tag 标签: 功率

相关帖子
相关博文
  • 热度 7
    2023-3-22 17:51
    1096 次阅读|
    0 个评论
    我们在使用信号源的时候都会用到射频线,但线损校准过程中会引入各种由于人员操作、环境硬件不稳定等因素带来的误差,此时,可以采取功率平坦度校准的方式来应对。 本次我们将以E8257D为例进行操作说明,在“每日E问”中搜索仪器型号,可以看到E8257D是是德科技(原安捷伦)旗下的一款射频微波信号发生器,具体参数如下图所示。 此外,还需要一台功率计和功率计探头,型号可选EPM系列E4416A/17A/18B/19B/N1913A等。 首先点击模拟源幅度按键,翻页后选择用户平坦度定义,点开后点击配置校准的数据。 我们以9G至18G选10个点做一个校准,当然也可以选取更多的点,会更加精确。 选取后点进下一页,选择所使用的功率计探头的型号和主机的GPIB地址和端口,将其对应好后返回。 此时便可以直接点击校准,它会自动通过GPIB去读取测得的值。 我们事先已经用GPIB线将这两台机器连接好,此时会看到它会按照设置的频率去一个点一个点的测试。 测试结束后,会将数据存储到机器里,现在它测出来的这个值,就是我们的线损。 等全部跑完之后,我们点击“Done”,现在的值就已经存到信号源里 我们可以简单测试一下,下图所示位置有一个平坦度的开关,我们当前有一个10个G的信号,而我们测得的值是0.73dBm。 把平坦度打开,就可以看到值已经比较接近于0了,说明我们已经把这个线损通过校准写了出来。 以上便是“功率平坦度的校准操作”的详细方法,不单是E8257D,在其他的一些老款仪器,比如836XX等老款扫描信号源,也可以实现类似的操作,可以让输出功率更精确。 ——作者 君鉴科技/君鉴云课堂 ——来源 每日E问eteforum
  • 热度 6
    2022-8-9 16:41
    1130 次阅读|
    0 个评论
    无线充电为何不适合功率竞赛 科技的发展让我们离“束缚”越来越远。对于各类电子产品来说,充电器是非常重要的配件。当我们向移动和便携式设备充电时,当前比较普遍的方法是用有线充电器进行供电,但是疯狂缠绕的充电线让处于万物便捷时代的我们觉得失去了自由。 【导读】科技的发展让我们离“束缚”越来越远。对于各类电子产品来说,充电器是非常重要的配件。当我们向移动和便携式设备充电时,当前比较普遍的方法是用有线充电器进行供电,但是疯狂缠绕的充电线让处于万物便捷时代的我们觉得失去了自由。 在这种情况下,无线充电技术正在走向市场。 无线充电技术不用通过 连接器 作为媒介,不需要常规意义上的充电器和电源线,只需放在充电座上就可以充电。与有线充电相比,无线充电不仅在安全性、灵活性、通用性等方面具备多重优势,还可以减少频繁的充电对设备充电接口的损耗。 无线充电最早可以追溯到1893年。特斯拉当时通过两个线圈点亮了一盏灯,用的正是无线充电技术。其实,如今无线充电的基本原理还是这样,即发射线圈通过感应交流电流产生交变的磁场,使接收线圈中产生电流,实现无线电能传输。 图1:特斯拉无线电能传输试验原理图 (图源:高工锂电网) 目前常见的无线充电技术主要有电磁感应式、电磁共振式、电场耦合式。当前手机无线充电大部分采用电磁感应式无线电能传输技术,发射线圈安装在在充电座上,接收线圈安装在手机背面,当手机靠近充电座的发射线圈时,磁场会让接收线圈产生感应电流。在整个过程中能量由电能转化成磁场场能再通过感应线圈感应生电,最终完成充电的过程。 作为未来重要的消费电子潮流,无线充电近年来呈现出技术成果加快转换、产品规模化量产稳步上升的趋势。这点尤其体现在手机等智能电子设备领域。伴随着智能手机产业的快速发展,手机无线充电的“军备竞赛”正开展地如火如荼,各个手机厂商都卯足了劲推出功率越来越大的新品。 