Android是基于Linux的,它使用了Linux内核,但应用程序使用Java语言开发,所 以应用程序在调用设备驱动时不能像一般的Linux应用程序那样直接使用系统调用,必须通过Java虚拟机的JNI的本地(Native)方法使用设备。 另一方面,Android要成为一个通用性强的平台,必须加强它的可移植性。这也是在Android架构添加一个硬件抽象层(HAL)的原因,目的是为设 备的调用提供一个更高级的封装图1所示为Android驱动程序架构。
图1 Android驱动程序架构
HALSTub 是以Linux共享库(*.so)的形式存在,在整个驱动架构中,它是设备驱动程序运行在用户空间的一部分,它向上为Dalvik虚拟机提供硬件设备的抽 象接口,向下通过系统调用与Linux内核中的驱动程序进行数据交互。在这个过程中HAL可以对驱动程序的数据进行处理,也就是说在Linux内核中的驱 动程序部分只需要提供一个与硬件设备传输数据接口的功能,而其余具体的操作可以由HAL完成。
1.2 Android的硬件抽象层
Android的硬件抽象层HAL(HardwareAbstractLayer)在Android的架构中是在库这一层中,通过这一层,硬件厂商可以把部分设备的驱动源码封装在这一层而不公开源代码。
对图1分析,设计HAL就是为了把应用框架和Linux内核分离出来,让Android使用 Linux内核而又不完全依赖Linux内核。当然,驱动程序并不是完全从Linux内核中分离出来,一些基本的处理必须由内核来完成,HAL只是分担了 Linux设备驱动的部分功能,至于这部分的功能占驱动程序功能的比例目前并没有一个标准。
在Android系统发展过程中,HAL的实现也逐步有了一些变化,旧的HAL是一种模块化的思 想,通过共享库的形式由Runtime在JNI时以函数调用方法调用,这种做法并没有通过封装,即上层应用可以直接调用硬件。另外,这种方法可被多个进程 使用,映射到多个进程空间中浪费内存资源。
现在HAL提出一种Stub的思想,HALStub是一种代理的概念,Stub同样是以共享库 (*.so)格式存在,但上层应用并不像加载动态库那样调用Stub。这种HAL是由模块与Stub结合而成,Runtime通过模块提供的统一接口获取 并操作Stub。Stub向HAL提供操作的回调函数,Runtime向HAL取得指定模块的操作函数后,调用这些回调函数。这是一种间接函数调用的方 式,HAL里包含了多个Stub。图2为HALStib原理。
图2 HALStub原理
1.3 ndroid的JNI实现原理
JNI是JavaNativeInterface的缩写,是在Sun的Java平台中首先定义出来的,它允许Java代码与其他语言代码进行交互。Android中JNI的设计目的也是一样:
(1)应用程序需要与硬件平台交互时,Java库中的类不可能支持;
(2)本地已经使用其他语言编写的库允许Java程序访问;
(3)某些功能用较低级的语言实现的执行效率较高,让Java程序调用这些函数。
在Android应用层中的程序或组件都是用Java语言开发的,这些Java代码编译后变成 Dex格式的字节码,由Dalvik虚拟机执行,在执行过程中需要调用本地库时,由虚拟机载入这些本地库,然后让Java函数调用库中的函数,虚拟机相当 于一座桥梁,让Java与本地库能够透过标准的JNI界面互相沟通。
应用程序在虚拟机里执行,通过函数System.loadLibrary()通知虚拟机载入指定的库,例如在Java代码中包含代码如:
虚拟机就会在Android文件系统的“/system/lib/”目录中查找libsample_jni.so库文件,虚拟机载入libsample_jni.so后,Java代码就可以与库文件结合起来一起执行。
这些用C语言编写的本地库必须遵循规范,当虚拟机执行System.loadLibrary()函数时,首先执行本地库里的JNI_ONLoad()函数,这个函数需要实现的功能是:返回给虚拟机此本地库使用的JNI版本;对库进行初始化。如果本地库里没有实现JNI_OnLoad()函数,虚拟机就会默认本地库使用最老的JNI1.1版本。
JNI_OnUnload()函数与装入函数相对应,在虚拟机释放该本地库时,会调用JNI_OnUnload()函数进行资源回收动作。
在应用层的Java代码通过虚拟机调用本地函数,一般要依赖于虚拟机查找库里的本地函数,如果需要 调用比较频繁,每次都要寻找一遍,就会花费较多的时间影响效率,在这里可以通过registerNativeMethods()函数把 gMethods[]表格所含的本地函数注册到虚拟机里。
