tag 标签: 噪声抑制

相关博文
  • 热度 12
    2014-6-13 09:32
    1017 次阅读|
    0 个评论
      Σ-Δ ADC利用一个调制器将模拟输入转变成一串脉冲。调制器输出端“1”与“0”脉冲之比代表模拟输入的平均值。调制器输出送入一个数字滤波器。Σ-Δ ADC的数字滤波器一般用SINC (Sin(x)/x)函数的脉冲响应低通滤波器实现。该滤波器输出接至抽样电路,以降低输出码率。   SINC滤波器除了滤除量化噪声这一显著功能外,也有助于提供输出码率整数倍频上的滤波器陷波。例如,60Hz输出码率需要在60Hz、120Hz、180Hz等频点陷波。将滤波器陷波调整到已知噪声源频点(例如50Hz或60Hz电力线噪声),可以从根本上抑制噪声。使用高分辨率Σ-Δ ADC测量窄带信号,在50Hz/60Hz噪声频率处有低强度信号时,该方法十分有效。   输出码率和滤波器陷波频率是调制器频率、抽样频率以及滤波器阶数的函数。抽样率是调制频率与输出码率之比,而调制器频率是ADC时钟频率的函数。   SINC滤波器(一般为3阶,SINC³)在频域定义为: H(f) = ³   其中:N是抽样率;fM是调制频率。   滤波器阶数和抽样率一般取决于Σ-Δ ADC的设计,它们可以在模数转换器的数据手册里查到。ADC时钟频率通常由内部振荡器或外部晶体提供。   图1、图2和图3给出了具有60Hz陷波、调制频率为19.2kHz、抽样比为320的SINC³滤波器的频响特性曲线。使用Maxim的在线计算器:Σ-Δ 50Hz/60Hz抑制计算器,可以计算各种器件工作模式下的陷波频率抑制。   图1为理想时钟条件下的滤波器频响曲线。该滤波器在陷波频点对60Hz的抑制接近无穷大。图2给出了同样的SINC³滤波器频响特性曲线,但其中加入了±4%的时钟公差。该滤波器在陷波频点提供-83.7dB抑制。 图1. 理想时钟源可以实现无穷大60Hz抑制 图2. ±4%时钟公差可以提供83.7dB的60Hz抑制(最差条件下)   外部时钟可以精确控制,内部振荡器则由工厂微调到指定的精度范围内。图3给出了最差工作条件下的陷波特性与时钟公差的关系,其它参数与图1、图2条件相同。 图3. 陷波特性与时钟公差的关系   改进的生产工艺使生产商可以将相当精确的时钟集成到Σ-Δ ADC中。高分辨率Σ-Δ ADC,例如MAX1415/MAX1416,都内置了振荡器,可以减少外部晶振或外部时钟源的需求,有效节省电路板面积。在内部时钟公差为±4%时,典型工作模式可以保证在最差工作条件下对60Hz频率提供83.7dB的抑制,足以符合多数应用的要求。
  • 热度 23
    2013-11-13 09:49
    1086 次阅读|
    0 个评论
       0 引言   按照电感器在线路中发挥的功能,主要有两方面的应用,分别是波形发生器和扼流电抗器。其中,在波形发生方面的应用又包括了谐振电路,振荡电路,时钟电路和脉冲电路等。在这类电路中,电感器必须具有高Q、小的电感偏差和稳定的温度系数。高的Q值使电路具有尖锐的谐振峰值;窄的电感偏差则保证了谐振频率偏差尽可能的小;而稳定的温度系数则保证谐振频率具有稳定的温度变化特性。   而扼流电抗器是将电感作为扼流圈来使用,这在电源电路中有广泛应用。这时电感器的主要参数是额定的工作电流、低的直流电阻和低的Q值。   当电感作为扼流电抗器来使用时,总希望用它构成的滤波电路具有宽的频率抑制特性,因此,这种电感器并不需要有高的Q值。而低的直流电阻可以保证在额定电流通过电感器时,将有最小的电压降。   这样看来,同样是一个电感器,不同的应用场合中对电感器性能要求是不同的。    1 片式电感   片式电感分为绕线型和叠层型两大类。绕线型电感器是将细的导线绕在软磁铁氧体磁芯上制成,外层一般用树脂封固。其工艺继承性强,但体积小型化有限。   而片式叠层电感器则不用绕线,是用铁氧体浆料和导体浆料交替印刷、叠层、烧结,形成闭合磁路;它采用先进的厚膜多层钝化技术和叠层生产工艺,实现了超小型表面安装。   