早在2014年,苹果便推出无线充电的AppleWatch;2015年,三星推出了支持无线充电服务的手机,并相继推出多款搭载无线充电手机服务的手机与无线充电器。不过,受限于无线充电器充电功率较低、充电时易发热等问题,无线充电在初期推广并不顺利。 自2020年以来,无线充电技术迅速发展,各大手机厂商均推出了自身的无线充电方案。2020年10月,苹果将AppleWatch的充电方式嫁接到iPhone上面,推出了支持15W功率的Magsafe磁吸无线充电。该方案通过磁铁的吸引力,使无线充电器与接收线圈能够准确定位、配对,提升充电效率。 与苹果、三星相比,在高功率快充方面的新技术尝鲜中,国产手机厂商们跑得更快。华为、OPPO、小米等部分品牌智能手机早已实现50W无线充电,并且更高功率的无线充电产品还在继续推出。2020年7月,OPPO发布了65W AirVOOC无线闪充;同年10月,小米展示了80W的无线快充解决方案,甚至120W的无线充电技术都已准备就绪。 图2 (图源:小米) 可以看到,芯片和终端厂商们正在将无线充电往更高功率、更快充电速度上推进。除了在手机端快速渗透外,无线充电也在加速向笔记本、智能手表、手环、扫地机器人、耳机以及汽车领域拓展。 无线充电技术在一定程度上打破了时间和空间的限制,万物互联的时代需要无线充电技术的加持。可以预见无线充电技术在未来将会有非常广阔的应用前景。 无线充电“功率竞赛”落幕 就在各大厂商准备在无线充电功率方面大干一场的关键时刻,工信部正式出手,开始严格管控无线充电功率,拟规定所有生产、进口在国内销售、使用的移动和便携式无线充电设备额定传输功率不超过50W。 图3: 工信部《无线充电(电力传输)设备无线电管理暂行规定(征求意见稿)》 据了解,该意见稿目的在于规范无线充电(电力传输)设备有序使用无线电频谱资源,避免对各类依法开展的无线电业务产生有害干扰,维护空中电波秩序。 简而言之,就是在目前无线设备越来越多的环境下,通过设定无线充电功率限制来避免设备间互相干扰。 如果上述征求意见稿最终获得通过,50W以上的无线快充产品都将成为“绝唱”,这意味着无线充电的“功率竞赛”就此落幕。 那么,对于以手机为代表的消费电子设备充电而言,50W的无线充电技术能否满足消费者需求呢? 其实,50W已是一个不低的无线充电功率水平。在2020年小米发布的50W无线秒充技术中,已经实现40分钟即可将4500mAh大电池充至100%,充电速度超过了部分有线充电。毕竟苹果手机目前的有线充电器功率才达到20W,磁吸无线充电还只有15W。对于消费者而言,50W的无线充电功率足以满足对于手机快充的需求。 然而,在“功率竞赛”告一段落之后,无线充电技术接下来要关注哪些技术点呢? 01 提升充电效率/转化效率 我们先来了解一下无线充电系统的内部结构和工作原理。无线充电系统由发射端和接收端组成。以电磁感应方式为例,发射端与电源连接,电源被发射电路转变为高频电流,高频交流电使发射线圈产生波动磁场,变化的磁场在接收线圈上感 应出交流电,然后接收电路再把电流转化为直流电给设备电池进行充电,这样一来就实现了无线充电。 图4:无线充电供电示意图 ( 图源:行行查研究中心) 简单来说,就是采用电磁感应原理,实现“电生磁”-“磁生电”的相互转化。从产业链来看,无线充电产业链主要包括方案设计、无线充电芯片、磁性材料、传输线圈、模块制造等几个环节,行业入局者众多。 其中, TDK 是 无线充电线圈 领域的知名厂商,其面向智能手机及其他移动设备的无线充电线圈采用纤薄、灵活的金属磁片,实现了行业最薄的厚度。这些TDK无线电力传输线圈装置不仅超薄、超轻,同时也高度耐冲击。 贸泽电子在售的TDK无线充电小型Rx(接收)线圈单元WR202010-18M8-SM接收器具有10.68µH电感和2.96Ω的最大直流电阻。 