本篇文章纯属个人对数字信号的粗浅理解,如有不对的地方,还望高手指点。
FIR:有限脉冲响应滤波器。有限说明其脉冲响应是有限的。与IIR相比,它具有线性相位、容易设计的优点。这也就说明,IIR滤波器具有相位不线性,不容易设计的缺点。而另一方面,IIR却拥有FIR所不具有的缺点,那就是设计同样参数的滤波器,FIR比IIR需要更多的参数。这也就说明,要增加DSP的计算量。DSP需要更多的计算时间,对DSP的实时性有影响。
以下都是低通滤波器的设计。
FIR的设计:
FIR滤波器的设计比较简单,就是要设计一个数字滤波器去逼近一个理想的低通滤波器。通常这个理想的低通滤波器在频域上是一个矩形窗。根据傅里叶变换我们可以知道,此函数在时域上是一个采样函数。通常此函数的表达式为:
sa(n)=sin(n∩)/n∏,但是这个采样序列是无限的,计算机是无法对它进行计算的。故我们需要对此采样函数进行截断处理。也就是加一个窗函数。就是传说中的加窗。也就是把这个时域采样序列去乘一个窗函数,就把这个无限的时域采样序列截成了有限个序列值。但是加窗后对此采样序列的频域也产生了影响:此时的频域便不在是一个理想的矩形窗,而是成了一个有过渡带,阻带有波动的低通滤波器。通常根据所加的窗函数的不同,对采样信号加窗后,在频域所得的低通滤波器的阻带衰减也不同。通常我们就是根据此阻带衰减去选择一个合适的窗函数。如矩形窗、汉宁窗、汉明窗、BLACKMAN窗、凯撒窗等。选择一个具体的窗函数之后,根据所设计滤波器的参数来计算所需的阶数、此窗函数的表达式。然后用这个窗函数去和采样序列相乘,就可以得到实际滤波器的脉冲响应。
IIR的设计(双线性变换法):
IIR的设计理念是这样的:根据所要设计滤波器的参数去确定一个模拟滤波器的传输函数,然后再根据这个传输函数,通过双线性变换、或脉冲响应不变法来进行数字滤波器的设计。它的设计比较复杂,复杂在于它的模拟滤波器传输函数H(s)的确定。这一点我们可以让软件来实现。然后,我们说一下它的具体实现步骤:首先你要先确定你需要一个什么样的滤波器,巴特沃斯型,切比雪夫型,还是其它什么型的滤波器。当你选定一个型号后,你就可以根据设计参数和这个滤波器的计算公式来确定其阶数、传输函数的表达式。通常这个过程中还存在预扭曲的问题(这只是双线性变换法所需要注意的问题,脉冲响应不变法不存在这种问题)。确定H(S)后,就可以通过双线性变换得到其数字域的差分方程。
用户377235 2015-6-1 20:58