2001414班 朱伟 20014123
摘要: 关于空间域图像处理算法框架,直方图处理,空间域滤波器算法框架的编程心得,使用GDI+(C++)
一,图像文件的读取
初学数字图像处理时,图像文件的读取往往是一件麻烦的事情,我们要面对各种各样的图像文件格式,如果仅用C++的fstream库那就必须了解各种图像编码格式,这对于初学图像处理是不太现实的,需要一个能帮助轻松读取各类图像文件的库。在Win32平台上GDI+(C++)是不错的选择,不光使用上相对于Win32 GDI要容易得多,而且也容易移植到.Net平台上的GDI+。
Gdiplus::Bitmap类为我们提供了读取各类图像文件的接口,Bitmap::LockBits方法产生的BitmapData类也为我们提供了高速访问图像文件流的途径。这样我们就可以将精力集中于图像处理算法的实现,而不用关心各种图像编码。具体使用方式请参考MSDN中GDI+文档中关于Bitmap类和BitmapData类的说明。另外GDI+仅在Windows XP/2003上获得直接支持,对于Windows 2000必须安装相关DLL,或者安装有Office 2003,Visual Studio 2003 .Net等软件。
二,空间域图像处理算法框架
(1) 在空间域图像处理中,对于一个图像我们往往需要对其逐个像素的进行处理,对每个像素的处理使用相同的算法(或者是图像中的某个矩形部分)。即,对于图像f(x,y),其中0≤x≤M,0≤y≤N,图像为M*N大小,使用算法algo,则f(x,y) = algo(f(x,y))。事先实现一个算法框架,然后再以函数指针或函数对象(functor,即实现operator()的对象)传入算法,可以减轻编程的工作量。
如下代码便是一例:
#ifndef PROCESSALGO_H #define PROCESSALGO_H
#include <windows.h> #include <Gdiplus.h>
namespace nsimgtk { template <typename pixelType, Gdiplus::PixelFormat pixelFormat, class Processor> bool ProcessPixelsOneByOne(Gdiplus::Bitmap* const p_bitmap, Processor processor, unsigned int x, unsigned int y, unsigned int width, unsigned int height) { if (p_bitmap == NULL) { return false; }
if ((width + x > p_bitmap->GetWidth()) || (height + y >p_bitmap->GetHeight())) { return false; }
Gdiplus::BitmapData bitmapData; Gdiplus::Rect rect(x, y, width,height);
if (p_bitmap->LockBits(&rect, Gdiplus::ImageLockModeWrite, pixelFormat, &bitmapData) != Gdiplus::Ok) { return false; }
pixelType *pixels = (pixelType*)bitmapData.Scan0;
for (unsigned int row=0; row<height; ++row) { for (unsigned int col=0; col<width; ++col) { processor(&pixels[col+row*bitmapData.Stride/sizeof(pixelType)]); } }
if (p_bitmap->UnlockBits(&bitmapData) != Gdiplus::Ok) { return false; }
return true; } }
#endif |
ProcessPixelsOneByOne函数可以对图像中从(x,y)位置起始,width*height大小的区域进行处理。模板参数pixelType用于指定像素大小,例如在Win32平台上传入unsigned char即为8位,用于8阶灰度图。模板参数Processor为图像处理算法实现,可以定义类实现void operator(pixelType *)函数,或者传入同样接口的函数指针。
如下便是一些算法示例(说明见具体注释):
#ifndef SPATIALDOMAIN_H #define SPATIALDOMAIN_H #include <cmath> #include <string>
namespace nsimgtk { // 8阶灰度图的灰度反转算法 class NegativeGray8 { public: void operator()(unsigned char *const p_value) { *p_value ^= 0xff; } };
// 8阶灰度图的Gamma校正算法 class GammaCorrectGray8 { private: unsigned char d_s[256]; public: GammaCorrectGray8::GammaCorrectGray8(double c, double gamma);
void operator()(unsigned char*const p_value) { *p_value = d_s[*p_value]; } };
// 8阶灰度图的饱和度拉伸算法 class ContrastStretchingGray8 { private: unsigned char d_s[256]; public: ContrastStretchingGray8::ContrastStretchingGray8(double a1, double b1, unsigned int x1, double a2, double b2, unsigned int x2, double a3, double b3);
void operator()(unsigned char*const p_value) { *p_value = d_s[*p_value]; } };
// 8阶灰度图的位平面分割,构造函数指定位平面号 class BitPlaneSliceGray8 { private: unsigned char d_s[256]; public: BitPlaneSliceGray8(unsigned char bitPlaneNum);
