tag 标签: 2024版

相关资源
  • 所需E币: 0
    时间: 2024-6-19 11:40
    大小: 2.54KB
    上传者: 开心就很好了
    一、大数据工程师是什么?大数据工程师是利用大数据技术处理大量数据的专业技术人员,他们负责数据的采集、清洗、分析、治理、挖掘,并对这些数据加以利用、管理、维护和服务。大数据工程师的工作内容包括但不限于数据处理、数据分析、架构设计、技术创新、团队协作和业务理解等多个方面。大数据工程师的工作不仅限于技术层面,还包括与团队成员的沟通协作以及对业务需求的深入理解,以确保能够为企业提供有价值的数据分析和决策支持,推动企业的发展和创新。二、如何成为大数据工程师1.什么是大数据?顾名思义,大数据首先最明显的特点就是数据量足够大,互联网大厂里面的数据量基本上原始日志单日的数据量能达到PB级别,经过处理后的中间表在TB级别,最终在平台上展示可以人工分析的数据最多只能是GB级别的统计级别数据,数据量太大对分析师、产品、以及领导层做决策帮助不大。2.什么场景需要大数据?比如说你现在在一个叫买买的购物APP里想买件衣服,在你疯狂逛APP的时候其实你的每一个行为都被日志记录了下来,并保存到数仓里面,比如一次点击,从A页面点击进了a商品,从B直播购买了b商品,并且分享给了你的朋友,整个行为都会被记录下来用于分析你的购买习惯,同时算法也会通过这些大数据给你的每一个商品展示位推荐一系列商品,最后按照一个打分高低,选取分数最高的展示给你。3.大数据工程师是做什么的?大数据工程师就是把这些PB级的数据加工至可以人工分析帮助决策的GB级别甚至MB级别,用于各个BI系统、推荐系统、数据分析系统、算法等系统里面。三、大数据工程师的要求大数据工程师的要求主要包括学历、专业背景、技术能力、工作经验、语言能力以及其他要求。1、学历要求:通常要求具备本科及以上学历,专业背景与大数据相关。对于初级、中级和高级大数据工程师的报考条件,学历要求有所不同。初级要求中专、大专学历或本科及以上学历,中级要求中专、大专学历或本科及以上学历,并有相关工作经验或初级证书,高级要求中专、大专学历或本科及以上学历,并有相关工作经验或中级证书。2、专业背景:需要具备计算机科学、数学、统计学等相关专业背景。这些专业背景有助于理解和应用大数据工程中的相关技术。3、技术能力:需要熟练掌握大数据相关技术,如Hadoop、Spark、Kafka等,并且具备数据挖掘、数据分析、数据可视化等方面的技能。这些技能是大数据工程师不可或缺的能力,有助于有效地处理海量数据并进行数据分析和挖掘。4、工作经验:申请者需要具备一定的实际工作经验,能够独立完成大数据相关的项目。对于不同级别的证书考试,工作经验的要求也不同。四、大数据主要是学啥大数据主要学:Java编程技术,Java编程技术是大数据学习的基础;Linux命令,对于大数据开发通常是在Linux环境下进行的;Hadoop,这是大数据开发的重要框架;Hive,Hive是基于Hadoop的一个数据仓库工具,可以将结构化的数据文件映射为一张数据库表,并提供简单的sql查询功能等。五、大数据工程师有前途吗这个是肯定有的,大数据工程师是一个有前途的职业。从行业需求来看,大数据技术在各行各业的应用不断扩大,导致行业对大数据技术专业人才的需求日益旺盛。很多企业和机构都急需具备大数据分析和处理能力的人才,为大数据工程师提供了广阔的就业机会。此外,随着大数据技术的发展和普及,以及人工智能、云计算、物联网等技术的不断进步,大数据工程师的职能也在不断扩展,未来职业前景将会更加广阔。从薪资待遇方面来看,大数据工程师是一个高薪职业。在美国,大数据工程师的平均年薪较高,而在中国的一些一线城市,大数据工程师的年薪也在30万人民币以上。大数据行业的平均薪资已经达到了较高的水平,特别是在大城市,薪资水平更是可观。此外,大数据工程师的职业发展路径清晰,从实习工程师到首席工程师/架构师,每个阶段都有对应的职位和薪水,且薪水具有竞争力。综上所述,大数据工程师是一个前景广阔、薪资待遇优厚的职业选择。但是,也需要注意到入行门槛相对较高,需要学习常见的大数据技术栈、精通SQL及维度建模或Java等技术,并需要熟悉业务。
  • 所需E币: 0
    时间: 2024-3-19 14:25
    大小: 3.18KB
    上传者: 开心就很好了
    一、什么是pytorchPyTorch是一个开源的Python机器学习库,基于Torch,用于自然语言处理等应用程序。PyTorch既可以看作加入了GPU支持的numpy,同时也可以看成一个拥有自动求导功能的强大的深度神经网络。除了Facebook外,它已经被Twitter、CMU和Salesforce等机构采用。二、为什么使用PyTorch?机器学习研究人员喜欢使用PyTorch。截至2022年2月,PyTorch是PapersWithCode上最常用的深度学习框架,该网站用于跟踪机器学习研究论文及其附带的代码存储库。PyTorch还有GPU加速,使代码运行得更快,你可以专注于操作数据和编写算法。三、PyTorch库的优势通过将模型应用到例证,深度学习允许我们执行很多复杂任务,如机器翻译、玩战略游戏以及在杂乱无章的场景中识别物体等。为了在实践中做到这一点,我们需要灵活且高效的工具,以便能够适用于这些复杂任务,能够在合理的时间内对大量数据进行训练。我们需要已被训练过的模型在输入变量变化的情况下正确执行。接下来看看我们决定使用PyTorch的一些原因。PyTorch很容易被推广,因为它很简单。许多研究人员和实践者发现它易于学习、使用、扩展和调试。它是Python化的,虽然和任何复杂领域一样,它有注意事项和最佳实践示例,但对于以前使用过Python的开发人员来说,使用该库和使用其他Python库一样。更具体地说,在PyTorch中编写深度学习机是很自然的事情。PyTorch为我们提供了一种数据类型,即张量,通常用来存储数字、向量、矩阵和数组。此外,PyTorch还提供了操作它们的函数,我们可以使用这些函数来增量编程。如果我们愿意,还可以进行交互式编程,就像平常使用Python一样。如果你知道NumPy,那么你对交互式编程应是非常熟悉的。PyTorch具备2个特性,使得它与深度学习关联紧密。首先,它使用GPU加速计算,通常比在CPU上执行相同的计算速度快50倍。