叠层型电感的主要特点是有磁屏蔽和直流电阻小。与绕线型相比,电感量和可允许通过的电流相对较小,但是更适合在高频下使用。   片式电感的材料分成以铁氧体磁性材料为基体和以陶瓷材料为基体两个大类。   前者采用镍锌系和锰锌系材料制成各种小型铁氧体磁芯。大多数片式电感器,特别是片式功率电感器、片式EMI抑制器都使用镍锌系材料。   而锰锌系材料主要用在片式变压器和片式低频电感器中。   后者采用低介电常数陶瓷制成的高频片式叠层电感器,在其制作当中还考虑了抑制杂散电容的问题,用它做成的叠层电感器可以获得较高的自谐振频率,用在亚微波到微波波段,适合移动电话向高频化、网络化发展的需要。    1)片式叠层电感器   片式叠层电感器,是电感领域重点开发的产品。制作时不用绕线,而用铁氧体浆料和导电浆料交替进行多层印刷,然后通过高温共烧结,形成有闭合磁路的电感线圈 (见图1)。或者将微米级铁氧体薄片进行叠层,每个磁性层有印刷的导体图案和孔,孔中填充导电材料,从而把上层图案和下层图案连结起来,经过加压、烧结,形成一体化的多层电感器。这类电感器制作工艺更加适合尺寸微小型化,容易实现规模化大生产。片式叠层电感器与片式绕线电感器相比有诸多优点:尺寸小,有利于电路的小型化;磁路封闭,不会干扰周围的元器件,也不会受临近元器件的干扰,有利于元器件的高密度安装;一体化结构,可靠性高;耐热性、可焊性好;形状规整,适合于自动化表面安装生产。   目前这类产品已取得较大进展,并通过改进磁性材料性能、改善内部磁路结构和加速器件小型化等措施,不断拓展其应用市场。片式叠层电感器是面向便携式电话等移动通信终端的高频毫微亨级电感器,以及面向个人电脑等高速数字信号处理设备的噪声抑制器。    2)绕线型片式电感   另一种形式的片式电感器是片式绕线电感器,这是对传统绕线型电感器的一种改进,采用微小型工字型磁芯,经绕线、焊接、电极成型、塑封等工序制成,见图2。这种类型的片式电感生产工艺简单,电性能优良(电感量大,品质因素高),适合于大电流通过,可靠性好。但受磁芯尺寸和制造工艺限制,进一步微小型有困难。   还有一种片式绕线电感是采用H型陶瓷芯,经过绕线、焊接、涂复、环氧树脂灌封等工艺制成,见图3,由于电极已预制在陶瓷芯体上,制造工艺更加简单,而且可以进一步小型化。这类电感的电感量较小,但自谐振频率高(通常为5~6GHz,最高达12.5GHz),更适合高频使用。    2 片式电感与片式磁珠的区别   在《片式电磁兼容对策器件》这个话题中,片式电感主要是用来抑制电磁干扰的发生。所以比较电感器与磁珠(包括片式电感与片式磁珠)也应该从这个主题出发。   电感器本身是一个无功元件,它在电路中不消耗能量。电感器之所以能够阻止高频信号在线路中流通,发挥对电磁干扰的抑制作用,是因为电感器在高频信号作用下体现了一个高阻抗元件,阻止了高频信号在线路中的流通,而将高频信号反射回干扰源。就这个应用的频率范围来说,很少有超过50MHz的。   对磁珠来说,它本身是一个软磁铁氧体磁芯,串联在需要抑制干扰的线路上,诚然在频率较低时,铁氧体磁珠在串联电路上仍然体现为一个电感。然而对于频率更高的干扰,由于磁芯的磁导率的降低,导致电感的电感量减小,感抗成分减小,因此磁珠电感对于高频干扰的阻挡作用在减少。而与此同时,磁芯的损耗(涡流损耗) 却在增加。后者等效为损耗电阻,电阻成分的增加,导致磁珠在线路上的总阻抗依然在增加,所以当高频干扰通过铁氧体时,磁珠对高频干扰的阻挡作用依然在增加,不过这次磁珠不是将高频干扰反射回干扰源,而是将高频干扰转换成热能的形式给耗散掉了。   这样看来,电感器和磁珠在结构上没有本质性的不同,但是从抑制干扰的机理(依照抑制干扰的频率范围来划分)来说,两者明显是不同的,一个是将干扰反射回干扰源(指电感),另一个是将干扰吸收掉(指磁珠)。    3 片式共模电感器   在电子设备中,我们要抑制的电磁干扰无非是出现在信号线和电源线上的干扰,因此对于电磁兼容对策器件中的电感器,特别是片式电感器的适用形式也是从这两方面来分析。    