就可以快速验证某高速SERDES芯片驱动不同长度传输线时接收端的性能,在高速背板的预研与设计中非常有用。
3.125Gbps 信号的接收端眼图测试结果对比
怎样得到信道的S参数文件?
在信道仿真中,信道的S参数模型的精确性决定了RX端计算结果的精确性,所以获得足够精确的信道的S参数模型非常重要。在信号完整性(简称SI)领域,通常有两种方法获取信道的S参数模型。
1. 使用VNA或者TDR直接测量信道的S参数;
2. 使用HFSS、SIwave、Sigrity等EDA建模软件提取信道的S参数;
前者基于实际信道的测量,精度高,不过信道上的端口必需留有SMA射频头,VNA或TDR通过SMA接头的同轴电缆连接到待测试信道;后者通常基于连接器的三维结构、PCB的压板结构(stackup)、介质特性、传输线的几何特性,使用计算电磁学的一些算法提取出信道的S参数模型。
图五:夹具去嵌前后眼图对比 |
什么是夹具去嵌?
在测量当前流行的很多串行信号(比如PCIe、SATA、SAS、FBDIMM)时,通常需要专门的测试夹具,夹具上把PCB的传输线转换为SMA射频连接头,待测试信号连接到夹具上,夹具通过同轴电缆连接到示波器,如下图五所示,示波器作为接收端进行测量。由于夹具上的连接器、金手指、过孔、微带线、带状线等会使信号发生衰减、色散或者反射,导致示波器测量到的信号有所恶化。使用夹具去嵌功能,只需输入夹具的S参数模型文件,即可计算出没有夹具时测量到的信号的波形与眼图。如图五所示,上半部分是信号去嵌前测量到的眼图,下半部分是信号去嵌后测量到的眼图,相比前者,后者的上升下降沿更陡峭,眼轮廓清晰,眼张得更开。从这个比较图中可以看到力科的去嵌技术可以消除夹具的负面作用。
信道仿真的常见问题
问题1:力科的信道仿真与EDA软件仿真有什么区别?
和力科的眼图医生一样,EDA软件同样可以做信道仿真、均衡器仿真。两种最主要的区别在于:
1. 力科的信道仿真和均衡器仿真速度非常快,在几秒钟内就可以计算出几百微秒长的波形,几乎可以做到实时测量,实时计算出结果;而EDA软件的计算速度较慢,计算几百纳秒长的波形通常需要几十分钟。两种方法的速度有天壤之别。
2. 力科的信道仿真基于实测,电路板上很多随机因素都考虑进去了,而EDA软件仿真通常基于理想的工作状况,忽略了一些随机因素。
问题2:信道仿真的精度?
信道仿真的精度取决于信道的S参数模型是否足够精确。在下图为某IC厂商验证其SAS2芯片驱动背板的测试结果。其中一个波形是用力科示波器在TX端测试,用信道仿真计算出的RX端的波形,另一个波形是示波器直接在RX端测量到的波形,可见两者非常接近。信道的S参数由某20G带宽VNA测量得到。
图六:某SAS信号在RX实测与TX测试后用信道仿真计算RX端信号波形的对比
什么是预加重/去加重(Pre-emphasis/De-emphasis)?
在图三中我们看到,对于2.5Gbps信号,通过10、20、30、40英寸线长的背板后,接收端的眼图随着长度增加会逐渐闭合。原因在于信道是一个低通滤波器,随着传输线长度的增加,损耗和色散会越来越大,另外,随着频率的增加,损耗与色散效应也越来越明显。而当前的数字电路速度不断提高,通常,在速率高于1GHz的数字电路中,为了把信号能传输更远的距离,通常在发送端使用预加重或去加重的均衡技术。
在下图七中左半部分是预加重。预加重保持信号的低频部分不变,提升信号的高频部分;而去加重衰减信号的低频部分,保持高频部分。预加重/去加重的目的都是提升信号中高频部分的能量,以补偿信道对高频部分衰减过大。
图七:预加重
去加重 VS
如果在TX端测量经过预加重/去加重的信号的眼图,可以看到如下图八的上半部分所示的“双眼皮”的眼图,而下图八的下半部分是做3.5dB的去加重之前信号的眼图。还有,使用去加重后,TX端信号的抖动会大于未采用加重的信号,在下面的眼图中可以清楚的看到去
加重后眼图
图八:去加重前后的眼图对比 |
在当前流行的很多串行数据,比如PCIe、FBDIMM都使用了去加重技术。
高速芯片通常提供了几种预加重/去加重程度和信号幅度可调节,以第二代的PCI Express为例,其比特率为5Gbps,有3.5dB和6.5dB两者去加重模式。
文章评论(0条评论)
登录后参与讨论