tag 标签: 无源器件

相关帖子
相关博文
  • 热度 3
    2023-8-15 14:04
    768 次阅读|
    0 个评论
    详解射频中的非线性
    在我们常规的认识里面,射频无源器件都是线性器件,耦合器的耦合度,滤波器的损耗和衰减,天线的增益等等,我们仅需在功率的dBm格式中加或者减去这些器件的相应dB 值就可以。 在时分双工TDD系统中,收发靠时间来分开,发射链路的互调也没有以往在频分双工FDD中那么受人关注。 安逸久了,以至于慢慢淡忘了曾经受到的痛苦。尤其是在FDD滤波器生产中无源互调的那些磨难,痛苦到只能用玄学来解释这些PIM的来源,以至于有一些无神论不是那么坚定的人有了烧香拜佛求助的念头。 现在的射频工程师确实比以往幸福了很多。 在《 无源互调干扰导论 》这本书中,介绍了在卫星通信中因PIM产物影响而发生故障的例子: 美国舰队通信卫星FLTSTCOM的 3阶 ,美国海事卫星MARISAR的 13阶 ,欧洲国际通信卫星V号IS-V的 27阶 ,甚至欧洲海事卫星MARECS的 43阶 PIM 产物落在了接收通带引起干扰,一度影响了一些国外卫星系统的研发进展和使用。 3阶,5阶,7阶的影响比较大,我们比较容易理解,27阶和43阶都要考虑到是不是有点过头了? 所以,在射频设计中,任何时候的掉以轻心都有可能带来意想不到的损失。 那么无源互调的来源是什么?又该如何解决呢?我们今天一起来探讨一下。 互调产物的数学解释 在我们学习《信号与系统》这本书的时候,有一个比较重要的概念——线性时不变系统 LTI。 线性时不变系统要求一个信号通过这个系统时,可以放大,缩小,延时,但是信号的基本特征不变,从数学上要满足齐次性,叠加性和时不变性,下图给了比较生动的解释。 这个构成了我们通信的数学基础,也是所有通信人梦寐以求能达到的效果——所有信息能够无失真的传输。 说的再简单一点就是这个系统的输出y是输入x的一次函数,用高等数学来解释就是函数的一阶导数为常数。 在线性时不变这个假设的舞台上,我们肆意狂舞,忘却了这一切都想贾宝玉的太虚幻境一般虚无缥缈, 非线性 才是这个世界的常态。 任何的变化都具有不确定性,量与量之间的关系都不是简单的线性关系。 来,补交数学作业了! 一个非线性系统的传输函数都可以用一个n阶的泰勒级数多项式表示: 当然线性系统的传输函数可以表示成泰勒级数的一阶: 所以从传输函数上来说,线性只是非线性的一种特殊形式,虽然我们都喜欢这种简单的方程,但是现实却是残酷的,上面那个展开无穷多项的泰勒级数才是现实。 来吧,灌信号吧,看看出来个什么东西? 偷个懒,把这个非线性系统后面的都去掉,只保留前三项: 同时呢,假设输入信号为最简单的两个不同频率的余弦信号的线性组合 那么输出是个什么呢? 继续三角函数展开,有没有突然发现,三角函数就是为了解决通信问题而生的?我们利用三角函数的和差化积公式将其展开可得 简直惨不忍睹啊,进去两个频率的信号,出来了一堆,而且还是简略版的非线性。那要是标准非线性不是出来的更多。 心情稍微平复一下,我们捋一下这个产物都有什么? 1,靠近直流的频率: w1-w2, DC 2,靠近输入信号的频率:w1,w2,2w1-w2,2w2-w1, 3,二阶谐波的频率:2w1,2w2 4,三阶谐波附近的频率:3w1,3w2,2w1+w2,2w2+w1 放到频域里面如下图所示: 通常情况下,2w1-w2和2w2-w1这两个互调信号距离主信号交近,会造成带内临近信道干扰,是射频设计中常常会注意到的项,其他项距离主信号比较远,对于有源部分产生的互调产物,可在后端加滤波器进行滤除,但是如果是无源滤波器和天线产生的互调产物,就无能为力了。 互调产物的物理机理 对于有源电路部分,非线性的解释比较充分,研究的也比较透彻。比如混合器,本身就是利用了电路的非线性完成调制信号和载波信号混频的功能;而对于功率放大器,为了追求更高的效率,常常工作在晶体管的饱和区,非线性带来的增益的一点点压缩,也就导致了输出信号和输入信号的非线性关系。 而无源器件的非线性就更加奇妙了,以至于有些时候,人们只能求助于玄学了。但是随着人们研究的深入,无源非线性的物理机理也慢慢呈现在我们的眼前。无源器件的非线性主要可分为 材料非线性和接触非线性 。 材料的非线性现象包括以下几个方面: 1,电介质薄层的电子隧道效应:比如在铝材料表面的氧化铝薄层就有这种电子隧道效应。 2,铁磁效应:铁磁材料有很高的磁导率,并且随着磁场做非线性变化,具有磁滞效应;常见的铁磁材料包括铁,有磁钢,钴,镍等,都是在射频无源器件设计中应该避免用到的; 3,电致伸缩,即电场的非线性变化,比如产生于聚四氟乙烯PTFE电介质中的电致伸缩会对同轴电缆中的PIM有所贡献; 4,磁阻,磁场引起金属导体电阻的变化; 5,微放电效应,由于强电场产生的离子气体而引起二次电子倍增,如在微狭缝之间和跨越金属中砂眼的微放电; 6,电介质击穿等。 当然还有空间电荷效应,离子导电,热离子发射效应,内部肖特基效应等,都会引起无源器件的非线性,进而产生互调信号。 接触非线性 接触非线性主要包括材料结构和老化引起的非线性 1,材料结构引起的非线性主要包括:不同零部件的安装,比如,谐振器,连接器,调谐螺钉等,还有材料结构折弯产生的微裂缝等。其产生机理主要包括接触面不良接触引起的机械效应和电子效应。 2,老化引起的非线性,主要是指随着时间的增加,接触面的松动或者滑动都会引起接触的不良,另外金属氧化物的产生,会导致更多的非线性产生。 总结 在射频设计中,非线性才是常态,如何处理非线性导致的问题,是考究射频工程师设计功底的一道压轴题。但是常态并不意味着一定会有影响,尽可能的去减小它的影响才是我们应该做的。 有果必有因,遇到问题,先尝试着找到问题的根,然后解决方法就应运而生了。 关注公众号“优特美尔商城”,获取更多电子元器件知识、电路讲解、型号资料、电子资讯,欢迎留言讨论。