其次,PyTorch提供了支持通用数学表达式数值优化的工具,该工具用于训练深度学习模型。四、创建数据Tensors张量是一种特殊的数据结构,它和数组还有矩阵十分相似。在Pytorch中,Tensors可以在gpu或其他专用硬件上运行来加速计算之外,其他用法类似Numpy。importtorchimportnumpyasnp#直接从数据创建data=[[1,2],[3,4]]x_data=torch.tensor(data)x_data.shape#全为1x_ones=torch.ones_like(x_data)#retainsthepropertiesofx_dataprint(f"OnesTensor:\n{x_ones}\n")#全为0x_rand=torch.rand_like(x_data,dtype=torch.float)#overridesthedatatypeofx_dataprint(f"RandomTensor:\n{x_rand}\n")#查看tensor类型tensor=torch.rand(3,4)print(f"Shapeoftensor:{tensor.shape}“)print(f"Datatypeoftensor:{tensor.dtype}”)print(f"Devicetensorisstoredon:{tensor.device}")步骤2:自动梯度计算在Pytorch中可以使用tensor进行计算,并最终可以从计算得到的tensor计算损失,并进行梯度信息。在Pytorch中主要关注正向传播的计算即可。#x=torch.ones(2,2,requires_grad=True)x=torch.tensor([[1,2],[3,4]],dtype=float,requires_grad=True)print(x)y=x+2print(y)print(y.grad_fn)#y就多了一个AddBackwardz=y*y*3out=z.mean()print(z)#z多了MulBackwardprint(out)#out多了MeanBackward#计算公式:out=0.25((x+2)*(x+2)*3)out.backward()print(x.grad)步骤3:拟合曲线接下来我们将尝试使用Pytorch拟合一条曲线,我们首先的创建待你和的参数,并加载待训练的数据。#需要计算得到的参数w=torch.ones(1,requires_grad=True)b=torch.ones(1,requires_grad=True)#数据x_tensor=torch.from_numpy(x)y_tensor=torch.from_numpy(y)#目标模型#y=wx+b定义损失defmse(label,pred):diff=label-predreturntorch.sqrt((diff**2).mean())pred=x_tensor*w+bloss=mse(y_tensor,pred)#执行20次参数更新for_inrange(20):#重新定义一下,梯度清空w=w.clone().detach().requires_grad_(True)b=b.clone().detach().requires_grad_(True)#正向传播pred=x_tensor*w+b#计算损失loss=mse(y_tensor,pred)print(loss)#计算梯度loss.backward()五、完整代码(GPU)使用GPU训练只需要把训练数据、模型放入GPU中即可指定是否使用GPU训练模型device=torch.device("cuda:0"iftorch.cuda.is_available()else"cpu")模型放入GPU中model.to(device)数据放入GPU中inputs=torch.from_numpy(x_train).to(device)labels=torch.from_numpy(y_train).to(device)importtorchimporttorch.nnasnnimportnumpyasnpclassLinear_yy(torch.nn.Module):  def__init__(self,in_dim,media_dim,out_dim):    super(Linear_yy,self).__init__()    self.linear_1=torch.nn.Linear(in_dim,media_dim)    self.linear_2=torch.nn.Linear(media_dim,out_dim)       defforward(self,x):    x=self.linear_1(x)    x=self.linear_2(x)    returnx   in_dim=1media_dim=2out_dim=1model=Linear_yy(in_dim=in_dim,media_dim=media_dim,out_dim=out_dim)device=torch.device("cuda:0"iftorch.cuda.is_available()else"cpu")model.to(device)epochs=1000learning_rate=0.0001optimizer=torch.optim.Adam(model.parameters(),lr=learning_rate)loss_faction=torch.nn.MSELoss()forepochinrange(epochs):  epoch+=1  #注意转行成tensor  inputs=torch.from_numpy(x_train).to(device)  labels=torch.from_numpy(y_train).to(device)     #梯度要清零每一次迭代  optimizer.zero_grad()   #前向传播  outputs=model(inputs)  #计算损失  loss=loss_faction(outputs,labels)  #返向传播  loss.backward()  #更新权重参数  optimizer.step()  ifepoch%50==0:    print('epoch{},loss{}'.format(epoch,loss.item()))