void operator()(unsigned char* const p_value) { *p_value = d_s[*p_value]; } }; }
#endif
// 上述类中各构造函数的实现代码,应该分在另一个文件中,此处为说明方便,一并列出 #include "SpatialDomain/spatialDomain.h"
namespace nsimgtk { GammaCorrectGray8::GammaCorrectGray8(double c, double gamma) { double temp; for (unsigned int i=0; i<256; ++i) { temp = ceil(c * 255.0 * pow(double(i)/255.0, gamma)); d_s[i] = unsigned char(temp); } }
ContrastStretchingGray8::ContrastStretchingGray8(double a1, double b1, unsigned int x1, double a2, double b2, unsigned int x2, double a3, double b3) { if (x1 > 255 || x2 > 255 || x1 > x1) { for (unsigned int i=0; i<256; ++i) d_s[i] = i; } else { double tmp; for (unsigned int i=0; i<x1; ++i) { tmp = ceil(a1*double(i)+b1); d_s[i] = (unsigned char)tmp; }
for (unsigned int i=x1; i<x2; ++i) { tmp = ceil(a2*double(i)+b2); d_s[i] = (unsigned char)tmp; }
for (unsigned int i=x2; i<256; ++i) { tmp = ceil(a3*double(i)+b3); d_s[i] = (unsigned char)tmp; } } }
BitPlaneSliceGray8::BitPlaneSliceGray8(unsigned char bitPlaneNum) { unsigned char bitMaskArray[8] = { 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80 };
for (unsigned int i=0; i<256; ++i) { unsigned char tmp = i; tmp &= bitMaskArray[bitPlaneNum]; tmp = (tmp >> bitPlaneNum) * 255; d_s[i] = tmp; } } } |
(2) 直方图在GDI+1.0中没有获得支持,我们必须自行实现。直方图相关的处理在数字图像处理中占有重要地位,可以通过它获取图像灰度级的统计信息,且可以通过直方图进行一些重要的图像增强技术,如直方图均衡化,直方图规定化,基本全局门限等。
下面是获取8阶图像直方图的算法实现:
namespace nsimgtk { bool GetHistogramNormalizeGray8(Gdiplus::Bitmap * const p_bitmap, float *histogramArray) { if (p_bitmap == NULL || histogramArray == NULL) { return false; }
Gdiplus::BitmapData bitmapData; Gdiplus::Rect rect(0, 0, p_bitmap->GetWidth(), p_bitmap->GetHeight());
if (p_bitmap->LockBits(&rect, Gdiplus::ImageLockModeRead, PixelFormat8bppIndexed, &bitmapData) != Gdiplus::Ok) { return false; }
unsigned char *pixels = (unsigned char*)bitmapData.Scan0; unsigned int histogram[256]; for (int i=0; i<256; ++i) { histogram[i] = 0; }
for (unsigned int row=0; row<p_bitmap->GetWidth(); ++row) { for (unsigned int col=0; col<p_bitmap->GetHeight(); ++col) { ++histogram[pixels[col+row*bitmapData.Stride]]; } }
const unsigned int totalPixels = p_bitmap->GetWidth() * p_bitmap->GetHeight(); for (int i=0; i<256; ++i) { histogramArray[i] = float(histogram[i]) / float(totalPixels); }
if (p_bitmap->UnlockBits(&bitmapData) != Gdiplus::Ok) { return false; }
return true; } } |
在获取直方图后(即上面算法的第二个参数),再将其作为参数传入下面的对象的构造函数,然后以该对象为仿函数传入ProcessPixelsOneByOne即可实现8阶图像直方图均衡化:
#ifndef SPATIALDOMAIN_H #define SPATIALDOMAIN_H
#include <cmath> #include <string>
namespace nsimgtk { // 8阶灰度图的直方图均衡化 class HistogramEqualizationGray8 { private: unsigned char d_s[256]; public: HistogramEqualizationGray8(const float *const histogramArray);
void operator()(unsigned char *const p_value) { *p_value = d_s[*p_value]; } }; }
#endif
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// #include "SpatialDomain/spatialDomain.h"
