概率分布函数:
概率分布函数是概率密度函数的积分。根据该函数,我们可了解某事件在给定的时间间隔内发生的概率(见方程式 1.3 与图 1.3)。举例来说,我们可以假定图 1.4 为噪声概率分布函数,该函数告诉我们,在任意时间点上,在 1V 与 +1V 之间(即 (-1, 1) 区间内)检测到噪声电压的概率为 30%。
方程式 1.3:概率分布函数。
概率分布函数对我们将 RMS热噪声电压转化为峰值对峰值噪声非常有用。请注意,高斯分布曲线的尾部是无限延伸的,这就是说,任何噪声电压都是可能的。尽管理论上确实如此,但就实际情况而言,极大的瞬时噪声电压发生的可能性不大。举例来说,我们检测到噪声电压在 -3σ 与 +3σ 之间的概率为 99.7 %。换言之,噪声电压超出该范围的概率仅有0.3 %。因此,我们通常将噪声信号的峰值估算为±3σ(即 6σ)。请注意,也有些工程师将噪声的峰值估算为 6.6σ。人们对到底如何估计这个数值没有定论。图 1.4 显示,68% 的噪声都会不超过 2σ。表 1.1 总结了测量噪声电压时标准偏差与概率之间的关系。
图 1.4: 标准偏差与峰值噪声间的关系。
因此,在一定的标准偏差条件下,我们可以根据关系式来估算峰值对峰值噪声。不过,总体来说,我们还是希望将 RMS 噪声电压转化为峰值对峰值噪声。人们常常假定 RMS 与标准偏差相同,不过事实并非总是如此。这两个值只有在不存在 DC 元件(DC 元件为平均值 μ)的情况下才相同。就热噪声而言,由于没有 DC 元件,因此标准偏差与 RMS 值相等。我们在附录中举出了“标准偏差与 RMS 相等”和“标准偏差与 RMS 不相等”两个不同的示例。
文章开头就给出了计算 RMS 热噪声电压的方程式。还有一种计算 RMS 噪声电压的方法就是先测量大量离散点,然后采用统计学方法估算标准偏差。举例来说,如果我们从模数 (A/D) 转换器中获得大量采样,那么我们就能运用方程式 1.4, 1.5 及 1.6 来计算噪声信号的平均偏差、标准偏差以及 RMS 值。附录中的示例 1.3 显示了在基本程序中如何运用上述方程式。我们在附录中还列出了一组更全面的统计方程供您参考。
方程式 1.4、1.5、1.6:离散数据的统计方程。
本文最后要介绍的概念是噪声信号的增加。为了增加两个噪声信号,我们必须先了解信号是否相关。来自两个不同信号源的噪声信号彼此不相关。举例来说,来自两个不同电阻器或两个不同运算放大器的噪声是彼此不相关的。不过,噪声源通过反馈机制会产生关联。什么是相关噪声源增加呢?一个很好的实例就是带噪声消除功能的耳机,其可通过累加反向相关的噪声来消除噪声。方程式 1.7 显示了如何添加相关噪声信号。请注意,就带噪声消除功能的耳机而言,相关系数 C 应等于 - 1。
方程式 1.7: 增加随机相关信号。
在大多数情况下,我们都要添加不相关的噪声源(见方程式 1.8)。在这种情况下增加噪声,我们要通过勾股定理得到两个矢量噪声的和。图 1.5 显示了增加噪声源的情况。我们通常可近似地估计一个噪声源强度为另一个的三分之一,较小的噪声源可忽略不计。
图 1.5: 噪声勾股定理。
用户1362017 2010-4-22 18:03