号重复出现,示波器并不一定要在一次完成所有的采集,而可以通过在每—次触发发生时获取波形的一部分,在多次循环触发之后构成显示波形 。(这过程通常很快,以致你不会注意到它的发生),重复带宽指标独立于示波器的采样速率。事实上,这一指标通常用来衡量示波器模拟放大器部分的带宽。 实时带宽适用于非重复或单次信号。示波器在一次触发过程中完成数字化,所以实时带宽取决于示波器的采样率,采样率与带宽之间的比值不是固定的。如果示波器有数字重构能力,这比值接近于4:1,如果没有重构,这比值通常是10:l。 有关采样速率部分可以参考第四个步骤。很多波形中包含的重要频率成分比波形的基频高出很多倍。例如,方波中包含个少比信号基频高出十倍的频率。高带宽示波器能使你更精确地观测这些高频成分。 下面图示的屏幕图形说明了50 MHz的方波在不同的四种示波器上进行观测的结果: 500MHz的示波器精确地显示了其中的高频成分,并且最好地表示了上升时间。150 MHz示波器的显示中则丢失了高频信号 通常的细节,显示的上升时间较真实值慢了很多,100 MHz的示波器则使上升时间看起来变得更慢。同时,你还以看到幅值的衰减。示波器带宽方波信号的基频还要低的时候,显示的波形已面日个非。 作为一基本准则,你所使用示波器的带宽应至少高出被测信号中的最高频率三倍。 如果你需要更高的精度,那么要求的带宽将更高。虽然精确的幅值测量并不完全取决于频率响应,但是仍要求示波器的带宽高出被测信号频率十倍。 对于典型测量,上升时间与带宽之间的关系可以近似为:Tr:0.35/3dB带宽对于定时测量,信号上升时间与示波器上升时间的比值越高,则测量误差越小。具体数据可以参照下表信号上升时间/示波器上升时间 1:1 41.4% 3:1 5.4% 5:1 2.0% 10:1 0.5% 简言之,如果你拥有带宽越高的示波器(上升时间越快),那么你的测量结果也就越精确。
你应该牢记下面几点:
※ 探头将影响测量精度, ※ 某些示波器所列出的最高带宽指标只局限于某一特定的电压范围,或者只在50欧姆输入时才具有。 ※ 模拟示波器的带宽很少能高于400 MHz,而某些数字示波器具有超过50GHz的带宽。
3.确定你所需要的通道数
一般来讲,你所需要的通道数取决于被测对象。目前以双通道示波器最为流行。然而对大多数工程师来讲,对于某些应用,四通道示波器更为有用。 下面几点应该予以考虑: ※ 你需要在同一触发事件捕获多通道信号吗?如果是这样的话,请选用每个通道可以同时采样或独立A/D变换的示波器。如果你观测的信号是重复信号,那么就不一定要求同时采集了。 ※ 某些示波器是2+2形式的,也就是说,其中两个通道是全功能的,而另外两个通道是衰减范围受 限制的辅助通道。在这种情况下,两个A/D变换器由四个通道共享。辅助通道在你观测数字信号时可以提供额外的灵活性。 ※ 对于双通道示波器,外触发可能很有用处。它可以用一无需观测的信号作为外触发源,而不占用示波器的输入通道。 ※ 如果你要进行数字定时测量,要求超过四个通道的示波器时,你不妨考虑使用逻辑分析仪。尽管此时你放弃了测量的垂直分辨率,但你获得了多个通道以及额外的触发及分析能力。
4.确定你所需要的采样速率
对于单次信号测量,最关键的性能指标是采样速率,即示波器对于输入信号进行“快速拍照”的速率。高采样速率可以产生高实时带宽以及高的实时分辨率。 大多数示波器生产厂商采用采样速率与实时带宽为4:l(如果采用数字重构技术)或10:1(没有数字重构)的比例来防止出现假波。 某些示波器提供了独立控制采样速率的功能,这样你可以同时调节采样速率和屏幕显示的数据量(时基),使二者设置不必互相牵制。这一特征可以使你保持你所希望的时间分辨率来观测波形。 你应该牢记下面几点: ※ 示波器的标称采样速率可能只适用于单通道采样。某些示波器在多通道均处于工作状态时采样率将降低。这样由于改变了示波器的采样速率与信号带宽之间的关系,所以增加了出现假波的可能性。 ※ 由于记录长度的限制,大多数示波器只在最快水平扫速条件下才以最大速度采样。在水平扫速变慢时,采样速率将降低。 ※ 在捕捉单次事件时,应同时考虑存储深度和采样速率的重要性。如果你需要不间断连续观测,你需要拥有既可以保持很高的时间分辨率,又具有足够的内存来存储整个事件的示波器。 ※ 示波器的采样速率与显示更新速率无关。
5、确定你所需要的存储深度