namespace nsimgtk { HistogramEqualizationGray8::HistogramEqualizationGray8(const float *const histogramArray) { if (histogramArray != NULL) { float sum = 0.0; for (int i=0; i<256; ++i) { sum += histogramArray[i]; d_s[i] = unsigned char(sum * 255); } } } } |
(3)空间域滤波器,滤波器是一个m*n大小的掩模,其中m,n均为大于1的奇数。滤波器逐像素地通过图像的全部或部分矩形区域,然后逐像素地对掩模覆盖下的像素使用滤波器算法获得响应,将响应赋值于当前像素即掩模中心像素,另外滤波器算法使用中将会涉及到图像边缘的问题,这可以对边缘部分掩模使用补零法补齐掩模下无像素值的区域,或者掩模的移动范围以不越出图像边缘的方式移动,当然这些处理方法都会给图像边缘部分带来不良效果,但是一般情况下,图像边缘部分往往不是我们关注的部分或者没有重要的信息。
下面的滤波器算法框架SpatialFilterAlgo即以补零法(zero-padding)实现:
#ifndef SPATIALFILTER_H #define SPATIALFILTER_H
#include <vector> #include <numeric> #include <algorithm> #include <gdiplus.h> #include <fstream> #include <cmath>
namespace nsimgtk { template <typename pixelType, Gdiplus::PixelFormat pixelFormat, class FilterMask> bool SpatialFilterAlgo(Gdiplus::Bitmap* const p_bitmap, FilterMask filterMask, unsigned int x, unsigned int y, unsigned int width, unsigned int height) { if (p_bitmap == NULL) { return false; }
if ((width + x > p_bitmap->GetWidth()) || (height + y >p_bitmap->GetHeight())) { return false; }
Gdiplus::BitmapData bitmapData; Gdiplus::Rect rect(x, y, width,height);
if (p_bitmap->LockBits(&rect, Gdiplus::ImageLockModeWrite, pixelFormat, &bitmapData) != Gdiplus::Ok) { return false; }
pixelType *pixels = (pixelType*)bitmapData.Scan0;
const unsigned int m = filterMask.d_m; // mask's width const unsigned int n = filterMask.d_n; // mask's height std::vector<pixelType> tmpImage((m-1+width)*(n-1+height)); // extend image to use zero-padding
// copy original bitmap to extended image with zero-padding method for (unsigned int row=0; row<height; ++row) { for (unsigned int col=0; col<width; ++col) { tmpImage[(col+m/2)+(row+n/2)*(bitmapData.Stride/sizeof(pixelType)+m-1)] = pixels[col+row*bitmapData.Stride/sizeof(pixelType)]; } }
// process every pixel with filterMask for (unsigned int row=0; row<height; ++row) { for (unsigned int col=0; col<width; ++col) { // fill the "m*n" mask with the current pixel's neighborhood for (unsigned int i=0; i<n; ++i) { for (unsigned int j=0; j<m; ++j) { filterMask.d_mask[i*m+j] = tmpImage[(col+j)+(row+i)*(bitmapData.Stride/sizeof(pixelType)+m-1)]; } }
// replace the current pixel with filter mask's response pixels[col+row*bitmapData.Stride/sizeof(pixelType)] = filterMask.response(); } }
if (p_bitmap->UnlockBits(&bitmapData) != Gdiplus::Ok) { return false; }
return true; } }
#endif |
其中模板参数FilterMask即为滤波掩模算法。通常的滤波算法有均值滤波器,可以模糊化图像,去除图形中的细节部分,使得我们可以关注图像中较为明显的部分,均值滤波器用于周期性噪声。中值滤波器用于图像中存在椒盐噪声也即脉冲噪声的情况下。另外有基于一阶微分的Sobel梯度算子和基于两阶微分的拉普拉斯算子,它们往往被用于边缘检测中。
下面是一些滤波器算法的具体实现,所以滤波器算法都应该实现pixelType response()函数以及有d_mask,d_m,d_n成员,这可以通过继承__filteMask类获得(不需要付出虚函数代价)。
#ifndef SPATIALFILTER_H #define SPATIALFILTER_H
#include <vector> #include <numeric> #include <algorithm> #include <gdiplus.h> #include <fstream> #include <cmath>