1)信号线的滤波   信号线的滤波作用更多是用来对付来自空间的干扰问题(包括从空间辐射进设备的干扰,和设备向空间发射的干扰)。这说明了电缆线是电磁兼容的薄弱环节,也说明了共模干扰是设备的主要危害。这是信号线所起的天线作用惹的祸。基于这一原因,对于非屏蔽的信号线端口应当安装信号线滤波器,滤波器要安装在信号线进出的交界面上,要滤除的主要是一些频率相当高的共模干扰信号。    2)电源线的滤波   在设备的电磁干扰的传播途径中,电源线是最重要的媒介,因为电源线的长度(包括设备的电源进线和电力传输的架空线延伸)足以构成射频信号的被动天线。此外,电网内的各种设备开、关和运行中形成的骚动也在电网中肆意流传。上述干扰对电网内的敏感设备的可靠工作造成威胁。射频信号在电源线上的传输是以两种模式进行的,一种是共模型式,在线一大地及中线一大地两个路径上出现;另一种是差模型式,在线一中线里传播。   电源线滤波器则被安插在电源线上,专门用来抑制射频信号传播的器件。   在电源线滤波器设计中往往不用差模电感,而采用共模电感。共模电感的两个线圈绕在同一磁芯上(同名端在线圈的同一侧),这种绕线方法对于差模电流(包括电源电流)产生的磁通相互抵消,不会产生磁路饱和;而对共模电流则体现一个很大的电感,取得大的滤波效果。   应当指出的是,共模电感器的两个线圈绕制不可能完全对称,因此共模电感器实际上还是残留一定程度的差模电感成分,对于差模干扰仍有一定程度抑制作用。   这样看来,无论是信号线或者是电源线,从抑制电磁干扰的角度出发,用得最多的还是共模抑制措施。因此从使用片式电感器的角度出发,用得最多的还是片式共模电感器。另外,从电磁兼容对策器件生产商提供的电感器来说也是片式共模电感器。    4 片式共模电感器举例   1)片式共模电感例   这里举日本村田制作所的片式共模电感为例,村田的片式共模电感拥有多个不同的子系列,其中:   DLP S系列为薄膜型片式共模电感,在一个元件中含有一个双路工作的共模电感。该系列产品有线路阻抗匹配功能(共模阻抗为67~550 Ω,其间有若干档),可在不造成高速信号传输失真情况下实现差分信号的噪声抑制。用于USB 2.0、IEEE 1934、LVDS的高速差分信号线的共模噪声抑制。常用于移动电话、笔记本电脑、数码相机和数码录像机。   DLP D系列为薄膜型片式共模电感,在一个元件中含有两个双路工作的共模电感。该系列产品有线路阻抗匹配功能(共模阻抗为67~440Ω,其间有若干档),可在不造成高速信号传输失真情况下实现差分信号的噪声抑制。用于USB 2.0、IEEE1934、LVDS、 DVI、HDMI的高速差分信号线的共模噪声抑制。常用于电脑、笔记本电脑主板、打印机、扫描仪、LED显示器、游戏机和电脑外围设备。   DLM G系列叠层共模电感,其中DLM11G可以同时实现共模和差模噪声的抑制。在100MHz时的共模阻抗为600Ω,差模阻抗为1 200Ω。可采取高密度安装(窄中心距),用于个人移动通信设备(如移动电话的麦克风、扬声器和耳机),以及电活机和个人移动设备(PDA、数码相机、 MD播放机)的噪声抑制。   另一种,D L M 2 H G叠层共模电感,它100MHz时的共模阻抗为600Ω,内部含有三根连接线,可用于高品质的数字音乐设备的耳机线。特点是音频信号失真低,串音低,对共模和差模噪声均有抑制能力。典型应用例子有DVD、MD播放机、笔记本电脑和PDAM的耳机线。   DLW21S系列绕线型片式共模电感,它的共模阻抗为67~370Ω,中间有若干档次,可匹配阻抗为100Ω的线路,在不造成高速信号传输失真情况下实现差分信号的噪声抑制;小尺寸更实现了高密度装配。常用在DVD录像机、电脑、LCD电视机和显示器中用于数字AV接口(如HDMI和DVI等)、电脑外设的USB线,笔记本电脑和LCD的LVDS线的USB线。   DLW31S系列绕线型片式共模电感,共模阻抗为90~2200 Ω,在高频时的高共模阻抗对噪声有极好的抑制功能,DLW31S的高耦合性能可在不造成高速信号传输失真的情况下实现差分线的噪声抑制。常用于电脑、外设中的USB线,笔记本电脑和LCD的LVDS线。   