设计问答:仪表放大器
**********************************************************************
在中科院研究生院的学习的一年要数夏季学期卓国文老师的“模拟电路基础”“模拟电路应用”两门课最有收获,他在课上讲了很多模拟电路设计要注意的问题,也重点讲了仪表放大器的设计,特整理一下网上关于仪表放大器的资料,结合老师所讲的内容,也算温故知新
下面一篇文章转载自
http://www.ed-china.com/ART_8800020804_400012_500002_TS_75960f27.HTM
**********************************************************************
仪表放大器的功能是什么?
仪表放大器测量噪声环境下的小信号。噪声通常是共模噪声,所以,当信号是差分时,仪表放大器利用其共模抑制(CMR)将需要的信号从噪声中分离出来。
在这些应用中,信号源的输出阻抗常常达几kΩ或更大,因此,仪表放大器的输入阻抗非常大——通常达数GΩ,它工作在DC到约1 MHz之间。在更高频率处,输入容抗的问题比输入阻抗更大。高速应用通常采用差分放大器,差分放大器速度更快,但输入阻抗要低。
运放的关键参数有哪些?
设计工程师确定放大器时,主要关心的是电源电流、–3dB带宽、共模抑制比(CMRR)、输入电压补偿和补偿电压温漂、噪声(指输入)以及输入偏置电流。
仪表放大器的内部结构是怎样的?
大多数仪表放大器采用3个运算放大器排成两级:一个由两运放组成的前置放大器,后面跟一个差分放大器(图 1a)。前置放大器提供高输入阻抗、低噪声和增益。差分放大器抑制共模噪声,还能在需要时提供一定的附加增益。
三运放方案是仪表放大器采用的惟一结构吗?
可以采用具有两个运放的较少元器件的结构替代,但有两个缺点(图 1b)。首先,不对称的结构使CMRR较低,特别是高频时。其次,可用于第一级的增益量有限。输出级误差则反馈回输入端,导致相对输入的噪声和补偿误差更大。
如何保护仪表放大器的输入免受过电压的影响?
设计师需要采用外部限流电阻来防止过电压通过内部静电放电(ESD)箝位二极管驱动过高的电流。这些电阻的值取决于仪表放大器的噪声水平、电源电压,以及需要的过压保护,推荐值见器件的datasheet。
这些电阻增加了噪声,所以一种可替代的方案是使用外部高电流箝位二极管和阻值非常小的电阻。遗憾的是,大多数普通二极管的漏电流太大,会产生大的输出漂移误差,该误差随温度变化呈指数关系增加,所以设计师不应该将标准二极管用于高阻抗信号源。
什么是RFI整流?如何预防?
传感器与仪表放大器之间的长引线会引起RF。仪表放大器随之将此RF整流为DC偏移。图2给出了一个方案,可在RF到达仪表放大器前就将其滤掉。元件R1a和C1a在同相端构成一低通滤波器,R1b和 C1b在反相端同样构成低通滤波器。
这两个低通滤波器截止频率的很好匹配很重要。否则,共模信号将会被转换为差分信号。C2在高频段将输入“短路”,能在一定程度上降低这种要求,C2值的大小应该至少为C1的10倍。
虽然如此,C1a和C1b的匹配仍很关键,应该选用±5% C0G薄膜电容。该滤波器的差分带宽为[1/2πR(2C2 + C1)],共模带宽为[1/2πR1C1)]。
购买单片放大器和用运放构建一个仪表放大器两者的利弊是什么?
用分立运放构建一个仪表放大器的最主要理由是在市面上找不到所需要的仪表放大器。不同厂家生产的运放有5000种以上的型号,而仪表放大器型号只有约100种。
但是,若能找到一款满足性能要求的单片仪表放大器,那就用它,不要再自己构建。这样,会节省开发时间,并且单片部件的体积肯定小。
此外,CMRR性能会更好。由于多数电阻都在片上,板寄生效应要小的多。另一个优点是,对于任何额定电流,单片设计的噪声和带宽参数通常都更好。
作者:Don Tuite
文章评论(0条评论)
登录后参与讨论