namespace nsimgtk { // 滤波器掩模的基类,提供掩模大小d_m,d_n,掩模覆盖下的m*n个像素值d_mask // others filterMask should inherit it template <typename pixelType> struct __filterMask { const unsigned int d_m; const unsigned int d_n;
// image's pixels under the m*n filter mask std::vector<pixelType> d_mask;
// filter mask's width and heigh must be a odd, if not, it will plus one for the width or the height __filterMask(unsigned int m, unsigned int n) : d_m(m%2 ? m:m+1), d_n(n%2 ? n:n+1), d_mask(d_m*d_n) { } };
// 掩模权值为全1的均值滤波器 template <typename pixelType> class averagingFilterMaskSp : public __filterMask<pixelType> { public: averagingFilterMaskSp(unsigned int m, unsigned int n) : __filterMask<pixelType>(m, n) { }
pixelType response() { return std::accumulate(d_mask.begin(), d_mask.end(), 0) / (d_m * d_n); } };
// 可自定义掩模权值的均值滤波器 template <typename pixelType> class averagingFilterMask : public __filterMask<pixelType> { private: std::vector<pixelType> d_weight; // weights' vector(m*n) int d_weight_sum; // all weights' sum
public: averagingFilterMask(unsigned int m, unsigned int n, const std::vector<pixelType>& weightVec) : __filterMask<pixelType>(m, n), d_weight(weightVec) { if (weightVec.size() != d_mask.size()) { // if weight's size isn't equal to mask's size, it will change filter mask as a special filter mask d_weight.resize(d_mask.size(), 1); }
d_weight_sum = std::accumulate(d_weight.begin(), d_weight.end(), 0); }
pixelType response() { return std::inner_product(d_mask.begin(), d_mask.end(), d_weight.begin(), 0) / d_weight_sum; } };
// 中值滤波器 template <typename pixelType> class medianFilterMask : public __filterMask<pixelType> { public: medianFilterMask(unsigned int m, unsigned int n) : __filterMask<pixelType>(m, n) { }
pixelType response() { std::sort(d_mask.begin(), d_mask.end()); return d_mask[d_mask.size()/2]; } };
// 3*3拉普拉斯滤波器 // the mask is: [0 1 0 [0 -1 0 // 1 -5 1 or -1 5 -1 // 0 1 0] 0 -1 0] // if pixel's brightness is less than min, set it to min // if pixel's brightness is larger than max, set it to max template <typename pixelType, pixelType min, pixelType max> class laplacianFilter : public __filterMask<pixelType> { public: laplacianFilter() : __filterMask<pixelType>(3, 3) { }
pixelType response() { int ret = (int)(5*(int)d_mask[4]) - ((int)d_mask[5]+d_mask[3]+d_mask[1]+d_mask[7]); if (ret < min) ret = min; if (ret > max) ret = max; return ret; } };
// 3*3Sobel滤波器 // the mask is: [-<?XML:NAMESPACE PREFIX = ST1 />1 -2 -1 [-1 0 1 // 0 0 0 and -2 0 2 // 1 2 1] -1 0 1] // if pixel's brightness is larger than max, set it to max template <typename pixelType, pixelType max> class sobelFilter : public __filterMask<pixelType> { public: sobelFilter() : __filterMask<pixelType>(3, 3) { }
pixelType response() { int ret = ::abs(d_mask[6]+2*d_mask[7]+d_mask[8]-d_mask[0]-2*d_mask[1]-d_mask[2]) + ::abs(d_mask[2]+2*d_mask[5]+d_mask[8]-d_mask[0]-2*d_mask[3]-d_mask[6]);
if (ret > max) ret = max; return ret; } }; }
#endif |
数字图像处理算法实现