图5:无线充电小型Rx线圈单元WR202010-18M8数据表 (图源:TDK) 据了解,该线圈设计上尽可能降低了电阻值上升的趋势,并实现了满足WPC Qi标准要求的电力传输效率。TDK设备具有超薄外形及0.5-0.6A的输出电流,可依据每项设计要求进行定制设计,并且无卤素,适用于智能手机、手持式移动终端、DSC、可穿戴设备等产品的无线充电应用中。无线接收线圈作为无线充电功能的重要硬件支持,其销量必定会随着无线充电功能的普及而不断攀升。 从无线充电技术的市场应用现状来看,现阶段无线充电的效率大多处于60%-80%之间,而有线充电效率可达95%,两种充电方式存在较大差距。因此,除了充电功率之外,充电效率和转换效率也是制约无线充电速度的关键。 在电磁感应模型中,电能转换为磁场能,再由磁场能变为电能的过程必然存在一定的能量损耗,并且由于比有线充电多了感应线圈这个“中间商”之后,能量转化率也出现大幅的降低。因此,提高无线充电效率和转换效率成为接下来行业要发力的方向之一。 提高效率可以从两点出发,一是增大输出,另一个是减少损耗: 增大输出方面,可以从材料选择来着手。选择好的磁性材料一方面可以增加磁通量,另一方面可以实现磁屏蔽。目前常用的磁性材料有 铁氧体 、纳米晶等,对磁通特性要求较高。无线充电的发射端与接收端上都覆盖无线充电线圈,线圈在工作时都会有损耗,因而使用好的材质可以降低线圈损耗,大大提升无线充电效率。 减少损耗方面,可以从优化线路与元器件选择来着手。线路上精简优化好,并且元器件选择好的材质,就可以减少输出损耗。此外,发射和接收线圈的耦合设计以及制造工艺都影响充电效率,电子线圈高端产品的技术门槛较高,能提供高端产品的生产商数量有限。 在提升无线充电效率方面,Texas Instruments的产品表现出色。贸泽电子在售的Texas InstrumentsBQ51051 BRH LR产品是一款高效、符合Qi标准的无线电源接收器,适用于便携式应用的集成锂离子/锂聚合物电池充电控制器。 BQ51051BRHLR在单个封装中集成了低阻抗同步整流器、低压降稳压器(LDO)、数字控制器、充电器控制器以及精确的电压和电流环路。整个功率级(整流器和 LDO)使用低电阻N- MOSFET 以确保高效率和低功耗,峰值AC-DC充电效率能达到93%。 图6:Texas Instruments BQ51051BRHLR无线电源接收器功能框图 (图源:Mouser) 据了解,BQ51051B器件提供高效的AC-DC电源转换,以及高效、安全地对锂离子和锂聚合物电池充电所需的各种控制算法。该器件与BQ500212A发送器侧控制器一起为直接 电池充电器 解决方案提供完整的无线电源传输系统。 通过使用近场感应电能传输,嵌入在便携式设备中的接收线圈可以接收发射线圈传输的电能,然后对来自接收器线圈的交流信号进行整流和调理,以直接向电池供电。从接收器到发射器建立全局反馈,以稳定功率传输过程。 TI 公司的无线充电产品组合改变了传统的连接性,可提供各种无线电源发射器和接收器器件,适用于直接和间接充电应用以及标准兼容和非兼容系统,其丰富的无线充电解决方案极大的满足了人们对于持续连接的需求。 02 增强易用性 目前,手机无线充电广泛采用的是电磁感应式技术。由于其研发门槛较低,技术趋于成熟,成本较低,因而被厂商广泛使用。但电磁感应无线充电局限较多,包括充电时需要对齐线圈、不能远距离无线充电、同时可充电设备的数量较少等。这几大短板限制了电磁感应无线充电的发展,致使该项技术在大部分应用场景中优势不明显,使用体验有待进一步加强。 为了解决以上问题,电磁共振式无线充电技术出现了,其原理是发送端遇到共振频率相同的接收端后,由共振效应进行电能传输。通过这项技术,即使没有像电磁感应式充电一样对齐线圈的位置,也依然能充电,并且充电距离可达10厘米左右。