  • 热度 4
    2023-7-29 15:30
    649 次阅读|
    0 个评论
    电子产品是当今世界大多数运营的基本组成部分。它超越了从工业、教育、交通等各个领域到我们自己的家庭。虽然电子产品对地球上的每个行业都很重要,但其功能也依赖于关键组件。难怪您将永远见证有关 有源元件与无源元件 问题的永恒讨论。但这到底是什么意思呢?本文将剖析这个问题,带您深入了解 电子元件 。 剖析问题:有源元件 VS 无源元件 电子元件 之间的一个关键区别因素是它们是有源元件还是无源元件。然而,这对于人们来说并不是一个容易理解的方面。 许多人仍然无法理解主动元件 和 被动元件 之间的区别。那么它意味着什么呢? 有源元件包括依赖外部电源 来 修改或 控制电信号 的电路部件。它包括可控硅、晶体管、 集成芯片 、显示器件、二极管等元件。所有这些元件都需要电力来发挥作用(改变电流) 另一方面,无源元件不需要外部电源即可运行。它取决于控制电信号的其他属性。因此,无源元件仅需要存在或流经电路的电流即可发挥作用。一些无源元件包括变压器、 电阻器 、传感器、 电感器 等。 虽然有源元件与无源元件的讨论对于 电子 爱好者、 工程师 和学生来说很重要,但它有助于理解 电子设备 没有任何一个元件就无法正常工作。但在了解每种类型组件的细微差别之前,了解它们应用的上下文会有所帮助。 电子电路和元件 有源和无源元件都在电子电路 内运行。因此,它确保电子装置或设备在其预期应用中按预期运行。因此,理解电路的含义以及不同类型的电子元件在这种情况下如何工作变得至关重要。 首先, 电子电路 是指有助于控制和引导 电流 以实现各种功能的结构。它包括计算、信号放大、数据传输等功能。电路结构由电感器、晶体管以及所有其他已在有源元件和无源元件两大类下列举的元件组成。 除了电路的复杂性之外,电子元件的数量也可以根据电路的应用而改变。对于简单的应用,一个普通的电路将由导电路径、负载和电压源组成。 导电 路径。它允许电流流动,主要由导电铜迹线组成。 此类迹线是层压到玻璃环氧树脂 (FR4) 等非导电基板上的铜片。 电压源。它通常作为两端设备提供,在两个电路点之间提供电压以允许电流流动。这些来源包括发电机、电力系统或电池。 加载。它代表必须消耗功率来操作或执行特定功能的电路元件。电路中的负载可以根据复杂性而变化。它可以包括用于复杂负载的 电容器 、晶体管、电阻器等,也可以包括用于最简单负载的简单灯泡。 电子电路的类型 电路对于任何电子设备 或装置的操作都是必不可少的。但电路要工作,就需要电流的流动,这可以通过形成环路来实现。存在多种 电子电路 ,包括开路、闭路、 短路 、 印刷电路板 和 集成电路 。 开路。它是一种不像其他电路那样在循环系统中运行的电路。 由于组件意外或有意 地断开或损坏,电流会受到阻碍。 闭路。该电路与开路不同,形成一个电流不间断流动的回路。它可以包含没有任何特定功能的完整电路,例如,连接到耗尽电池的完整电路。 短路 。这是电路形成低电阻连接的地方。发生这种连接的点允许电流流动,而不是设计的路径。这种电路会在无意中发生,并经常导致严重事故。 多氯联苯。它是复杂应用所必需的一种复杂形式的 电子电路, 与大多数电子设备或电器同义。它拥有以特定方式排列的微小电子元件。您可以将此类组件与非导电基板顶部的导电层连接。 集成电路。它是一种先进的电子电路形式,可容纳数百万个电子元件。现代电器或设备(例如 移动电话 或计算机)均使用这些 IC。集成电路变得复杂而微小,因为它们可以安装在小型硅芯片中。 电子元器件 技术的进步增强了 PCB 和集成电路等电子电路的性能,但构建它们所使用的技术却有所提高。例如,目前,大多数电路构建过程都是完全自动化的。有源元件与无源元件的布置遵循设计阶段规定的设定设计。此外,此类组件的数量取决于 设计电路 的复杂性。 集成电路和印刷电路板等复杂电子电路的制造和组装过程可能会变得复杂。它源于组件数量庞大、组装所需的有限空间、先进的功能以及所需的 质量保证 水平。 IC 和 PCB 需要专业的现代化设备、最新的技术和高超的工艺。 有必要依靠 RayMing PCB 和组装 来提供专业且经过认证的电子生产服务。此类服务包括 电子元件 采购(有源元件和无源元件)、IC 和 PCB 的制造和组装,以及交付和客户服务等其他服务。 由于 IC 和 PCB 的制造和组装 主要需要有源和无源元件作为电路的一部分。在设计阶段考虑以下组件、它们的组成、功能以及对电子电路的重要性至关重要。 无源元件 电容器 它主要用于构建各种电子电路类型——无源两端部件或组件在电场内以静电形式存储能量。简而言之,它的功能就像一个微型可充电 电池 。 然而,电容器 和电池之间的主要区别在于它可以在一秒钟内放电和充电(反之亦然)。 它的构成 尽管主要部件是相同的,但电容器可以有各种尺寸和形状。它具有两个电气板或导体,由堆叠在其间的绝缘体或电介质隔开。 该板由薄铝 或金属薄膜等导电材料制成。相比之下,电介质主要由陶瓷、玻璃、纸张、空气、云母或塑料薄膜等非导电材料组成。固定电容器时可以将极板的两个突出端插入。 它的功能性 通过将两个板连接到电源来在两个板上施加电压以产生电场。结果,一个极板将积聚正电荷,而另一个极板则在另一侧收集负电荷。断开电源后它仍可继续运行。因此,连接到负载后,它会立即将存储的能量传输到负载。 意义 除了与电池相似之外,电容器的功能也不同。