------------编程心得(1)
2001414班 朱伟 20014123
摘要: 关于空间域图像处理算法框架,直方图处理,空间域滤波器算法框架的编程心得,使用GDI+(C++)
一,图像文件的读取
初学数字图像处理时,图像文件的读取往往是一件麻烦的事情,我们要面对各种各样的图像文件格式,如果仅用C++的fstream库那就必须了解各种图像编码格式,这对于初学图像处理是不太现实的,需要一个能帮助轻松读取各类图像文件的库。在Win32平台上GDI+(C++)是不错的选择,不光使用上相对于Win32 GDI要容易得多,而且也容易移植到.Net平台上的GDI+。
Gdiplus::Bitmap类为我们提供了读取各类图像文件的接口,Bitmap::LockBits方法产生的BitmapData类也为我们提供了高速访问图像文件流的途径。这样我们就可以将精力集中于图像处理算法的实现,而不用关心各种图像编码。具体使用方式请参考MSDN中GDI+文档中关于Bitmap类和BitmapData类的说明。另外GDI+仅在Windows XP/2003上获得直接支持,对于Windows 2000必须安装相关DLL,或者安装有Office 2003,Visual Studio 2003 .Net等软件。
二,空间域图像处理算法框架
(1) 在空间域图像处理中,对于一个图像我们往往需要对其逐个像素的进行处理,对每个像素的处理使用相同的算法(或者是图像中的某个矩形部分)。即,对于图像f(x,y),其中0≤x≤M,0≤y≤N,图像为M*N大小,使用算法algo,则f(x,y) = algo(f(x,y))。事先实现一个算法框架,然后再以函数指针或函数对象(functor,即实现operator()的对象)传入算法,可以减轻编程的工作量。
如下代码便是一例:
#ifndef PROCESSALGO_H #define PROCESSALGO_H
#include <windows.h> #include <Gdiplus.h>
namespace nsimgtk { template <typename pixelType, Gdiplus::PixelFormat pixelFormat, class Processor> bool ProcessPixelsOneByOne(Gdiplus::Bitmap* const p_bitmap, Processor processor, unsigned int x, unsigned int y, unsigned int width, unsigned int height) { if (p_bitmap == NULL) { return false; }
if ((width + x > p_bitmap->GetWidth()) || (height + y >p_bitmap->GetHeight())) { return false; }
Gdiplus::BitmapData bitmapData; Gdiplus::Rect rect(x, y, width,height);
if (p_bitmap->LockBits(&rect, Gdiplus::ImageLockModeWrite, pixelFormat, &bitmapData) != Gdiplus::Ok) { return false; }
pixelType *pixels = (pixelType*)bitmapData.Scan0;
for (unsigned int row=0; row<height; ++row) { for (unsigned int col=0; col<width; ++col) { processor(&pixels[col+row*bitmapData.Stride/sizeof(pixelType)]); } }
if (p_bitmap->UnlockBits(&bitmapData) != Gdiplus::Ok) { return false; }
return true; } }
#endif |
ProcessPixelsOneByOne函数可以对图像中从(x,y)位置起始,width*height大小的区域进行处理。模板参数pixelType用于指定像素大小,例如在Win32平台上传入unsigned char即为8位,用于8阶灰度图。模板参数Processor为图像处理算法实现,可以定义类实现void operator(pixelType *)函数,或者传入同样接口的函数指针。
如下便是一些算法示例(说明见具体注释):
#ifndef SPATIALDOMAIN_H #define SPATIALDOMAIN_H #include <cmath> #include <string>
namespace nsimgtk { // 8阶灰度图的灰度反转算法 class NegativeGray8 { public: void operator()(unsigned char *const p_value) { *p_value ^= 0xff; } };
// 8阶灰度图的Gamma校正算法 class GammaCorrectGray8 { private: unsigned char d_s[256]; public: GammaCorrectGray8::GammaCorrectGray8(double c, double gamma);
void operator()(unsigned char*const p_value) { *p_value = d_s[*p_value]; } };
// 8阶灰度图的饱和度拉伸算法 class ContrastStretchingGray8 { private: unsigned char d_s[256]; public: ContrastStretchingGray8::ContrastStretchingGray8(double a1, double b1, unsigned int x1, double a2, double b2, unsigned int x2, double a3, double b3);
void operator()(unsigned char*const p_value) { *p_value = d_s[*p_value]; } };
// 8阶灰度图的位平面分割,构造函数指定位平面号 class BitPlaneSliceGray8 { private: unsigned char d_s[256]; public: BitPlaneSliceGray8(unsigned char bitPlaneNum);