DLW21H系列绕线型片式电感,共模阻抗有67、90、120和180Ω几种,由于DLW21H系列的高耦合性,不会对高速信号传输造成失真,常用在小而薄的数字设备(如电脑、外设和通信设备)中的信号差分线(USB2.0、IEEE1934和LVDS)共模噪声抑制。   DLW5AH/5BS系列高性能绕线型片式共模电感,其外形尺寸为5.0×5.0×4.5mm,共模阻抗达到190~4 000Ω,通过电流为200mA~5A。由于100MHz时的共模阻抗最大值可达到4 000Ω,实现了大的噪声抑制。另外,由于最大通过电流可达5A,非常适合于在电源线上使用。该系列的高耦合共模结构不会损害高速信号的传输。可用于便携设备的AC适配器中的直流电源线。DC-DC转换器、电池充电器中的直流电源线。DLW 5 BT系列绕线型片式共模电感,外形尺寸为5.0×5.0×2.5mm,该系列电感为薄型结构。在100MHz时的共模阻抗最大值可达1 400Ω,最大通过电流可达6A。适合于DC-DC转换器、电池充电器等电源设备;PDA(个人数字助理)、笔记本电脑、打印机等便携设备使用。    2)片式共模电感的应用   (1)USB接口噪声的抑制例   USB接口噪声的抑制例见图4,其中VDD/GND线用DLW5BSN35 1SQ2高性能绕线型共模电感(或BLM21PG221SN1片式磁珠);D+/D一线用DLP31SN221SL2或DLP31SN121SL2片式共模电感(如采用片式磁珠,对1.5Mbps传输速率用BLM21BD102SN1,对12Mbps用BLM21BB221SN1)。   图5为笔记本电脑液晶显示器部分的噪声抑制方案,利用共模电感可以很方便地将有用信号与线间串扰信号(共模干扰)分离开来。
  • 热度 27
    2013-1-18 16:37
    1676 次阅读|
    2 个评论
      磁场所造成的噪声 如果您正在磁场附近测量, 您应采取预防措施,避免测量连接中的感应电压。 如果在磁场中, 输入的连接布线发生抖动, 或磁场发生变化,都可能感应电压。 在地球的磁场中运动的无屏蔽、 裸露的输入的导线, 可以生成几个毫伏。 在交流电源线周围, 不同的磁场还可以导致高达几百毫伏的感应电压。在大电流的导体附近工作时,您应该特别小心。 如有可能,您应该将布线远离磁场。在电动马达、 发电机、 电视和电脑CRT显示器周围, 磁场都普遍存在。 此外,如果在工作区域附近有磁场, 操作时请确保您输入的接线已经拉直,并**固定好。使用双绞线连接到仪器可以减少噪声拾取的回路面积,或尽可能将电线紧密困在一起。 在校准时, 如果计量毫欧表和毫伏表, 磁场造成的测量波动可能会引起比较大的问题。 要减少这些波动, 我们可以构建了一个金属屏蔽箱, 隔离开 仪表和周围的磁场。 箱体上可以有一个小开口,开口 只需足够大,以读取测量结果和更改设置。   低电平的 AC 测量误差   当测量的交流电压小于 100 mV 时, 要知道这些测量都是特别容易受到外来噪声源的影响,而引入错误。 暴露的测试引线都可能成为天线, 内部数字万用表 将测量收到的信号。 整个测量路径,包括电源线, 都可能成为一个环形天线。 回路中的电流, 在通过包括仪器输入在内的一系列串行阻抗后, 将产生电压误差。 出于这个原因, 您应该使用屏蔽线,将低电平的 AC 电压输入仪器。 您还应该将屏蔽连接到低端。 如果无法避免, 也一定要尽量减少接地回路的面积。相比于低阻抗源, 一个高阻抗源容易拾取到更多的噪声。 您可以通过与仪器的输入终端并联一个电容的方法,来降低源的高频阻抗。 您可能需要试验,以确定适合您应用的正确电容值。 大部分的外部噪声是与输入信号不相关的。 如下所示,您可以用这个公式确定误差。   与被测件有关联的噪声,虽然极为少见,但尤其有害。 这种 噪声将总是直接添加在输入信号上。 测量低电平信号时, 如果有同频率的其它信号存在,例如与本地交流电源的频率相同时,是容易产生误差的。   如果在同一个开关卡或模块上,切换大信号和小信号时必须十分小心。 因为在这种情况下,有可能大信号的充电电源, 会在小信号的的通道上释放。 这时,建议您可以使用两个不同的模块,或者将小信号通道与大信号通道分开, 在它们中间增加一个未使用的通道,连接到大地。   本文结束。欢迎阅读     专家谈测试:通过正确的线缆连接减少测量误差(一) 专家谈测试:通过正确的线缆连接减少测量误差(二) 专家谈测试:通过正确的线缆连接减少测量误差(三)    