它可以阻止直流电,因为它允许交流电流动。或者,它可以平滑电源发出的输出。它还有助于潮流和电压稳定。此外,它还可以校正功率因数,有助于为电机(单相)提供足够的启动扭矩。请记住,滤波器、保持和定时器电容器有不同的应用。 电阻器 它也是一种主要抵抗电流的两端电气元件。电阻器可能是最简单的电子电路元件。此外,它是每个电子电路的典型特征,因为它是固有的。在大多数情况下,电阻器都会带有颜色代码。 它的组成 电阻 器 并不奇特,因为 电阻 是几乎所有导体的固有属性。它由一根缠绕在陶瓷等非导电材料周围的铜线组成。铜的厚度和匝数与电阻值成正比。为了获得更高的电阻,铜线需要变得更细,并且匝数也随之增加。 电阻器也可以采用 碳膜 螺旋图案。 然而,碳膜电阻 的理想电路是小功率电路。出现这种情况是因为碳膜与有线碳膜不同,它不精确。由于电阻器不遵守电路内的极性,因此导线端子扫描连接在两端。 它的功能性 电阻器在控制电子电路中的电流和电压方面发挥着重要作用。电阻丝的细度和厚度对于允许流过的电流量起着根本性的作用,类似于水和管道。 意义 电阻器有助于限制电路中的电流。因此,它可以保护其他组件免受潜在损坏。通过将电压降低到电路所需的水平,它对于分压也很有价值。例如,像 微控制器 这样的电路部件可能需要比电路其余部分更低的电压。此外,电阻器可以与电容器一起用于构建具有电阻器-电容器阵列(RC网络或滤波器)的集成电路。 RC 网络对于抑制笔记本电脑或计算机 I/O 端口、WAN、LAN 等中的EMI(电磁干扰) 或 RFI 至关重要。 电感器 电感器也称为电抗器,是无源两端元件。它存储能量(在磁场内)并在需要时将其返回到电子电路。当两个电感器并排放置(没有任何接触)时,它们会相互影响。 第一个感应器 产生的磁场影响第二个感应器,这是一项突破性的发现, 导致 了变压器的发现或发明。 作品 作为一个组件,它是最简单的组件之一,因为它只是铜(线圈 ) 。线圈匝数与电感成正比。然而,将铜线缠绕在铁磁材料(如铁)上会增强电感。此外,磁芯形状还可以增强电感。然而,在 IC 内连接电感器很复杂,因此被电阻器取代。 功能性 电流通过任何导线时都会形成磁场。这与电感器使用的原理相同。产生的磁场抵抗交流电,同时允许直流电通过。更重要的是?磁场储存能量。 意义 它是一种乐器组件,但由于其尺寸而很难将其集成到电路中。例如,在集成电路中,由于电感器体积庞大,因此被电阻器取代。然而,它可用于选择调谐电子电路中所需的特定频率。它还可以通过将交流电源转换为直流电源来充当电感扼流圈。 石英晶体 它是一种无源电子元件,主要以谐振器的形式用于 电路 中。石英天然以硅形式存在,但也可以合成生产。它具有压电效应,可以产生交流电压,主要是在受到物理压力时。根据预期应用,它有多种尺寸。 作品 石英晶 体 有助于制造晶体振荡器,可以是矩形板或六边形,末端形成金字塔。石英晶体有两种切割技术:Y 切割和 X 切割。它通常由外形呈矩形、正方形或圆柱形的固定板夹在中间。 功能性 在晶体上施加交流电压会导致机械振动。晶体的尺寸和切割决定了振荡或振动的共振频率,从而产生连续信号。 意义 石英晶体具有极高的品质因数,使其成为电路中的完美滤波器。因此,您可以找到 数字 手表作为计时元件, 微处理器板 作为振荡器时钟。 有源元件 二极管 它是一个允许电流单向流动的两端组件。因此,它可以被视为电子止回阀的等效物。在大多数情况下, 二极管 将 AC(交流电)转换为 DC(直流电)。您会发现二极管中存在 半导体物质或材料。 或者,它可以是真空管。但当今世界,许多二极管都包含硅半导体材料。 作品 二极管主要由真空或半导体材料组成。半导体二极管有 n 型或 p 型半导体。它含有硅、硒或锗,被称为 pn 结二极管。另一方面,真空二极管按照真空原理工作,其中阳极和 阴极 位于玻璃管真空内。 功能性 真空二极管根据电子云作用原理工作。例如,当阴极受热时,玻璃真空内会形成不可见的电子云,或者被推断为空间电荷。正如阴极发射电极一样,负真空或空间也会排斥电极。结果,没有电子到达阳极,电流无法流过电子电路。 另一方面,pn 结二极管的工作原理不同。例如,p 型被硼篡改,留下带正电的空穴。n 型用锑进行调温,锑含有更多电子,使其带负电,将 n 型和 p 型分别连接到正极和负极端子。这种连接允许电流流动。然而,当端子反转时,电流停止流动。它的出现是因为空穴和电子相互排斥。 意义 它适用于将交流电转换为直流电、屏蔽太阳能电池板、信号解调以及保护负载免受电压尖峰的影响。 晶体管 它包含电子电路中最重要的组件之一。晶体管是具有三个端子 的 小型半导体器件。它主要用作开关器件或放大器。晶体管可以在没有任何运动的情况下 关闭 或打开某些东西。 作品 它主要是用硅制成的,尽管以前的型号有锗。 除了更便宜的制造成本 之外,硅晶体管还具有更好的耐温性。虽然存在由 PNP 和 NPN 组成的 BJT 或双极结型晶体管,但它们都具有“集电极”、“基极”和“发射极”三个引脚。 功能性 NPN和PNP是指晶体管的半导体材料的层序。NPN 意味着 p 型硅板夹在两个 n 型层之间。当集电极连接到第二个 n 型时,发射极连接到其中一个 n 型。其底座连接或附接至 p 型。p 型硅的额外空穴可作为电流的屏障。除了对发射极进行负充电外,还向集电极和基极施加正电压。电子流从发射极流向集电极。由于不同的电压分配,PNP 的功能也不同。 意义 在许多电子电路中,晶体管既充当放大器又充当开关。因此,它可应用于 助听器 、计算器和计算机、显示驱动器、电源调节器、触摸和 光传感器 。此外,它还应用于 音频放大器 和报警系统。 有源元件对比 无源元件:差异 无源元件和有源元件之间存在很多差异。