void operator()(unsigned char* const p_value) { *p_value = d_s[*p_value]; } }; }
#endif
// 上述类中各构造函数的实现代码,应该分在另一个文件中,此处为说明方便,一并列出 #include "SpatialDomain/spatialDomain.h"
namespace nsimgtk { GammaCorrectGray8::GammaCorrectGray8(double c, double gamma) { double temp; for (unsigned int i=0; i<256; ++i) { temp = ceil(c * 255.0 * pow(double(i)/255.0, gamma)); d_s[i] = unsigned char(temp); } }
ContrastStretchingGray8::ContrastStretchingGray8(double a1, double b1, unsigned int x1, double a2, double b2, unsigned int x2, double a3, double b3) { if (x1 > 255 || x2 > 255 || x1 > x1) { for (unsigned int i=0; i<256; ++i) d_s[i] = i; } else { double tmp; for (unsigned int i=0; i<x1; ++i) { tmp = ceil(a1*double(i)+b1); d_s[i] = (unsigned char)tmp; }
for (unsigned int i=x1; i<x2; ++i) { tmp = ceil(a2*double(i)+b2); d_s[i] = (unsigned char)tmp; }
for (unsigned int i=x2; i<256; ++i) { tmp = ceil(a3*double(i)+b3); d_s[i] = (unsigned char)tmp; } } }
BitPlaneSliceGray8::BitPlaneSliceGray8(unsigned char bitPlaneNum) { unsigned char bitMaskArray[8] = { 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80 };
for (unsigned int i=0; i<256; ++i) { unsigned char tmp = i; tmp &= bitMaskArray[bitPlaneNum]; tmp = (tmp >> bitPlaneNum) * 255; d_s[i] = tmp; } } } |
(2) 直方图在GDI+1.0中没有获得支持,我们必须自行实现。直方图相关的处理在数字图像处理中占有重要地位,可以通过它获取图像灰度级的统计信息,且可以通过直方图进行一些重要的图像增强技术,如直方图均衡化,直方图规定化,基本全局门限等。
下面是获取8阶图像直方图的算法实现:
namespace nsimgtk { bool GetHistogramNormalizeGray8(Gdiplus::Bitmap * const p_bitmap, float *histogramArray) { if (p_bitmap == NULL || histogramArray == NULL) { return false; }
Gdiplus::BitmapData bitmapData; Gdiplus::Rect rect(0, 0, p_bitmap->GetWidth(), p_bitmap->GetHeight());
if (p_bitmap->LockBits(&rect, Gdiplus::ImageLockModeRead, PixelFormat8bppIndexed, &bitmapData) != Gdiplus::Ok) { return false; }
unsigned char *pixels = (unsigned char*)bitmapData.Scan0; unsigned int histogram[256]; for (int i=0; i<256; ++i) { histogram[i] = 0; }
for (unsigned int row=0; row<p_bitmap->GetWidth(); ++row) { for (unsigned int col=0; col<p_bitmap->GetHeight(); ++col) { ++histogram[pixels[col+row*bitmapData.Stride]]; } }
const unsigned int totalPixels = p_bitmap->GetWidth() * p_bitmap->GetHeight(); for (int i=0; i<256; ++i) { histogramArray[i] = float(histogram[i]) / float(totalPixels); }
if (p_bitmap->UnlockBits(&bitmapData) != Gdiplus::Ok) { return false; }
return true; } } |
在获取直方图后(即上面算法的第二个参数),再将其作为参数传入下面的对象的构造函数,然后以该对象为仿函数传入ProcessPixelsOneByOne即可实现8阶图像直方图均衡化:
#ifndef SPATIALDOMAIN_H #define SPATIALDOMAIN_H
#include <cmath> #include <string>
namespace nsimgtk { // 8阶灰度图的直方图均衡化 class HistogramEqualizationGray8 { private: unsigned char d_s[256]; public: HistogramEqualizationGray8(const float *const histogramArray);
void operator()(unsigned char *const p_value) { *p_value = d_s[*p_value]; } }; }
#endif
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// #include "SpatialDomain/spatialDomain.h"
