耗运行模式,有限的主频支持以及外围模块支持 睡眠模式:Cortex-M0核心停止运行,外围模块保持运行,FLASH/RAM和其它外围模块可以通过软件选择关闭 低功耗睡眠模式:Cortex-M0核心停止运行,电压调整器工作在低功耗运行模式,有限制的主频,有限制的外围可用功能,FLASH停止使用 停止模式:所有时钟停止运行(PLL,HSI,HSE,MSI均关闭),电压调整器工作在低功耗运行模式。退出时根据配置可以选择MSI或HSI作为时钟源 休眠模式:所有时钟停止运行(PLL,HSI,HSE,MSI均关闭),电压调整器关闭。退出时选择MSI作为时钟源。
  • 热度 2
    2020-2-21 11:24
    674 次阅读|
    0 个评论
    仪器型号: GPC-3030DN 故障现象:从路( slave)电压、电流的输出和显示都不稳定,电压在大概±2V范围内随机跳变,电流在±0.1A的范围内随机跳变。 电压跳变电流跳变 故障分析:输出不稳定导致显示不稳定,所以从可能影响输出稳定性的模块入手排查。 维修处理:经排查系控制模块故障,找出并更换故障元件,并对输出进行校准。 维修结果:故障修复,从路电压电流输出显示均恢复正常。 电压正常电流正常 以上有关电源仪器维修案例由西安安泰仪器维修中心网整理发布,更多有关仪器维修知识欢迎访问西安安泰仪器维修网。
相关资源
广告