作为设计师,了解每种分类、组件及其差异成为设计电子电路的关键。两者之间的差异通常从它们各自的定义中变得显而易见,尽管这会渗透到微小的细节中。所有现有的差异都体现在功能、电源类型、电流调节和功率增益方面。那么有什么区别呢? 来源的性质 所有有源组件都为电子电路提供电力,而无源组件则使用来自电子电路的能量。优秀的例子包括用于有源元件的晶体管、IC、二极管、SCR 等以及用于无源元件的电容器、电阻器、电感器等。 组件功能 有源组件以电流或电压形式产生能量,而无源组件以相同形式(电流或电压)存储能量。 功率增益 有源元件可以提供功率增益。另一方面,无源元件无法给你带来任何好处。 电流的流动 虽然有源元件可以控制电路中的电流,但无源元件缺乏这种能力。 外部来源要求 有源组件需要有外部电源才能运行。然而,无源元件的情况恰恰相反。 能源类型 所有有源元件都是能量提供者,而无源元件则相反。无源元件总是接受能量。 有源电子元件和无源电子元件之间的细微差别通常很容易阐明。然而,电子元件的差异总是触及设计的根本基础,即节能。能量不会被破坏,也无法形成。更重要的是?机器无法以 100% 的效率运行。因此,无源电路在部署或使用时总是会损失一些功率。 有源元件的应用 电子零件 至关重要,并且通常隐藏在我们周围的大多数电子电气系统和设备中。有源元件是电子元件的一部分,在各个领域都有应用。它包括音响系统、灯泡和电话。它也适用于计算机、汽车等。“主动”的定义意味着您很可能会在所有电子设备中找到这些组件。除了详细的例子之外,典型的例子还包括具有集成电路的设备(具有一定计算能力的设备)、具有内置显示器或电池的设备以及发光二极管(LED灯 ) 。 无源元件的应用 无源元件在电子电路乃至电子设备中同样重要。例如,白炽灯泡(光)是传感器的一个令人难以置信的例证。它将电能或能量转换为热能和光能。扬声器还利用传感器将电输入转换为机械输出。结果,扬声器锥体振动产生我们可以破译的声波。 传感器也是另一种形式的传感器,长期用于科学研究或研究。通过使机器和电器变得“智能”,它越来越获得普遍接受和普及。 无源元件的其他重要应用领域包括射频和 微波 应用。 射频 应用包括依赖于感应器的无钥匙和远程进入系统等领域。还必须提及主要用于 GPS 设备 、收音机、无线路由器和调制解调器的天线。您还可以在公共交通中找到无源组件( 天线 )。 最后的想法 每个 电子设计 爱好者都需要了解 有源元件与无源元件 主题的复杂性。它可以提高您对各个组件以及如何在 IC 或 PCB 中排列它们的理解。
  • 热度 29
    2014-6-16 14:24
    1103 次阅读|
    0 个评论
    数字门电路本质上是模拟的,因为它们使用的是晶体管。当然,这些晶体管工作在它们的极端导通条件下(这正是它们被称为“数字”的原因),但在逻辑状态转换过程中它们是纯模拟的。通过增加一些无源器件,你可以设计出许多种电路,比如电平转换器、倍频器、相位检测器、线路驱动器和脉冲变换器。 就拿形式最简单的连接门电路的无源器件来说吧。上拉/下拉电阻可以将未用的数字输入设置为确定的逻辑电平(对于分立型CMOS来说这是绝对必须的)。开路漏极/集电极/发射极输出也需要上拉/下拉电阻以模拟方式设置数字电平。 但如何将门与无源器件组合在一起用作定时或平均组件让人更感兴趣。最基本的占空比至模拟电平转换可以用一个简单的RC滤波器实现,见图1。 图1:将RC滤波器增加到一个逻辑门可以产生带纹波的电压值输出。 脉冲宽度调制(PWM)输出的是模拟直流电压值,这个电压值来自施加到RC滤波网络的连续高低逻辑电平之间的定时比例。从电容上的0V开始,每个连续的高电平都会使电容上的电压增加一点,直到经过大约5个RC时间常数后达到平衡。在平均过的直流电平上总是存在一个很小的纹波(图中有点夸张了)。为了得到最好的结果,脉冲频率要尽可能高,RC时间常数则尽可能长—与要求的稳定时间取得一致。 我们可以在最基本的数字类型的相位检测器中充分发挥这种效应(图2)。在锁相环中可以使用异或功能,因为经过RC滤波器滤波的输出电压直接正比于两个输入信号间的相位差导致的占空比。 图2:一个异或门、一个压控振荡器和一些无源器件组成了一个倍频器。 将经过RC滤波器滤波的直流电平反馈到压控振荡器(VCO)可以将其频率锁定于参考频率。VCO输出和参考信号之间的这个相位差取决于VCO运行在与参考信号相同频率所需的电压值。 附带效果是异或相位检测器的频率翻倍功能。事实上,相同效应可以用于倍频器(图3)。 图3:利用一个异或门、一个运放、两个电容、一个电感和一个延时器实现的倍频器 异或门输出端的逻辑边沿使LC振荡器起振,这个LC振荡器被调谐为在想要的谐振频率发生谐振。当异或门输出端是一个对称的50%占空比时产生奇数谐振,偶数谐振可以用时延线剔除,这个时延线用于设置合适的异或输出脉冲占空比,以便最大限度地得到想要的谐振信号。放大器将LC振荡器的振荡恢复到数字逻辑电平值。 【分页导航】 第1页: 将无源器件连接到逻辑门 第2页: 相位检测器、线路驱动器和脉冲整形器 第3页: 驱动谐振LC振荡器电路 第4页: 驱动脉冲长度 《电子技术设计》网站版权所有,谢绝转载 相位检测器、线路驱动器和脉冲整形器 如果真的希望参考信号和压控振荡器(VCO)之间的相位关系得到严格控制,我们可以看一些实例。在这种情况下,图2所示的XOR相位检测器并不能完全满足要求。例如当参考信号是一个随机的非归零(NRZ)数据流时,我们想要VCO进入相位锁定状态来产生恢复时钟,以便上升时钟沿发生在示波器上看到的数据眼图的正中。 