namespace nsimgtk { HistogramEqualizationGray8::HistogramEqualizationGray8(const float *const histogramArray) { if (histogramArray != NULL) { float sum = 0.0; for (int i=0; i<256; ++i) { sum += histogramArray[i]; d_s[i] = unsigned char(sum * 255); } } } } |
(3)空间域滤波器,滤波器是一个m*n大小的掩模,其中m,n均为大于1的奇数。滤波器逐像素地通过图像的全部或部分矩形区域,然后逐像素地对掩模覆盖下的像素使用滤波器算法获得响应,将响应赋值于当前像素即掩模中心像素,另外滤波器算法使用中将会涉及到图像边缘的问题,这可以对边缘部分掩模使用补零法补齐掩模下无像素值的区域,或者掩模的移动范围以不越出图像边缘的方式移动,当然这些处理方法都会给图像边缘部分带来不良效果,但是一般情况下,图像边缘部分往往不是我们关注的部分或者没有重要的信息。
下面的滤波器算法框架SpatialFilterAlgo即以补零法(zero-padding)实现:
#ifndef SPATIALFILTER_H #define SPATIALFILTER_H
#include <vector> #include <numeric> #include <algorithm> #include <gdiplus.h> #include <fstream> #include <cmath>
namespace nsimgtk { template <typename pixelType, Gdiplus::PixelFormat pixelFormat, class FilterMask> bool SpatialFilterAlgo(Gdiplus::Bitmap* const p_bitmap, FilterMask filterMask, unsigned int x, unsigned int y, unsigned int width, unsigned int height) { if (p_bitmap == NULL) { return false; }
if ((width + x > p_bitmap->GetWidth()) || (height + y >p_bitmap->GetHeight())) { return false; }
Gdiplus::BitmapData bitmapData; Gdiplus::Rect rect(x, y, width,height);
if (p_bitmap->LockBits(&rect, Gdiplus::ImageLockModeWrite, pixelFormat, &bitmapData) != Gdiplus::Ok) { return false; }
pixelType *pixels = (pixelType*)bitmapData.Scan0;
const unsigned int m = filterMask.d_m; // mask's width const unsigned int n = filterMask.d_n; // mask's height std::vector<pixelType> tmpImage((m-1+width)*(n-1+height)); // extend image to use zero-padding
// copy original bitmap to extended image with zero-padding method for (unsigned int row=0; row<height; ++row) { for (unsigned int col=0; col<width; ++col) { tmpImage[(col+m/2)+(row+n/2)*(bitmapData.Stride/sizeof(pixelType)+m-1)] = pixels[col+row*bitmapData.Stride/sizeof(pixelType)]; } }
// process every pixel with filterMask for (unsigned int row=0; row<height; ++row) { for (unsigned int col=0; col<width; ++col) { // fill the "m*n" mask with the current pixel's neighborhood for (unsigned int i=0; i<n; ++i) { for (unsigned int j=0; j<m; ++j) { filterMask.d_mask[i*m+j] = tmpImage[(col+j)+(row+i)*(bitmapData.Stride/sizeof(pixelType)+m-1)]; } }
// replace the current pixel with filter mask's response pixels[col+row*bitmapData.Stride/sizeof(pixelType)] = filterMask.response(); } }
if (p_bitmap->UnlockBits(&bitmapData) != Gdiplus::Ok) { return false; }
return true; } }
#endif |
其中模板参数FilterMask即为滤波掩模算法。通常的滤波算法有均值滤波器,可以模糊化图像,去除图形中的细节部分,使得我们可以关注图像中较为明显的部分,均值滤波器用于周期性噪声。中值滤波器用于图像中存在椒盐噪声也即脉冲噪声的情况下。另外有基于一阶微分的Sobel梯度算子和基于两阶微分的拉普拉斯算子,它们往往被用于边缘检测中。
下面是一些滤波器算法的具体实现,所以滤波器算法都应该实现pixelType response()函数以及有d_mask,d_m,d_n成员,这可以通过继承__filteMask类获得(不需要付出虚函数代价)。
#ifndef SPATIALFILTER_H #define SPATIALFILTER_H
#include <vector> #include <numeric> #include <algorithm> #include <gdiplus.h> #include <fstream> #include <cmath>
