原创 (转)如何编写testbench的总结(Verilog非常实用的总结)

2009-7-24 08:51 16373 13 14 分类: FPGA/CPLD

(转)如何编写testbench的总结(非常实用的总结)




如何编写testbench的总结(非常实用的总结)


 


1.激励的设置


相应于被测试模块的输入激励设置为reg型,输出相应设置为wire类型,双向端口inout在测试中需要进行处理。


方法1:为双向端口设置中间变量inout_reg作为该inout的输出寄存,inout口在testbench中要定义为wire型变量,然后用输出使能控制传输方向。


eg:


inout [0:0] bi_dir_port;


wire [0:0] bi_dir_port;


reg [0:0] bi_dir_port_reg;


reg bi_dir_port_oe;



assign bi_dir_port=bi_dir_port_oe?bi_dir_port_reg:1'bz;


用bi_dir_port_oe控制端口数据方向,并利用中间变量寄存器改变其值。等于两个模块之间用inout双向口互连。往端口写(就是往模块里面输入)



方法2:使用force和release语句,这种方法不能准确反映双向端口的信号变化,但这种方法可以反映块内信号的变化。具体如示:


module test();


wire data_inout;


reg data_reg;


reg link;


#xx; //延时


force data_inout=1'bx; //强制作为输入端口


...............


#xx;


release data_inout; //释放输入端口


endmodule



从文本文件中读取和写入向量


1)读取文本文件:用 $readmemb系统任务从文本文件中读取二进制向量(可以包含输入激励和输出期望值)。$readmemh 用于读取十六进制文件。例如:


reg [7:0] mem[1:256] // a 8-bit, 256-word 定义存储器mem


initial $readmemh ( "mem.data", mem ) // 将.dat文件读入寄存器mem中


initial $readmemh ( "mem.data", mem, 128, 1 ) // 参数为寄存器加载数据的地址始终



2)输出文本文件:打开输出文件用?$fopen 例如:


integer out_file; // out_file 是一个文件描述,需要定义为 integer类型


out_file = $fopen ( " cpu.data " ); // cpu.data 是需要打开的文件,也就是最终的输出文本


设计中的信号值可以通过$fmonitor, $fdisplay,



2. Verilog和Ncverilog命令使用库文件或库目录
ex). ncverilog -f run.f -v lib/lib.v -y lib2 +libext+.v //一般编译文件在run.f中, 库文件在lib.v中,lib2目录中的.v文件系统自动搜索
使用库文件或库目录,只编译需要的模块而不必全部编译



3.Verilog Testbench信号记录的系统任务:


1). SHM数据库可以记录在设计仿真过程中信号的变化. 它只在probes有效的时间内记录你set probe on的信号的变化.
ex). $shm_open("waves.shm"); //打开波形数据库
$shm_probe(top, "AS"); // set probe on "top",
第二个参数: A -- signals of the specific scrope
S -- Ports of the specified scope and below, excluding library cells
C -- Ports of the specified scope and below, including library cells
AS -- Signals of the specified scope and below, excluding library cells
AC -- Signals of the specified scope and below, including library cells
还有一个 M ,表示当前scope的memories, 可以跟上面的结合使用, "AM" "AMS" "AMC"
什么都不加表示当前scope的ports;
$shm_close //关闭数据库
2). VCD数据库也可以记录在设计仿真过程中信号的变化. 它只记录你选择的信号的变化.
ex). $dumpfile("filename"); //打开数据库
$dumpvars(1, top.u1); //scope = top.u1, depth = 1
第一个参数表示深度, 为0时记录所有深度; 第二个参数表示scope,省略时表当前的scope.
$dumpvars; //depth = all scope = all
$dumpvars(0); //depth = all scope = current
$dumpvars(1, top.u1); //depth = 1 scope = top.u1
$dumpoff //暂停记录数据改变,信号变化不写入库文件中
$dumpon //重新恢复记录
3). Debussy fsdb数据库也可以记录信号的变化,它的优势是可以跟debussy结合,方便调试.
如果要在ncverilog仿真时,记录信号, 首先要设置debussy:
a. setenv LD_LIBRARY_PATH :$LD_LIBRARY_PATH
(path for debpli.so file (/share/PLI/nc_xl//nc_loadpli1))
b. while invoking ncverilog use the +ncloadpli1 option.
ncverilog -f run.f +debug +ncloadpli1=debpli:deb_PLIPtr
fsdb数据库文件的记录方法,是使用$fsdbDumpfile和$fsdbDumpvars系统函数,使用方法参见VCD
注意: 在用ncverilog的时候,为了正确地记录波形,要使用参数: "+access+rw", 否则没有读写权限



在记录信号或者波形时需要指出被记录信号的路径,如:tb.module.u1.clk.