由于接收器中的热噪声(及其它原因),弱信号的数据转换会适时发生“抖动”,因此采样数据以确定是1还是0的最佳时间是在最远离转换的时间点上——也就是模拟调制波形的幅度峰值处的眼中心位置。 图4:D触发器和VCO可以让你将采样点设在信号眼图中心。 这里的输入数据流以时钟方式驱动D触发器,并在VCO时钟高或低的瞬间进行采样。(只有上升的数据沿进行时钟驱动。与延时输入进行异或可以同时实现上升/下降的数据沿时钟驱动,但没有必要。)平均后的直流输出反馈给VCO,直至VCO下降时钟沿找到数据转换。这样,真正采样数据位的上升时钟沿就处于它所属的眼图中心。这要求50%占空比的时钟,这样的时钟可以通过使用两倍于目标频率的VCO再进行二分频获得。 当数据流中存在很长的连续1和0时,最好是使用定时的三态泵上或泵下脉冲,除非RC时间常数可以做得与连续比特一样很长。 这是我所知道的唯一使用数字逻辑容忍D触发器找出自身亚稳态的一种方法,但不要紧,偶然的亚稳态结果只是在RC滤波器积分上千个脉冲期间的一点小瑕疵。 当然,所选择的D触发器的建立/保持时间必须要快,能够匹配数据比特率,但在整个建立/保持规范中会存在与温度和电源变化有关的漂移。“无限增益”这个名称有点不恰当。它的实际意思是,当D触发器工作在建立/保持时间违例场合,由于数据/时钟时序违例中有特别小的变化而导致触发器输出变高、变低或振荡。很奇怪,但确实是这样。 我最近一次使用这种技术是将74AHC74 D触发器用作相位检测器。最终的数字输出结果看起来类似于图4中的底部波形。如果能够在设计RC滤波器参数时更仔细些,我也许能够消除前后的频率波动,但老板是个急性子,要求我们赶快处理下一个紧急任务。不过对我们来说整个环路已经工作得足够好了。 用于补充数字输出的另外一个用例是推挽式(是的,我知道这是很老的术语)变压器驱动器(图5)。 图5:变压器将逻辑门变成了线路驱动器。 中心抽头的VCC/2使得在逻辑高侧感应到的电压(由于逻辑低侧的下拉)不会因某些逻辑系列被二极管钳位到VCC 。我曾经用过这种技术,用的是74S系列TTL器件,中心抽头电压是VCC,并在原型中侥幸取得了成功,但我不推荐在产品化设计中使用这种技术。千万不要用74(A)HC来尝试,只能用ECL和74S TTL。如果是使用具有更强源驱动能力的AHC,中心抽头可以不要。 目前为止,所有这些无源器件都被应用到门输出端。下面是可以在门输入端可以做的一些事情,前提是它们是施密特触发器门(图6)。 图6:使用施密特触发器XOR、OR或AND门设计脉冲整形器。 读者可以浏览我的EDN设计思路“可配置逻辑门的施密特输入实现通用单稳态”了解有关这些设计的更多细节。 【分页导航】 第1页: 将无源器件连接到逻辑门 第2页: 相位检测器、线路驱动器和脉冲整形器 第3页: 驱动谐振LC振荡器电路 第4页: 驱动脉冲长度 《电子技术设计》网站版权所有,谢绝转载 驱动谐振LC振荡器电路 现在让我们看看用逻辑门驱动谐振LC振荡器电路会发生什么事。图3已经对此有所涉及。下面让我们了解一下更多细节。图7给出了电路图。 图7:振荡器谐振频率子谐波的一连串逻辑边沿将使振荡器起振。 图8显示了调谐在156.2kHz的振荡器对单个上升沿的响应。 图8:单个蓝色边沿引发类似吉它弦的黄色振荡。(注意,下面所有图形都交换了颜色) 图7中的振荡器电路使用了一个可调(可调谐铁氧体块)的396nH电感并联一个1nF C0G(也叫NPO)电容,并通过一个68pF的电容松散耦合到TTL源。这个电路并没有使用镀铜板或PCB;所有元件放置在一个平台上,它们的引脚经空中焊接在一起。数据手册上标明的电感Q值在40MHz时大约为88,因此谐振频率为8MHz时的Q值(射频电阻/电抗)稍微有点高。电容比取决于电感Q值(一般来说电容Q值要比电感Q值好得多)、驱动器上升时间、想要的正弦波电平以及后面将正弦波过零点恢复到数字边沿的放大器增益。 在本例中,基于演示的目的,放大器用示波器表示,逻辑源是端接75Ω电缆和75Ω阻性负载的函数发生器的TTL输出。由于函数发生器的限制,实际占空比为48%,不是理想中的50%。 8MHz谐振频率来自公式f = 1/(2π√LC)。但图9中的示波器显示器显示的触发黄色边沿信号频率为1.6MHz—是振荡器正弦波频率的五分之一。这个电路可以用作5倍频器,在实际应用中,到11阶或以上的奇数谐波需要根据电感Q获得(之所以提11阶是因为这是我曾经尝试获得的最高阶数)。 图9:一连串占空比约为50%的黄色边沿信号如果时序正确的话可形成连续的蓝色振荡波 在驱动沿和正弦峰值之间还存在其它相位关系。上升沿与正峰值相关,下降沿与负峰值相关。因此偶数谐波不能从50%的方波中剔除—不断变化的边沿将抵消相同极性的正弦峰(傅里叶先生是对的!) 不过只要让边沿占空比稍作改变,我们就可以在偶数谐波处再次使正弦峰出现,比如图10中的6倍频器。 图10:出于演示的目的,这里用了一个40%占空比、1.333MHz的数字信号产生8MHz的6阶谐波,因为我不想重新调谐振荡器。 图11和图12显示了谐振倍频因子如何随占空比变化而变化。振荡频率在8MHz处仍然是常数,因为振荡器元件值没有改变,但现在矩形波频率分别位于8MHz的1/7分频(1.14MHz)和1/8分频(1MHz)。 图11:35%占空比起振出1.14MHz矩形波的7阶谐波。 图12:31%占空比起振出1MHz矩形波的8阶谐波。 以此类推。只要不断改变的数字边沿能够落在最终正弦波的各个峰值处,振荡器就能起振。换句话说,交替变化的数字边沿之间的时间必须等于想要谐波的半周期的整数倍。 