你所需要的示波器存储深度取决于要求的总时间测量范围以及要求的时间分辨率。如果你想以高分辨率存储长时间段信号,那么你需要选择深存储示波器。这样,你可以在水平扫描速度低的情况下,采用高采样速率。由此将大大减少出现假波的机会,并且获得更多的波形细节信息。 下列算式可以帮助你计算你所希望的存储深度。 存储深度=时间范围/分辨率 深存储的缺点是由于示波器需要处理更多的数据,所以响应速度将变慢。
6、考察评估触发能力
很多通用示波器用户习惯于采用边沿触发。在某些应用场合,如果示波器具有其它触发能力,你将会发现它对你的测量会很有帮助。先进的触发功能可以隔离出你所希望观测的事件。在数字应用领域,使示波器触发在多通道之间的特定模式对解决问题很有用处。此外,状态触发可以用来使模式触发与外时钟沿同步。毛刺触发在正或负毛刺发生的时刻或者一脉冲宽于或窄于设定的宽度。这些特征对故障查错尤其重要,触发在错误发生的时刻,观察前向事件(采用延时或水平位置旋钮)来确定问题产生的原因。如果需要更高级的逻辑触发功 能,你仍然可以考虑采用逻辑分析仪。 电视信号触发可以触发在场以及你需要观测的特定行上。在某些示波器上,该特征是选项功能。
7、评价毛刺捕捉能力
三个重要因素影响示波器的毛刺捕捉能力: 更新速率:数字示波器必须首先捕获数据然后进行处理,最后进行显示。示波器在一秒钟内可以完成这三个过程的次数称为更新速率。更新速率快的示波器捕捉偶发毛刺的机会比较高。采用多处理器结构的示波器比传统的单处理器结构示波器具有更快的更新速率,使它更适用于捕捉偶发事件。多处理器结构可以产生与模拟示波器相近的显示吞吐能力和响应速度。 峰值检测能力:大多数数字示波器在低扫速时将丢掉采样点,从而降低了有效采样速率。由此引发了这样一个问题,在设定成快速时基时很容易观察到的窄脉冲在扫速低时消失了。然而对于峰值检测或毛刺检测这一特殊采样模式,在所有的扫描速度下均维持最大采样速率,把每一采样周期获得的最大和最小值记录下来。可以检测到的最小毛刺只与示波器的采样速率有关。 毛刺触发:具有毛刺触发功能的示波器可使你隔离出难以发现的毛刺并且触发在毛刺发生时刻。这一功能可以帮助你发现电路运行过程中发生异常情况的原因。 有关触发功能可参考第六个步骤
8、确定你所需要的分析功能
利用自动测量以及示波器内置的分析能力,你可以即容易又省时地完成工作。数字示波器通常具有模拟示波器不可能拥有的顺序测量功能和分析选件。 算术运算功能包括有加、减、乘、除、积分和微分。统计测量(最小、最大和平均)可以定量描述测量的不确定性,这在测量噪声特征以及定时容限时是很有价值的。有些数字示波器还可以提供FFT功能。具有—卜述所有先进功能的示波器可能在价格上要高一些,所以你自己应该决定花费额外的钱是否物有所值。你最好还是根据实际应用来选择拥有这些特征的示波器。
9、评价存档能力
大多数数字示波器可以通过GPIB、RS-232或者并行口与PC,打印机或绘图仪相连接。但你应弄清楚可以提供哪一种接口,可与哪种类型打印机相匹配。从激光和喷墨打印机输出的效果比热打印输出的质量要高得多,这一点你应该心中有数。 利用带有软盘驱动器或软件包的数字示波器,你可以方便地将波形的图像和波形数据传送至PC机。如果你想在一份报告中包含一幅捕捉到的屏幕图像或者想要把波形数据转换成表格,那么这些特征会节省时间,而且减少很多麻烦。
10、试用你要选择的示波器
如果你已经完成上述九个步骤,并且将满足测量要求的示波器局限在几种型号之内。现在是你试用和面对面比较的时候了。将示波器短时间内租用几天,花点功夫做一下全面评价。 在使用每一种示波器时都应考虑下面几种因素: 易于使用:在你试用期间,评价一下每台示波器的易使用性。有专门设计且非常好用的手轮吗?利用手轮你可以对诸如垂直灵敏度,水平扫描速度,跟踪位置和触发电平等进行直接调整吗?从一个操作到另一操作你需要按几次按键吗? 你可以集中精力于被测试电路的同时直观地操作示波器吗? 显示响应:无论你用示波器作维修还是大量采集数据,显示响应都是一关键因素,在你作评价时对这一点要特别注意,当你改变V/div,△Time/div及设定位置时,示波器响应快吗?在打开测量功能时作同样的试验,响应明显变慢了。 在你已经考虑过上述所有这些问题并且评估过准备选用哪一种示波器之后,你已经可以明确选定哪一种示波器真正满足你的要求。如果你仍然犹豫不决,你可以与其它示波器用户进行磋商或与供应商的技术人员联系。
自:安捷伦科技 |
文章评论(0条评论)
登录后参与讨论