namespace nsimgtk { // 滤波器掩模的基类,提供掩模大小d_m,d_n,掩模覆盖下的m*n个像素值d_mask // others filterMask should inherit it template <typename pixelType> struct __filterMask { const unsigned int d_m; const unsigned int d_n;
// image's pixels under the m*n filter mask std::vector<pixelType> d_mask;
// filter mask's width and heigh must be a odd, if not, it will plus one for the width or the height __filterMask(unsigned int m, unsigned int n) : d_m(m%2 ? m:m+1), d_n(n%2 ? n:n+1), d_mask(d_m*d_n) { } };
// 掩模权值为全1的均值滤波器 template <typename pixelType> class averagingFilterMaskSp : public __filterMask<pixelType> { public: averagingFilterMaskSp(unsigned int m, unsigned int n) : __filterMask<pixelType>(m, n) { }
pixelType response() { return std::accumulate(d_mask.begin(), d_mask.end(), 0) / (d_m * d_n); } };
// 可自定义掩模权值的均值滤波器 template <typename pixelType> class averagingFilterMask : public __filterMask<pixelType> { private: std::vector<pixelType> d_weight; // weights' vector(m*n) int d_weight_sum; // all weights' sum
public: averagingFilterMask(unsigned int m, unsigned int n, const std::vector<pixelType>& weightVec) : __filterMask<pixelType>(m, n), d_weight(weightVec) { if (weightVec.size() != d_mask.size()) { // if weight's size isn't equal to mask's size, it will change filter mask as a special filter mask d_weight.resize(d_mask.size(), 1); }
d_weight_sum = std::accumulate(d_weight.begin(), d_weight.end(), 0); }
pixelType response() { return std::inner_product(d_mask.begin(), d_mask.end(), d_weight.begin(), 0) / d_weight_sum; } };
// 中值滤波器 template <typename pixelType> class medianFilterMask : public __filterMask<pixelType> { public: medianFilterMask(unsigned int m, unsigned int n) : __filterMask<pixelType>(m, n) { }
pixelType response() { std::sort(d_mask.begin(), d_mask.end()); return d_mask[d_mask.size()/2]; } };
// 3*3拉普拉斯滤波器 // the mask is: [0 1 0 [0 -1 0 // 1 -5 1 or -1 5 -1 // 0 1 0] 0 -1 0] // if pixel's brightness is less than min, set it to min // if pixel's brightness is larger than max, set it to max template <typename pixelType, pixelType min, pixelType max> class laplacianFilter : public __filterMask<pixelType> { public: laplacianFilter() : __filterMask<pixelType>(3, 3) { }
pixelType response() { int ret = (int)(5*(int)d_mask[4]) - ((int)d_mask[5]+d_mask[3]+d_mask[1]+d_mask[7]); if (ret < min) ret = min; if (ret > max) ret = max; return ret; } };
// 3*3Sobel滤波器 // the mask is: [-1 -2 -1 [-1 0 1 // 0 0 0 and -2 0 2 // 1 2 1] -1 0 1] // if pixel's brightness is larger than max, set it to max template <typename pixelType, pixelType max> class sobelFilter : public __filterMask<pixelType> { public: sobelFilter() : __filterMask<pixelType>(3, 3) { }
pixelType response() { int ret = ::abs(d_mask[6]+2*d_mask[7]+d_mask[8]-d_mask[0]-2*d_mask[1]-d_mask[2]) + ::abs(d_mask[2]+2*d_mask[5]+d_mask[8]-d_mask[0]-2*d_mask[3]-d_mask[6]);
if (ret > max) ret = max; return ret; } }; }
#endif |
文章评论(0条评论)
登录后参与讨论