【分页导航】 第1页: 将无源器件连接到逻辑门 第2页: 相位检测器、线路驱动器和脉冲整形器 第3页: 驱动谐振LC振荡器电路 第4页: 驱动脉冲长度 《电子技术设计》网站版权所有,谢绝转载 驱动脉冲长度 前面我们发现,驱动方波的占空比会影响其上升沿与下降沿和振荡电路峰值之间的关系(图7)。不过创建想要的脉冲长度是另外一回事,通常不是以数字方式完成的,它要求使用与我们试图重建的相同的高频时钟。 也许甚高频时钟和计数器链可以从我们想要倍频和合成目标脉冲的低频边沿触发。但也有模拟的方法(如前所述),它们使用单稳多谐振荡器、带门电路的RC网络以及使用现成集总LC与逻辑门器件的延时线或用于更高频的实际端接传输线。甚至可能使用一段不端接的传输线实现倍频,并使用反射脉冲的来回时间作为定时单元,但这种方法极富技巧。 下面我们来看一个有趣的例子,其中驱动脉冲是正弦波的半个周期或更短。由于函数发生器的限制,我不得不降低振荡器的谐振频率来获得想要的占空比。用于产生图13所示波形的振荡器电路使用了一个1μH的电感(Q值未知,实际上是废料箱中一个很小的射频扼流圈)并联一个100nF的电容,到数字驱动器的耦合电容必须增加到270pF。新振荡器的谐振频率大约是500kHz。函数发生器输出现在是主输出(非TTL),但上升时间缩短了,因为更快的TTL边沿引起了寄生振荡—也许是射频扼流圈的自谐振。 图13:50%占空比边沿与每个正弦波峰值对齐,脉冲边沿跨在正弦波的过零点。 那么将方波转换为相同频率的正弦波意义何在呢?其中之一是你可以消除振荡器带宽之外的高频抖动(Q值越高越好),特别是当从有噪声的串行位流中恢复位时钟时: 图14:在20%占空比时,脉冲边沿仍然跨正弦波零点。在这种情况下,脉冲宽度本身并不十分关键;利用宽松的定时方法(在合理范围内)创建脉冲宽度是可以接受的。 图15显示了一个驱动异或门的方波,它以窄脉冲(如图14所示)的方式在每个上升和下降沿驱动振荡器,但它很容易成为密集编码的串行位流,比如一个位有一个或两个边沿的双相或曼彻斯特位流。每个边沿触发振荡器输出双倍的位速率。恢复串行位时钟只需简单的除2方法。即使在一个位一个边沿的最小变换密度下,振荡器也会起振以填充丢失的边沿,并保持恢复时钟输出正常。我曾对4b5b编码的250Mbit/s串行数据使用过这种时钟恢复方法。 图15:异或史密特触发器可以很容易地使用简单的RC网络形成图3所示的稀疏脉冲。 这种方法比锁相环(PLL)加压控晶体振荡器(VCXO)要便宜得多,只要你不介意振荡器最初需要外力触发才能进入谐振状态的事实。它的工作量与调整吉它的六分之一相同。 适合数字逻辑振荡器的其它应用包括可变相移、串行位流采样时钟的自动相位校正、频率变换、分组时钟的启动以及将异或门用作混频器并通过频率加减法(外差法)实现的时钟合成。 【分页导航】 第1页: 将无源器件连接到逻辑门 第2页: 相位检测器、线路驱动器和脉冲整形器 第3页: 驱动谐振LC振荡器电路 第4页: 驱动脉冲长度 《电子技术设计》网站版权所有,谢绝转载
  • 热度 29
    2014-6-14 13:46
    1252 次阅读|
    0 个评论
    数字门电路本质上是模拟的,因为它们使用的是晶体管。当然,这些晶体管工作在它们的极端导通条件下(这正是它们被称为“数字”的原因),但在逻辑状态转换过程中它们是纯模拟的。通过增加一些无源器件,你可以设计出许多种电路,比如电平转换器、倍频器、相位检测器、线路驱动器和脉冲变换器。 就拿形式最简单的连接门电路的无源器件来说吧。上拉/下拉电阻可以将未用的数字输入设置为确定的逻辑电平(对于分立型CMOS来说这是绝对必须的)。开路漏极/集电极/发射极输出也需要上拉/下拉电阻以模拟方式设置数字电平。 但如何将门与无源器件组合在一起用作定时或平均组件让人更感兴趣。最基本的占空比至模拟电平转换可以用一个简单的RC滤波器实现,见图1。 图1:将RC滤波器增加到一个逻辑门可以产生带纹波的电压值输出。 脉冲宽度调制(PWM)输出的是模拟直流电压值,这个电压值来自施加到RC滤波网络的连续高低逻辑电平之间的定时比例。从电容上的0V开始,每个连续的高电平都会使电容上的电压增加一点,直到经过大约5个RC时间常数后达到平衡。在平均过的直流电平上总是存在一个很小的纹波(图中有点夸张了)。为了得到最好的结果,脉冲频率要尽可能高,RC时间常数则尽可能长—与要求的稳定时间取得一致。 我们可以在最基本的数字类型的相位检测器中充分发挥这种效应(图2)。在锁相环中可以使用异或功能,因为经过RC滤波器滤波的输出电压直接正比于两个输入信号间的相位差导致的占空比。 图2:一个异或门、一个压控振荡器和一些无源器件组成了一个倍频器。 将经过RC滤波器滤波的直流电平反馈到压控振荡器(VCO)可以将其频率锁定于参考频率。VCO输出和参考信号之间的这个相位差取决于VCO运行在与参考信号相同频率所需的电压值。 附带效果是异或相位检测器的频率翻倍功能。事实上,相同效应可以用于倍频器(图3)。 图3:利用一个异或门、一个运放、两个电容、一个电感和一个延时器实现的倍频器 异或门输出端的逻辑边沿使LC振荡器起振,这个LC振荡器被调谐为在想要的谐振频率发生谐振。当异或门输出端是一个对称的50%占空比时产生奇数谐振,偶数谐振可以用时延线剔除,这个时延线用于设置合适的异或输出脉冲占空比,以便最大限度地得到想要的谐振信号。放大器将LC振荡器的振荡恢复到数字逻辑电平值。 【分页导航】 第1页: 将无源器件连接到逻辑门 第2页: 相位检测器、线路驱动器和脉冲整形器 第3页: 驱动谐振LC振荡器电路 第4页: 驱动脉冲长度 《电子技术设计》网站版权所有,谢绝转载 相位检测器、线路驱动器和脉冲整形器 如果真的希望参考信号和压控振荡器(VCO)之间的相位关系得到严格控制,我们可以看一些实例。