2 Android硬件驱动程序设计
Android是一个开放平台,在嵌入式移动设备领域里具有很好的应用前景,但在不同的设备上往往有不同的硬件支持,要在Android中添加这些硬件应用,不是单纯地在Linux内核中添加驱动模块,还必须在用户空间和应用框架中添加对应的支持。下面以给S3C2440开发板添加一个LED显示控制驱动功能为例展示Android平台添加新硬件支持的过程。
2.1 硬件驱动程序的框架
LED控制功能通过应用程序来开关开发板上的LED灯。在应用层中LED控制程序调用LED控制服务(AndroidService),应用层中的LED控制服务通过JNI让虚拟机加载LED控制的本地库,然后向HAL获取LEDStub,由Stub调用在Linux内核中的LED驱动。图3为LED控制功能的架构设计。
从LED控制功能的架构来分,整个功能可以分成五个模块:LED驱动模块、LEDStub模块、LED本地服务模块、LED服务管理模块和LED应用模块。
图3 LED控制功能的架构设计
2.2 HAL中的Stub的设计与实现
图4是LEDStub的实现过程。LEDStub是硬件抽象层中LED控制的代理,当LED控制的本地服务需要调用LEDStub时,通过函数hw_get_module()结合LEDStub的模块ID向HAL申请LEDStub,本地服务获得Stub对象后,可以把Stub看作一个抽象硬件进行操作。
图4 LEDStub的实现过程
下面是定义LEDStub的HAL结构体:
将结构体led_module_t初始化一个实例名为HAL_MODULE_INFO_SYM,这个名称不能修改,实例里包含了Stub的模块信息,主要包括:
tag:标记了结构体的类型,这里的值为 HARDWARE_MODULE_TAG;id:LEDStub的模块ID,在本地服务向HAL获取Stub时调用的函数hw_get_module() 中,通过这里的id查找LEDStub;methods:是结构体hw_module_methods_t的实例,为HAL定义回调函数open()。
这里的open()函数是一个必须实现的回调函数接口,在本地服务获得Stub对象后调用,它负责申请结构体led_control_device_t的空间,填充信息,注册具体操作的回调函数接口并打开LED驱动。
结构体led_control_device_t继承了hw_device_t,在open()函数调用时填充的主要信息包括:
tag:结构体的类型,这里的值为HARDWARE_DEVICE_TAG;
module:Stub的模块,也就是实例HAL_MODULE_INFO_SYM中的hw_module_t部分;
close:释放LEDStub的回调函数;
fd:打开设备驱动文件返回的文件描述符;
ns_set_on:打开LED灯的回调函数指针;
ns_set_off:关闭LED灯的回调函数指针。
回调函数指针“*ns_set_on”和“*ns_set_off”分别指向实现函数hal_led_on()和hal_led_off(),在实现函数中通过系统调用ioctl()对LED灯进行开关控制。
2.3 硬件控制服务的JNI实现
LED控制本地库编译后为“libled.so”保存在Android文件系统的“/sysem/lib/”目录下面,LED控制服务的Android进程运行后由虚拟机实例装入本地库,具体实现过程如图5所示。
图5 LED控制服务的JNI实现过程
控制服务调用System.load()函数,它的虚拟机实例就会装入LED控制本地库,虚拟机会首先调用JNI_OnLoad()函数完成:
(1)把虚拟机环境信息保存到本地库的一个结构体“JNIEnv”的实例中;
(2)建立一个应用层中的LED控制服务与本地库的JNI函数表;
(3)返回虚拟机本地库使用的JNI版本。
加载完后,应用层中的LED控制服务就可以通过虚拟机中的JNI函数表把运行的Java函数转换为本地函数执行。在LED控制服务类中定义有JNI函数的方式,例如下面的代码段:
3 结语
本文的研究工作是在S3C2440开发板上进行的,以给开发板上的LED灯增加驱动程序为例,展示 了一种为Android平台非标准硬件增加驱动程序的设计方案,对于实现其他设备的驱动具有一定的借鉴意义。由于各种硬件设备及其接口差异较大,本文着重 于驱动程序的设计方案,没有讨论相关的硬件接口驱动细节。随着Android平台日渐成熟以及应用数量的增加,它在嵌入式领域的应用范围将会更加广泛。为 Android设备编写不同于标准Linux系统的设备驱动程序会变得越来越多。
文章评论(0条评论)
登录后参与讨论