这样的距离与电磁感应技术相比没有本质区别,仍然不能实现远距离无线充电。其缺点是充电效率较低,并且距离越远,传输功率越大,损耗也就越大。 为了实现真正的无线充电,无线射频技术又应运而生。这种全新的隔空充电技术,通过发射装置的天线辐射无线电波,再由接收装置接收无线电波上承载的能量来完成“隔空”充电。这种充电方式覆盖的范围比前两种技术远得多。相比接触式无线充电,隔空充电才能让消费者真正感受到无线充电的魅力。 无线射频技术是目前无线充电技术研发的前沿,诸多企业都在研发使用不同的无线射频类型完成“隔空充电”,其优点是充电距离远,充电方式灵活,限制少,可以实现真正的“无线充电”。当然这种技术也有潜在的不足,比如对人体的潜在影响以及转换效率相比前两种方式较低。 无线射频技术被认为是下一代无线充电设备的核心技术,当真正成熟、低成本的电磁共振和射频无线充电器出现后,无线充电才能真正实现大家想象中的那种远高于插线充电的便利性。也许在消费电子领域,无线充电技术将从现有的电磁感应无线充电直接过渡到隔空充电,进而从有限的无线,发展到真正的无线。 目前而言,隔空充电技术想要达到真正的实际应用,仍有诸多问题需要解决。综合来看,不同的无线充电技术之间优劣各异,随着市场需求以及技术演进的趋势,每种技术都在寻求新的突破口。 图7:无线充电技术模式对比 (图源:头豹研究院) 03 EMI(电磁干扰)控制 所谓EMI(电磁干扰),是指任何能使设备或系统性能降级的电磁现象。 由于无线电能传输系统在传播过程中需要借助磁耦合机构将发射侧的电能转化成高频磁场,因而容易产生EMI信号。这些EMI信号经过传导和辐射,不仅会污染电 磁环 境,还会对通信设备和电子仪器造成干扰。 同时,无线充电是辐射开放的磁场,开放磁场可能会对外部其它设备产生影响。所以在做芯片设计的时候,需要通过降低寄生参数、调整驱动的速度和时间以及添加磁性材料等方式来屏蔽电磁干扰,降低电磁干扰带来的影响。 如在无线充电的发射和接收端,可采用铁氧体等低成本软磁材料。通过对铁氧体屏蔽结构的优化设计可有效降低耦合机构的磁场泄漏,达到控制EMI的目的。 买电子元器件现货上唯样商城 由此可见,无线充电芯片和线圈对EMI有着较高要求。贸泽电子在售的来自 Vishay 的 Dale IWTX-4646BE-50无线充电发射器线圈能够提供耐用的结构和高磁导率屏蔽,该线圈在19V输入电压下能提供超过70%的效率。 图8:Vishay-Dale IWTX-4646BE-50无线充电线圈 (图源:Mouser) IWTX-4646BE-50线圈配备不受永久定位磁铁影响的高饱和铁粉,可与Vishay符合WPC的无线接收线圈配套使用。尺寸更大的铁氧体线圈在强磁场下会饱和。IWTX-4646BE-50在4000高斯磁场下的磁饱和为50%,可替代此类线圈。 综合上述内容来看,“功率竞赛”之外,提升充电效率、增强易用性、控制无线充电系统的电磁干扰等或将成为行业厂商接下来需要关注的重点方向。 而在无线充电方面一直表现亮眼的小米,自2018年推出首款无线充电手机以来,一直致力于推动无线充电技术的发展。近日,小米推出了“小感量+磁吸”无线充电预研技术,磁吸无线充电功率可达50W,损耗降低50%,进一步实现了“革命性的无线充电体验”。 无线充电市场前景可观 近几年随着无线充电的不断普及和推广,消费者对于无线充电的认知度和接受度正在不断提高,无线充电所应用的领域也将不断扩展。 据相关数据统计,全球无线充电市场规模从2016年的34亿美元增长至2020年的90亿美元,年均复合增速超过40%,2021年全球无线充电市场规模突破百亿美元,市场前景广阔。 图9:(图源:行行查研究中心) 未来,随着行业系统设计的改进、无线充电效率和易用性的提升,行业厂商将以更新、更好、更快且更具成本效益的无线充电解决方案,继续推动无线充电技术向前发展,以及市场预渗透率的持续攀升。