  • 热度 25
    2011-7-21 15:07
    2400 次阅读|
    0 个评论
    如果你在开发或测试一个产品,相信你肯定会考虑噪声信号可能对系统带来的诸多影响。比如,一个幅度过大的噪声信号,如果耦合到时钟信号上,就可能导致这个系统无法正常工作,如果耦合在串行总线上,则会导致更多的误码。因此,在设计电路的过程中, 系统对噪声的抑制能力是必须考虑的。 但我们如何验证系统抗噪声的能力是否能达到设计的要求呢?其中一个有效的方法就是, 将一个带有噪声的信号输入系统,并对噪声的幅度进行调整,看看幅度到多高, 带宽到多少就会出现问题。如下图,就是在一个时钟信号上,叠加上来更高带宽的噪声信号 产生这种带有噪声的时钟方法有很多,但要随意改变信号的幅度、带宽和噪声信号的深度等,就不是那么简单的事情了。 如果要做得这些,最好的方法就是利用具有信号叠加功能的双通道任意波形发生器, 也就是说, 利用一个通道产生时钟信号,而另外一个通道产生噪声信号,通过 内部数学叠加 , 再从其中一个通道输出。这样,时钟信号和噪声信号可以轻易地分别调整  安捷伦的 33522A 30 MHz 双通道函数和任意波性发生器就具备这种功能。这种叠加特性支持通过数学方法将一个波形添加到另一个波形,从而轻松地生成更复杂的波形, 而且仅通过前面板操作即可实现。以上的波形就是高斯噪声+方波实现的。叠加特性支持定义叠加波形的频率和幅度比(高达 100%) 如果采用其它的波形来替代噪声信号,可以仿真其它种类的干扰信号。例如,下图显示的是以 10% 幅度进行叠加的 10 KHz 方波和 100 KHz 三角波。 这个波形看上去有点像哪个明星的酷头。或者,您可以在一个信号上叠加 50 Hz 正弦波,以仿真功频噪声。 有一点要说明的是,这种叠加是在生成波形点的芯片中通过数学方法实现的,而不是在外部简单的信号叠加。 因此,并不是每种任意波形发生器都能具备这种功能了。 利用这种叠加功能可以产生更为复杂的任意波形。如下图的信号,左边那张就是我们每天都听到的电话拨号双音频信号。右边那张是用于测试音频放大器瞬时互调失真的输入信号 以下这段视频,就是演示如何利用Agilen 33522A 进行双通道之间的叠加,产生非常复杂的信号:http://www.tudou.com/playlist/p/l12654758i90612642.html    
相关资源
  • 所需E币: 2
    时间: 2022-5-12 10:32
    大小: 4.16MB
    上传者: czd886
    压缩感知超宽带信道估计中噪声抑制方法的研究
  • 所需E币: 0
    时间: 2020-12-21 21:52
    大小: 1.91MB
    上传者: czd886
    基于螺旋谐振环结构的UWB同步开关噪声抑制电源平面
  • 所需E币: 0
    时间: 2020-11-19 16:54
    大小: 1.71MB
    上传者: czd886
    新型折线形共面EBG电源层结构的噪声抑制特性验证与分析
  • 所需E币: 1
    时间: 2020-9-27 18:44
    大小: 1.47MB
    上传者: 指的是在下
    基于数字助听器声音场景分类的噪声抑制算法
  • 所需E币: 2
    时间: 2020-5-5 11:46
    大小: 7.33MB
    上传者: 指的是在下
    村田噪声抑制基础教程,共178页六章节介绍EMI
  • 所需E币: 4
    时间: 2019-12-25 21:57
    大小: 929.95KB