………………………………………………………………………………………………………


关于信号记录的系统任务的说明:


在testbench中使用信号记录的系统任务,就可以将自己需要的部分的结果以及波形文件记录下来(可采用sigalscan工具查看),适用于对较大的系统进行仿真,速度快,优于全局仿真。使用简单,在testbench中添加:initial begin


$shm_open("waves.shm");


$shm_probe("要记录信号的路径“,”AS“);


#10000


$shm_close; 即可。




4. ncverilog编译的顺序: ncverilog file1 file2 ....
有时候这些文件存在依存关系,如在file2中要用到在file1中定义的变量,这时候就要注意其编译的顺序是
从后到前,就先编译file2然后才是file2.

5. 信号的强制赋值force
首先, force语句只能在过程语句中出现,即要在initial 或者 always 中间. 去除force 用 release 语句.
initial begin force sig1 = 1'b1; ... ; release sig1; end
force可以对wire赋值,这时整个net都被赋值; 也可以对reg赋值.



6.加载测试向量时,避免在时钟的上下沿变化


为了模拟真实器件的行为,加载测试向量时,避免在时钟的上下沿变化,而是在时钟的上升沿延时一个时间单位后,加载的测试向量发生变化。如:


assign #5 c="a"^b


……


@(posedge clk) #(0.1*`cycle) A=1;


******************************************************************************


//testbench的波形输出


module top;


...


initial


begin


$dumpfile("./top.vcd"); //存储波形的文件名和路径,一般是.vcd格式.


$dumpvars(1,top); //存储top这一层的所有信号数据


$dumpvars(2,top.u1); //存储top.u1之下两层的所有数据信号(包含top.u1这一层)


$dumpvars(3,top.u2); //存储top.u2之下三层的所有数据信号(包含top.u2这一层)


$dumpvars(0,top.u3); //存储top.u3之下所有层的所有数据信号


end


endmodule



//产生随机数,seed是种子


$random(seed);


ex: din <= $random(20);



//仿真时间,为unsigned型的64位数据


$time


ex:


...


time condition_happen_time;


...


condition_happen_time = $time;


...


$monitor($time,"data output = %d", dout);


...


//参数


parameter para1 = 10,


para2 = 20,


para3 = 30;



//显示任务


$display();


//监视任务


$monitor();



//延迟模型


specify


...


//describ pin-to-pin delay


endspecify



ex:


module nand_or(Y,A,B,C);


input A,B,C;


output Y;



AND2 #0.2 (N,A,B);


OR2 #0.1 (Y,C,N);



specify


(A*->Y) = 0.2;


(B*->Y) = 0.3;


(C*->Y) = 0.1;


endspecify


endmodule



//时间刻度


`timescale 单位时间/时间精确度



//文件I/O


1.打开文件


integer file_id;


file_id = fopen("file_path/file_name");


2.写入文件


//$fmonitor只要有变化就一直记录


$fmonitor(file_id, "%format_char", parameter);


eg:$fmonitor(file_id, "%m: %t in1=%d o1=%h", $time, in1, o1);


//$fwrite需要触发条件才记录


$fwrite(file_id, "%format_char", parameter);


//$fdisplay需要触发条件才记录


$fdisplay(file_id, "%format_char", parameter);


$fstrobe();


3.读取文件


integer file_id;


file_id = $fread("file_path/file_name", "r");


4.关闭文件


$fclose(fjile_id);


5.由文件设定存储器初值


$readmemh("file_name", memory_name"); //初始化数据为十六进制


$readmemb("file_name", memory_name"); //初始化数据为二进制



//仿真控制


$finish(parameter); //parameter = 0,1,2


$stop(parameter);



//读入SDF文件


$sdf_annotate("sdf_file_name", module_instance, "scale_factors");


//module_instance: sdf文件所对应的instance名.


//scale_factors:针对timming delay中的最小延时min,典型延迟typ,最大延时max调整延迟参数



//generate语句,在Verilog-2001中定义.用于表达重复性动作


//必须事先声明genvar类型变量作为generate循环的指标


eg:


genvar i;


generate for(i = 0; i < 4; i = i + 1)


begin


assign = din = i % 2;


end


endgenerate



//资源共享


always @(A or B or C or D)


sum = sel ? (A+B)C+D);


//上面例子使用两个加法器和一个MUX,面积大



//下面例子使用一个加法器和两个MUX,面积小


always @(A or B or C or D)


begin


tmp1 = sel ? A:C;


tmp2 = sel ? B:D;


end



always @(tmp1 or tmp2)


sum = tmp1 + tmp2;