  • 热度 5
    2022-5-12 09:22
    1286 次阅读|
    0 个评论
    介绍 系统或信号链路的功率是保证可靠信号完整性和足够信噪比的主要指标之一。在信号链中,每个设备的工作情况都取决于前一个设备是否提供了适当的信号电平,如果水平过高,将会出现非线性性能,或者在最坏的情况下,设备将会受损,而如果电平过低,载波信号可能会丢失。 在直流应用中,甚至在低频情况下,都需要进行电压和电流测量以计算功率。然而,由于驻波等效应,如果电压和电流沿电缆变化,这种测量无法获得可靠的结果,但功率是始终保持不变的,因此对于判断高频传输线非常有用。 单位 为了同时处理非常大和非常小的功率电平,使用了对数来进行数据处理。dB是两个功率比率的对数,它表示相对功率。同时为了获得绝对值,以1mW为参考,得到以dBm为单位的结果,或相对于1mW的dB。 如何测量 在很多应用中,信号不仅在频率上被调制,在振幅和其他方面也会被进行调制(即使是脉冲信号也会如此),因此,通常选择测量信号的平均功率。 信号的功率可以通过各种不同的仪器来进行测量,频谱分析仪和网络分析仪均可用于进行功率测量。然而这些设备的工作频率是有选择性的,频谱分析仪只能在配置的带宽内进行功率测量,而射频功率计则可以测量整个频率范围的功率,包括所有的载波、谐波等。 为了在宽带上进行这些测量,通常使用特定的传感器,最常见的类型是二极管检波器。检波器基本上由一个线路终端组成,该终端具有与系统相对应的阻抗,二极管用于校正信号,旁路电容用于消除通过二极管的任何高频信号,整流后的信号可以通过模数转换器来接收。 大多数产品都有内置的射频感应功能,可以测量整个带宽上的累积射频功率,这个数据是向M&C系统发送警报或完全自主执行冗余切换的质量指示,这一功能通过将信号从主传输路径耦合出来,并将其馈送至内置射频功率检测器IC来实现。该芯片基于与二极管检测器相同的原理,耦合器和传感器针对各自的频带进行调谐,以确保在使用的整个频谱上进行测量。 由于光传输线路中的功率测量更具挑战性,因此通常选择测量这一系列的电气数据。例如,在通用光传输卡上,会感应到输入信号,而在接收卡上,会检测到外部边界信号,这会将测量转移到信号流的电气数据部分,从而更容易进行测量。 功率感测指示 在设备中,为每个通道设置阈值水平,如果阈值电平不足,则LED灯变为红色,并同时触发报警或自动切换至备用信号。在实际应用中,当施加信号时,在信号电平的中间设置阈值电平和信号失败时的信号电平可以确保可靠地切换和监控。 注意 射频应用中的功率通常是在一定时间内直接测量的; 单位dBm使用对数计算,与1mW有关; 频谱分析仪和网络分析仪测量窄带段的功率,虹科DEV中的功率计和IC测量的是宽频段; 测量的是电功率,而不是光功率,电信号的测量相对而言更容易执行。
  • 热度 6
    2022-4-20 00:11
    878 次阅读|
    0 个评论
    ​ 转载--- 电工电气社区 2022-04-09 18:28 ​ 电力小美妞 公众号 1平方电线、1.5平方电线、2.5平方电线、4平方电线、6平方电线等,那么这些电线可以负荷多少瓦呢?这也是大家比较关心的。 下面就来详细看看 1、1.5、2.5、4、6平方电线可以负荷多少瓦。 ​ 首先给小白科普一下,老司机跳过。1平方线:横截面积是1平方毫米的电线。 如果我们按照公式:面积=半径²×3.14 来推算。那么1平方线=1.13mm左右。 ​ 一、1平方电线可以负荷多少瓦 按照“经验公式”:只要是铜芯电线,每平方毫米的截面积可以安全通过4--5A的额定电流;在220V单相电路中,每1KW的功率,其电流约为4.5A左右;在380V三相平衡电路中,每1KW的功率,其电流约为2A左右。