    上传者: givh79_163.com
    1图像处理与传输(请单独搜索下载)2图像的基本概念3图像增强4图像的几何变换5图像的噪声抑制6图像的锐化处理7图像的分割8二值图像的分析9彩色图像第10章图像变换11图像的编码技术……
  • 所需E币: 5
    时间: 2020-1-4 12:14
    大小: 275.16KB
    上传者: 微风DS
    原标题:Murata'sNewESRCapacitorsTackleAnti-ResonanceESR(equivalentseriesresistance)主要内容:可以有效解决噪声抑制不足的问题,可是,目前ESR电容并未大量使用,原因主要由于ESR值过于低下,阻抗峰值或称为反共振与去耦性能在峰值频率下均呈下降趋势。为了解决这一问题,村田制作所开发了一种新型低ESL控制的ESR电容,该电容ESR值有效提高,隶属于村田制作所LLR系列电容。NovelCapacitorsMurata’sNewESRCapacitorsTackleAnti-ResonanceAsconsumerscontinuetoseekoutIdeally,theelectricalcharac-moreinnovativeandattractiveprod-teristicsofacapacitorarequot-ucts,manufacturerskeepcomingupedonlybyequivalentseriesca-withmoreadvancedelectronicpacitance(ESC),whichindi-equipment.High-performanceLSIsplayacen-catescapacitance.Inreality,tralroleinthoseelectronicproducts,startinghowever,dielectric(material)fromthecommunicationequipmentunderpin-lossandinternalelectrodelossningourlifestyles,ande……
  • 所需E币: 4
    时间: 2020-1-4 12:14
    大小: 316.91KB
    上传者: 978461154_qq
    原文章标题NewCeramicCapacitorTakesonNoise,SmoothingofLEDBulbs村田制作在面对日益增长的LED灯需求下,提供了解决高效、高性能的电解电容及薄膜电容的替换方案。村田制作所使用由新材料制作的瓷质电容,该瓷质电容在实际应用中能获得比通用电容更高的性能。本文简介了新电容的特性及典型LED灯的应用方案及其它电子设备。NewCeramicCapacitorTakesonNoise,SmoothingofLEDBulbsAstoday’selectronicdevicesarebeingrequiredtobecompact,thin,energyefficient,tohavelownoise,andtobeeco-friendlytocontributetothepreventionofglobalwarming,light-emittingdiode(LED)bulbsemergedin2009inresponsetotheseneeds.Nowadays,LEDbulbsfea-turecompactandthindesignandarehighlyeco-friendlywithlongdurability.Therefore,electronicpartsmountedonLEDbulbsarealsoexpectedtobecom-pactandthinwithlongdurability.AsanLEDbulbisequippedwithsmallpowercapacityofaround10W,casesarein-creasingwherecompactandhighlydurableceramic……