******************************************************************************


模板:


module testbench; //定义一个没有输入输出的module


reg …… //将DUT的输入定义为reg类型


……



wire…… //将DUT的输出定义为wire类型


……


//在这里例化DUT



initial


begin


…… //在这里添加激励(可以有多个这样的结构)


end



always…… //通常在这里定义时钟信号



initial


//在这里添加比较语句(可选)


end



initial


//在这里添加输出语句(在屏幕上显示仿真结果)


end


endmodule



一下介绍一些书写Testbench的技巧:


1.如果激励中有一些重复的项目,可以考虑将这些语句编写成一个task,这样会给书写和仿真带来很大方便。例如,一个存储器的testbench的激励可以包含write,read等task。


2.如果DUT中包含双向信号(inout),在编写testbench时要注意。需要一个reg变量来表示其输入,还需要一个wire变量表示其输出。


3.如果initial块语句过于复杂,可以考虑将其分为互补相干的几个部分,用数个initial块来描述。在仿真时,这些initial块会并发运行。这样方便阅读和修改。


4.每个testbench都最好包含$stop语句,用以指明仿真何时结束。


最后提供一个简单的示例(转自Xilinx文档):


DUT:


module shift_reg (clock, reset, load, sel, data, shiftreg);


input clock;


input reset;


input load;


input [1:0] sel;


input [4:0] data;


output [4:0] shiftreg;


reg [4:0] shiftreg;


always @ (posedge clock)


begin


if (reset)


shiftreg = 0;


else if (load)


shiftreg = data;


else


case (sel)


2’b00 : shiftreg = shiftreg;


2’b01 : shiftreg = shiftreg << 1;


2’b10 : shiftreg = shiftreg >> 1;


default : shiftreg = shiftreg;


endcase


end


endmodule



Testbench:


module testbench; // declare testbench name


reg clock;


reg load;


reg reset; // declaration of signals


wire [4:0] shiftreg;


reg [4:0] data;


reg [1:0] sel;


// instantiation of the shift_reg design below


shift_reg dut(.clock (clock),


.load (load),


.reset (reset),


.shiftreg (shiftreg),


.data (data),


.sel (sel));


//this process block sets up the free running clock


initial begin


clock = 0;


forever #50 clock = ~clock;


end


initial begin// this process block specifies the stimulus.


reset = 1;


data = 5’b00000;


load = 0;


sel = 2’b00;


#200


reset = 0;


load = 1;


#200


data = 5’b00001;


#100


sel = 2’b01;


load = 0;


#200


sel = 2’b10;


#1000 $stop;


end


initial begin// this process block pipes the ASCII results to the


//terminal or text editor


$timeformat(-9,1,"ns",12);


$display(" Time Clk Rst Ld SftRg Data Sel");


$monitor("%t %b %b %b %b %b %b", $realtime,


clock, reset, load, shiftreg, data, sel);


end


endmodule

文章评论1条评论)

登录后参与讨论

用户377235 2015-10-13 14:33

差评 简单的事情搞得这么复杂
相关推荐阅读
用户1324799 2013-04-28 11:11
FPGA跨时钟域同步,亚稳态等
我不是半导体/ASIC/FPGA 领域的,对跨时钟域,MTBF等了解的很少。 有时候看到个问题,就会想这个问题,解决这个问题。 或许大家可以先看看 新思科技的 《跨时钟域信号同步的IP解决...
用户1324799 2013-04-28 08:31
TFT板子+Verilog代码+显示图片(纯逻辑) 好奇妙!!!
 液晶显示图片:     好奇妙的图片,这个图片是怎么来的,奥秘就在下面:   m...
用户1324799 2012-03-19 19:01
电机传感器光电编码器入门
电机传感器光电编码器入门...
用户1324799 2012-03-13 19:28
SVPWM/SVM/空间矢量PWM/空间矢量脉冲宽度调制
电压空间矢量法(SVPWM,称磁通正弦PWM)是从电动机的角度出发,着眼于使电机获得幅值恒定的圆形磁场,即正弦磁通。它以三相对称正弦波电压供电时交流电动机的理想圆形磁通轨迹为基准,用逆变器不同的开...
用户1324799 2011-10-05 12:17
SVPWM相关学习1
I.伏秒平衡:  伏秒平衡,就是这个意思:参考矢量为Vref,三个空间矢量V1、V2、V3来合成这个矢量;在一个SVPWM周期之内,三个矢量V1、V2、V3的合成效果要和Vref相同,即Vref*Ts...
用户1324799 2011-09-08 16:51
中颖4位单片机指令学习笔记
刚接触中颖的4位单片机,一直在看中颖的资料,很郁闷有些资料有问题,也浪费了大量的时间。在论坛上提问也解决了几个问题。关于SBC指令的,问题已经解决http://bbs.sinowealth.com/v...
我要评论
1
13
关闭 站长推荐上一条 /2 下一条