在这种情况下,图2所示的XOR相位检测器并不能完全满足要求。例如当参考信号是一个随机的非归零(NRZ)数据流时,我们想要VCO进入相位锁定状态来产生恢复时钟,以便上升时钟沿发生在示波器上看到的数据眼图的正中。 由于接收器中的热噪声(及其它原因),弱信号的数据转换会适时发生“抖动”,因此采样数据以确定是1还是0的最佳时间是在最远离转换的时间点上——也就是模拟调制波形的幅度峰值处的眼中心位置。 图4:D触发器和VCO可以让你将采样点设在信号眼图中心。 这里的输入数据流以时钟方式驱动D触发器,并在VCO时钟高或低的瞬间进行采样。(只有上升的数据沿进行时钟驱动。与延时输入进行异或可以同时实现上升/下降的数据沿时钟驱动,但没有必要。)平均后的直流输出反馈给VCO,直至VCO下降时钟沿找到数据转换。这样,真正采样数据位的上升时钟沿就处于它所属的眼图中心。这要求50%占空比的时钟,这样的时钟可以通过使用两倍于目标频率的VCO再进行二分频获得。 当数据流中存在很长的连续1和0时,最好是使用定时的三态泵上或泵下脉冲,除非RC时间常数可以做得与连续比特一样很长。 这是我所知道的唯一使用数字逻辑容忍D触发器找出自身亚稳态的一种方法,但不要紧,偶然的亚稳态结果只是在RC滤波器积分上千个脉冲期间的一点小瑕疵。 当然,所选择的D触发器的建立/保持时间必须要快,能够匹配数据比特率,但在整个建立/保持规范中会存在与温度和电源变化有关的漂移。“无限增益”这个名称有点不恰当。它的实际意思是,当D触发器工作在建立/保持时间违例场合,由于数据/时钟时序违例中有特别小的变化而导致触发器输出变高、变低或振荡。很奇怪,但确实是这样。 我最近一次使用这种技术是将74AHC74 D触发器用作相位检测器。最终的数字输出结果看起来类似于图4中的底部波形。如果能够在设计RC滤波器参数时更仔细些,我也许能够消除前后的频率波动,但老板是个急性子,要求我们赶快处理下一个紧急任务。不过对我们来说整个环路已经工作得足够好了。 用于补充数字输出的另外一个用例是推挽式(是的,我知道这是很老的术语)变压器驱动器(图5)。 图5:变压器将逻辑门变成了线路驱动器。 中心抽头的VCC/2使得在逻辑高侧感应到的电压(由于逻辑低侧的下拉)不会因某些逻辑系列被二极管钳位到VCC 。我曾经用过这种技术,用的是74S系列TTL器件,中心抽头电压是VCC,并在原型中侥幸取得了成功,但我不推荐在产品化设计中使用这种技术。千万不要用74(A)HC来尝试,只能用ECL和74S TTL。如果是使用具有更强源驱动能力的AHC,中心抽头可以不要。 目前为止,所有这些无源器件都被应用到门输出端。下面是可以在门输入端可以做的一些事情,前提是它们是施密特触发器门(图6)。 图6:使用施密特触发器XOR、OR或AND门设计脉冲整形器。 读者可以浏览我的EDN设计思路“可配置逻辑门的施密特输入实现通用单稳态”了解有关这些设计的更多细节。 【分页导航】 第1页: 将无源器件连接到逻辑门 第2页: 相位检测器、线路驱动器和脉冲整形器 第3页: 驱动谐振LC振荡器电路 第4页: 驱动脉冲长度 《电子技术设计》网站版权所有,谢绝转载 驱动谐振LC振荡器电路 现在让我们看看用逻辑门驱动谐振LC振荡器电路会发生什么事。图3已经对此有所涉及。下面让我们了解一下更多细节。图7给出了电路图。 图7:振荡器谐振频率子谐波的一连串逻辑边沿将使振荡器起振。 图8显示了调谐在156.2kHz的振荡器对单个上升沿的响应。 图8:单个蓝色边沿引发类似吉它弦的黄色振荡。(注意,下面所有图形都交换了颜色) 图7中的振荡器电路使用了一个可调(可调谐铁氧体块)的396nH电感并联一个1nF C0G(也叫NPO)电容,并通过一个68pF的电容松散耦合到TTL源。这个电路并没有使用镀铜板或PCB;所有元件放置在一个平台上,它们的引脚经空中焊接在一起。数据手册上标明的电感Q值在40MHz时大约为88,因此谐振频率为8MHz时的Q值(射频电阻/电抗)稍微有点高。电容比取决于电感Q值(一般来说电容Q值要比电感Q值好得多)、驱动器上升时间、想要的正弦波电平以及后面将正弦波过零点恢复到数字边沿的放大器增益。 在本例中,基于演示的目的,放大器用示波器表示,逻辑源是端接75Ω电缆和75Ω阻性负载的函数发生器的TTL输出。由于函数发生器的限制,实际占空比为48%,不是理想中的50%。 8MHz谐振频率来自公式f = 1/(2π√LC)。但图9中的示波器显示器显示的触发黄色边沿信号频率为1.6MHz—是振荡器正弦波频率的五分之一。这个电路可以用作5倍频器,在实际应用中,到11阶或以上的奇数谐波需要根据电感Q获得(之所以提11阶是因为这是我曾经尝试获得的最高阶数)。 图9:一连串占空比约为50%的黄色边沿信号如果时序正确的话可形成连续的蓝色振荡波 在驱动沿和正弦峰值之间还存在其它相位关系。上升沿与正峰值相关,下降沿与负峰值相关。因此偶数谐波不能从50%的方波中剔除—不断变化的边沿将抵消相同极性的正弦峰(傅里叶先生是对的!) 不过只要让边沿占空比稍作改变,我们就可以在偶数谐波处再次使正弦峰出现,比如图10中的6倍频器。 图10:出于演示的目的,这里用了一个40%占空比、1.333MHz的数字信号产生8MHz的6阶谐波,因为我不想重新调谐振荡器。 图11和图12显示了谐振倍频因子如何随占空比变化而变化。振荡频率在8MHz处仍然是常数,因为振荡器元件值没有改变,但现在矩形波频率分别位于8MHz的1/7分频(1.14MHz)和1/8分频(1MHz)。 图11:35%占空比起振出1.14MHz矩形波的7阶谐波。 图12:31%占空比起振出1MHz矩形波的8阶谐波。 