  • 所需E币: 4
    时间: 2020-1-6 10:22
    大小: 665.75KB
    上传者: 2iot
    原标题:Murata'sThree-TerminalCapacitorsSuppressNoiseonPowerLines主要内容:本文考虑了半导体元件发出的噪声问题,从以下几个方面进行了研究:在电力线上进行噪声控制,更小的ESL,更高的插入损耗,三端电容的作用,并提供了两种设计方案,对过孔的连接方式也进行了测量,文中使用大量图表与数据来说明。Murata’sThree-TerminalCapacitorsSuppressNoiseonPowerLinesElectronicdevices,asrepresentedconductorsdonothavebydigitalcamerasandflatTVs,enoughspacestomountaarebecomingmoremulti-func-largenumberofcapacitorstionalandhighlyefficientinor-duetomorepinsandnar-dertomeettherequirementsofconsumers.rowerpitches.CostsareTorealizethesemulti-functionalandalsounexpectedlypilinghighlyefficientfeatures,processingspeedsupduetotheexpensesre-ofsemiconductorsusedindevicesarelatedtomountingcapaci-fasterandtheyarebeingfurtherintegratedtors,whicharehig……
  • 所需E币: 3
    时间: 2019-12-24 22:54
    大小: 142.8KB
    上传者: wsu_w_hotmail.com
    摘要:制定于1989年的1-Wire标准经过升级后,可适应嘈杂和远距离1-Wire网络。本应用笔记阐述了新标准的改进之处,并给出了1-Wire主机如何与标准器件和新型器件协同工作。1-Wire扩展网络标准Feb05,2007摘要:制定于1989年的1-Wire标准经过升级后,可适应嘈杂和远距离1-Wire网络。本应用笔记阐述了新标准的改进之处,并给出了1-Wire主机如何与标准器件和新型器件协同工作。引言1-Wire总线是一种简单的信令协议,可通过单根电气连接进行双向通信。在1-Wire系统中,单个主机与一个或多个从器件通过一条公共数据线实现互联。DallasSemiconductor公司于1989年制定了1-Wire标准,减少了便携数据传输模块间的连接。iButton(16mm电池形状的模块)随之应运而生,目前全球销售量超过1.3亿。1-Wire架构也适用于其它应用,如芯片标签和远距离传感器。然而,早期的1-Wire前端没有考虑到这些新型应用的噪声水平与线路特性(如线长)。若要满足这些新型应用的要求,经常需要考虑在实际应用中如何配置1-Wire网络。因此,为了满足这一系列应用的要求,Dallas开发了1-Wire扩展网络标准的新型1-Wire前端,并将其植入一些新产品中。表1列出了1-Wire器件清单,并给出了新型扩展标准支持的器件。新型扩展标准的重要特性各种噪声源所产生的噪声将导致1-Wire线路上出现信号毛刺。这些噪声可能来自网络端点或分支点的反射。(更多信息请参见应用笔记148,"长线1-Wire网络可靠设计指南")。噪声也可能由外部源产生,并耦合到1-Wire信号上。上升沿的噪声毛刺会导致1-Wire器件与主机失去同步。改进后的扩展网络前端可以解决上升沿存在的这一问题。新型1-Wire前端主要包括三个部分:用于滤除高频噪声的低通滤波器、低电平切换至高电平时的电压滞回电路,以及上升沿延时电路。某些1-Wire器件还具有在线应答脉冲摆率控制电路。图1给出了这一系列特性的示意……