上面的这些值,可用物理计算公式算下来的结果是很接近的,所以电工在工作中,为了不去记那些“繁琐”的计算公式,就记住这些就可以了。 那么根据这个算法就知道:每1平方毫米截面积的铜芯线,如果用于220V单相电路中,则可以安全承载1KW 的负载所通过的电流;如果用在三相平衡负载(比如电动机)电路中,则可以安全承载2.5KW负载所通过的电流。 二、1.5平方电线可以负荷多少瓦 如果电源线是铜芯线,一是明线安装最大允许工作电流是20A,即4400瓦;二是暗装套钢管,电流是16A,功率为3520瓦;三是pvc管暗装,电流是14A,那么功率为3000瓦。 三、2.5平方电线可以负荷多少瓦 2.5平方电线丞受倒多少千瓦电力,国标GB4706.1-1992/1998规定的电线负载电流值,铜芯电线2.5平方毫米16A~25A 约5500瓦,铝芯电线2.5平方毫米13A~20A 约4400瓦220VAC电压长时间不超过10A最标准 绝大部分时间不超过15A算安全 。 四、4平方电线可以负荷多少瓦 单相电源1KW约是4.5A,8KW约是36A。4平方电线(独根的塑铜线)载流量约是30A,小一些,换6平方线(单跑电源).你的表和闸都必须换大的。不用这么大功率吧,最小4KW,也可以的。4平方电线丞受倒多少千瓦电力那要看你是家庭220v用电还是工厂380v的了要是220的4平方电线可以负荷6到8个千瓦。 五、6平方电线可以负荷多少瓦 6平方电线可以负荷多少千瓦?制冷百科公众号提示,电力线径和输送的功率没有直接联系,一般来说6平方的导线用作空调线绰绰有余了。在施工工地上的检修电源一般就用10x6+1x4的电缆。至于承受的电流强度,根据我施工的经验,这种电缆一般是用63A的空气开关控制的。6平方的铝线可以负荷6千瓦,6平方的铜线可以负荷10千瓦。 ​---end---
  • 热度 5
    2020-12-19 14:52
    6424 次阅读|
    1 个评论
    平时在做浪涌测试时,总是提到的参数是设备所能承受的浪涌电压,如差模2KV,共模4KV等。在选用防浪涌所用的TVS时,也就经常考虑这个问题,TVS哪个参数能对应出不同的浪涌电压值。 在TVS选型时,有很多参数需要考虑,如钳位电压、击穿电压、脉冲峰值电流和负载电容等。这里不讨论其他参数,只关注如何计算出所能承受的浪涌电压。 以SMBJ15A为例,下图中提到了的两个参数:最大钳位电压和脉冲峰值电流,其承受的最大浪涌功率为 最大钳位电压 * 脉冲峰值电流 = 24.4V * 24.6A = 600.24W。这也是我们常说的SMB系列TVS能承受600W功率。如果没有特殊说明,这个功率是在10/1000us浪涌测试波形下测量的。 实际产品中,最常用的浪涌测试电流波形为8/20us和10/700us,如何将TVS承受浪涌功率从10/1000us波形下换算到其他波形呢,这就需要看Spec中的另一个曲线图: 通过上图可以查出,8/20us波形所对应脉冲宽度50us,对应峰值功率为3300W左右。那么这种情况下,反算脉冲峰值电流为 3300W / 24.4V = 135.25A。 如果SMBJ15A放在电源端口,在共模时,浪涌发生器内阻为12欧姆,那么所能承受的电压为: 135.25A * 12ohm = 1623V; 如果SMBJ15A放在电源端口,在差模时,浪涌发生器内阻为2欧姆,那么所能承受的电压为:135.25A * 2ohm = 270.5V; 如果SMBJ15A放在非对称信号端口,无论差模共模,浪涌发生器内阻为42欧姆,那么所能承受的电压为: 90.16A * 42ohm = 5680.5V。 从上面我们可以看出,一个TVS所能承受的最大浪涌电压,不仅与自身的参数相关(最大承受功率、钳位电压等),也和其在电路的位置息息相关(浪涌发生器的内阻值非常重要)。 2022.02.28:统一修改为电流波,重新计算电压值。
相关资源