以此类推。只要不断改变的数字边沿能够落在最终正弦波的各个峰值处,振荡器就能起振。换句话说,交替变化的数字边沿之间的时间必须等于想要谐波的半周期的整数倍。 【分页导航】 第1页: 将无源器件连接到逻辑门 第2页: 相位检测器、线路驱动器和脉冲整形器 第3页: 驱动谐振LC振荡器电路 第4页: 驱动脉冲长度 《电子技术设计》网站版权所有,谢绝转载 驱动脉冲长度 前面我们发现,驱动方波的占空比会影响其上升沿与下降沿和振荡电路峰值之间的关系(图7)。不过创建想要的脉冲长度是另外一回事,通常不是以数字方式完成的,它要求使用与我们试图重建的相同的高频时钟。 也许甚高频时钟和计数器链可以从我们想要倍频和合成目标脉冲的低频边沿触发。但也有模拟的方法(如前所述),它们使用单稳多谐振荡器、带门电路的RC网络以及使用现成集总LC与逻辑门器件的延时线或用于更高频的实际端接传输线。甚至可能使用一段不端接的传输线实现倍频,并使用反射脉冲的来回时间作为定时单元,但这种方法极富技巧。 下面我们来看一个有趣的例子,其中驱动脉冲是正弦波的半个周期或更短。由于函数发生器的限制,我不得不降低振荡器的谐振频率来获得想要的占空比。用于产生图13所示波形的振荡器电路使用了一个1μH的电感(Q值未知,实际上是废料箱中一个很小的射频扼流圈)并联一个100nF的电容,到数字驱动器的耦合电容必须增加到270pF。新振荡器的谐振频率大约是500kHz。函数发生器输出现在是主输出(非TTL),但上升时间缩短了,因为更快的TTL边沿引起了寄生振荡—也许是射频扼流圈的自谐振。 图13:50%占空比边沿与每个正弦波峰值对齐,脉冲边沿跨在正弦波的过零点。 那么将方波转换为相同频率的正弦波意义何在呢?其中之一是你可以消除振荡器带宽之外的高频抖动(Q值越高越好),特别是当从有噪声的串行位流中恢复位时钟时: 图14:在20%占空比时,脉冲边沿仍然跨正弦波零点。在这种情况下,脉冲宽度本身并不十分关键;利用宽松的定时方法(在合理范围内)创建脉冲宽度是可以接受的。 图15显示了一个驱动异或门的方波,它以窄脉冲(如图14所示)的方式在每个上升和下降沿驱动振荡器,但它很容易成为密集编码的串行位流,比如一个位有一个或两个边沿的双相或曼彻斯特位流。每个边沿触发振荡器输出双倍的位速率。恢复串行位时钟只需简单的除2方法。即使在一个位一个边沿的最小变换密度下,振荡器也会起振以填充丢失的边沿,并保持恢复时钟输出正常。我曾对4b5b编码的250Mbit/s串行数据使用过这种时钟恢复方法。 图15:异或史密特触发器可以很容易地使用简单的RC网络形成图3所示的稀疏脉冲。 这种方法比锁相环(PLL)加压控晶体振荡器(VCXO)要便宜得多,只要你不介意振荡器最初需要外力触发才能进入谐振状态的事实。它的工作量与调整吉它的六分之一相同。 适合数字逻辑振荡器的其它应用包括可变相移、串行位流采样时钟的自动相位校正、频率变换、分组时钟的启动以及将异或门用作混频器并通过频率加减法(外差法)实现的时钟合成。 【分页导航】 第1页: 将无源器件连接到逻辑门 第2页: 相位检测器、线路驱动器和脉冲整形器 第3页: 驱动谐振LC振荡器电路 第4页: 驱动脉冲长度 《电子技术设计》网站版权所有,谢绝转载
  • 热度 20
    2013-9-28 16:30
    1352 次阅读|
    0 个评论
      简单地讲就是需能(电)源的器件叫 有源器件 ,无需能(电)源的器件就是无源器件。 有源器件 一般用来信号放大、变换等,无源器件用来进行信号传输,或者通过方向性进行“信号放大”。容、阻、感都是无源器件,IC、模块等都是 有源器件 。(通俗的说就是需要电源才能显示其特性的就是有源元件,如三极管。而不用电源就能显示其特性的就叫无源元件) 1. 无源器件的简单定义 如果 电子元器件 工作时,其内部没有任何形式的电源,则这种器件叫做无源器件。 从电路性质上看,无源器件有两个基本特点: (1)自身或消耗电能,或把电能转变为不同形式的其他能量。 (2)只需输入信号,不需要外加电源就能正常工作。 2.有源器件的基本定义 如果 电子元器件 工作时,其内部有电源存在,则这种器件叫做有源器件。 从电路性质上看,有源器件有两个基本特点: (1)自身也消耗电能。 (2)除了输入信 号外 ,还必须要有外加电源才可以正常工作。 由此可知,有源器件和无源器件对电路的工作条件要求、工作方式完全不同,这在 电子技术 的学习过程中必须十分注意。  
相关资源
  • 所需E币: 2
    时间: 2022-5-12 09:54
    大小: 3.29MB
    上传者: czd886
    基于3D打印的微波无源器件研究
  • 所需E币: 0
    时间: 2020-9-17 22:15
    大小: 8.45MB
    上传者: kaidi2003
    无源器件使用要点.rar
  • 所需E币: 0
    时间: 2020-9-8 13:04
    大小: 8.5MB
    上传者: samewell
    无源器件使用要点.pdf
  • 所需E币: 1
    时间: 2020-5-18 23:07
    大小: 250.29KB
    上传者: sense1999
    简单地讲就是需能(电)源的器件叫有源器件,无需能(电)源的器件就是无源器件。有源器件一般用来信号放大、变换等,无源器件用来进行信号传输,或者通过方向性进行“信号放大”。容、阻、感都是无源器件,IC、模块等都是有源器件。(通俗的说就是需要电源才能显示其特性的就是有源元件,如三极管。而不用电源就能显示其特性的就叫无源元件)